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31 Lecture 31 Information loss rate

31.1 Observation with finite resolution
When a dynamical system is given, we wish to describe its state at each instant with
a constant precision. Suppose the data with information357𝐻 is required to describe
the current state with a prescribed precision. If we could predict the state with the
same precision after one unit time with the aid of this initial data, all the states in
any future can be predicted with the same precision in terms of the information 𝐻
contained in the initial data. However, for chaotic systems the cloud of the ensemble
is scrambled and the precise locations of the individual points in the phase space are
lost. If we wish to locate the state of the system after one time unit as precisely as
we can locate it now, we have to augment 𝐻 with more information to counter the
‘information-dissipating’ tendency of chaotic dynamical systems. Thus:
(1) We need extra information ∆𝐻 to describe time one future as accurately as the
present. That is, we need more information than 𝐻 required at present to maintain
the precision of the description.
(2) To describe a state at any given time in the steady state we need the same amount
𝐻 to have ‘equi-precision’ description. Therefore, ∆𝐻 means the loss of information
due to time evolution.

Let us try to quantify the information loss per time.

31.2 Interval map information loss rate
Consider a discrete measure-theoretical dynamical system (𝐹, 𝜇, 𝐼) on the interval 𝐼
with a piecewise continuous and differentiable map358 𝐹 with an absolutely continu-
ous (29.9) invariant measure 𝜇. The average amount ℎ𝜇(𝐹 ) of the extra information
required for the equi-precise description of the states is given by the following for-
mula:

ℎ𝜇(𝐹 ) =

∫︁
𝐼

𝜇(𝑑𝑥) log |𝐹 ′(𝑥)|. (31.1)

Henceforth, we will often write 𝜇(𝑑𝑥) = 𝑑𝜇(𝑥).359 The generalized form that is also

357What is information? We only ask how we quantify it. An explanation is given in terms of
‘surprisal’ in 31.8 and 31.9.

358‘piecewise continuous’ implies that a map consists of a several continuous pieces. ‘Piecewise
continuously differentiable’ implies that each piece is differentiable inside, and, at its ends, one-sided
derivatives from inside are well-defined.

359Here, a formal calculation is explained as given in Y. Oono, “Kolmogorov-Sinai entropy as
disorder parameter for chaos,” Prog. Theor. Phys. 60, 1944 (1978). The formula had been obtained
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correct for non-absolutely continuous invariant measures is (31.3).360

31.3 Derivation of Rokhlin’s formula
For simplicity, let us assume that 𝐹 is unimodal (its graph has only one peak and
no valley; Fig. 31.1).
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Figure 31.1: An explanation of (31.2). The points in a small interval 𝑑𝑥 was in 𝑑𝑥1 or in 𝑑𝑥2 one
time step ago. These intervals are stretched and superposed onto 𝑑𝑥. The right figure illustrates
(31.2).

The invariance condition (29.2) for the measure 𝜇 reads, in this case (see Fig. 31.1),

𝜇(𝑑𝑥1) + 𝜇(𝑑𝑥2) = 𝜇(𝑑𝑥). (31.2)

Here, 𝑑𝑥 denotes a small interval and its preimage (the set mapped to 𝑑𝑥 by 𝐹 )
is written as 𝑑𝑥1 ∪ 𝑑𝑥2 (𝐹−1(𝑑𝑥) = 𝑑𝑥1 ∪ 𝑑𝑥2). For example, if 𝐹 is applied once
to 𝑑𝑥1, it is stretched and mapped onto 𝑑𝑥, so without any doubt the precision to
specify the location is reduced. That is, with the equal probability 𝜇(𝑑𝑥1)/𝜇(𝑑𝑥) =
𝜇(𝑑𝑥1)/𝜇(𝐹 (𝑑𝑥1)) they are spread over 𝑑𝑥. Consequently, the information was lost
by − log(𝜇(𝑑𝑥1)/𝜇(𝑑𝑥)). We must also do an analogous calculation for 𝑑𝑥2.

Therefore, the expectation value of information deficit required to predict one
time step later with the same precision as the current state must be obtained by

by Rohlin, “Lectures on the entropy theory of transformations with an invariant measure,” Russ.
Math. Surveys 22(5), 1 (1967), so let us call it Rohlin’s formula. Note that most important theorems
of measure theoretical dynamical systems had been obtained by the Russian mathematicians long
before chaos became popular among the US physicists in the 1980s.

360F. Ledrappier, “Some properties of absolutely continuous invariant measures on an interval,”
Ergodic Theor. Dynam. Syst. 1, 77 (1981) proved the following theorem for 𝐶2-maps (actually, for
𝐶1-maps with some conditions):
Theorem Let 𝑓 be a 𝐶2-endomorphism on an interval. A necessary and sufficient condition for
an ergodic invariant measure to be absolutely continuous is that the Kolmogorov-Sinai entropy is
given by Rohlin’s formula (31.4).
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averaging this over 𝑥1 with the aid of the (probability) measure 𝜇. Consequently,
the rate of information deficit is written as

ℎ𝜇(𝐹 ) = −
∫︁
𝐼

𝜇(𝑑𝑥) log
𝜇(𝑑𝑥)

𝜇(𝐹 (𝑑𝑥))
. (31.3)

This loss must be compensated with the extra information (∆𝐻 in the above) for
equi-precise description of the system.

If 𝜇 is absolutely continuous, we can introduce the invariant density 𝑔 as 𝑔(𝑥)𝜆(𝑑𝑥) =
𝜇(𝑑𝑥), where 𝜆 is the Lebesgue measure. Hence,

𝜇(𝑑𝑥𝑖)

𝜇(𝑑𝑥)
=

𝜇(𝑑𝑥𝑖)

𝜆(𝑑𝑥𝑖)

𝜆(𝑑𝑥)

𝜇(𝑑𝑥)

𝜆(𝑑𝑥𝑖)

𝜆(𝑑𝑥)
=

𝑔(𝑥𝑖)

𝑔(𝑥)|𝐹 ′(𝑥𝑖)|
. (31.4)

Noting that 𝐹 (𝑥𝑖) = 𝑥 with the aid of (31.4), we may rewrite (31.3) as

ℎ𝜇(𝐹 ) =

∫︁
𝐼

𝜆(𝑑𝑥)𝑔(𝑥) log
𝑔(𝐹 (𝑥))|𝐹 ′(𝑥)|

𝑔(𝑥)
. (31.5)

Here, the integral with respect to the Lebesgue measure is explicitly written as∫︀
𝜆(𝑑𝑥), but it is simply

∫︀
𝑑𝑥 with the usual notation.

If we apply the Perron-Frobenius equation 31.4, we see∫︁
𝐼

𝑑𝑦 𝑔(𝑦) log 𝑔(𝐹 (𝑦)) =

∫︁
𝐼

𝑑𝑦

∫︁
𝐼

𝑑𝑧 𝑔(𝑦)𝛿(𝑧 − 𝐹 (𝑦)) log 𝑔(𝑧) =

∫︁
𝐼

𝑑𝑧 𝑔(𝑧) log 𝑔(𝑧),

(31.6)
so indeed (31.3) is nothing but (31.1) under the absolute continuity assumption.

31.4 Perron-Frobenius equation
If 𝜇 is absolutely continuous, we may introduce the density 𝑔 = 𝑑𝜇/𝑑𝑥 ≡ 𝜇(𝑑𝑥)/𝜆(𝑑𝑥).
Then, the invariance condition (31.2) for measure 𝜇 reads

𝑔(𝑥1)𝑑𝑥1 + 𝑔(𝑥2)𝑑𝑥2 = 𝑔(𝑥)𝑑𝑥. (31.7)

Here, 𝐹−1(𝑥) = {𝑥1, 𝑥2} and 𝐹 (𝑑𝑥𝑖) = 𝑑𝑥 (𝑖 = 1, 2) (see Fig. 31.1). This means
|𝐹 ′(𝑥𝑖)|𝑑𝑥𝑖 = 𝑑𝑥. Therefore, (31.7) reads

𝑔(𝑥1)
𝑑𝑥

|𝐹 ′(𝑥1)|
+ 𝑔(𝑥2)

𝑑𝑥

|𝐹 ′(𝑥2)|
= 𝑔(𝑥)𝑑𝑥, (31.8)

or
𝑔(𝑥1)

|𝐹 ′(𝑥1)|
+

𝑔(𝑥2)

|𝐹 ′(𝑥2)|
= 𝑔(𝑥). (31.9)
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With the aid of the elementary property of the 𝛿-function,361 regarding 𝑦 as the
independent variable, we have for 𝐹 in 31.3

𝛿(𝑥− 𝐹 (𝑦)) =
1

|𝐹 ′(𝑥1)|
𝛿(𝑦 − 𝑥1) +

1

|𝐹 ′(𝑥2)|
𝛿(𝑦 − 𝑥2), (31.10)

where 𝐹 (𝑥1) = 𝐹 (𝑥2) = 𝑥. Thus can be rewritten as

𝑔(𝑥) =

∫︁
𝐼

𝑑𝑦 𝑔(𝑦)𝛿(𝑥− 𝐹 (𝑦)), (31.11)

which is called the Perron-Frobenius equation. It is a general formula for the invari-
ant density if a 1D-endomorphism (piecewise differentiable).

31.5 Can we solve Perron-Frobenius equation?362

Generally, no, but if we assume that the system (defined on [0,1]) allows an abso-
lutely continuous invariant measure, then its density 𝑔 may be amenable to analytic
approach. We start from the Perron-Frobenius equation (31.11). Using Heaviside’s
step function363

Θ(𝑥) =

{︂
0 𝑥 ≤ 0,
1 𝑥 > 0.

, (31.12)

the delta function may be written as

𝑑

𝑑𝑥
Θ(𝑥− 𝑦) = 𝛿(𝑥− 𝑦). (31.13)

361Let 𝑎 be an isolated (real) zero point (i.e., 𝑓(𝑎) = 0), and 𝑓 be differentiable around it. In
a sufficiently small neighborhood of 𝑎 with the aid of the variable change: 𝑦 = 𝑓(𝑥) we get for
sufficiently small positive 𝜖 ∫︁ 𝑎+𝜖

𝑎−𝜖

𝛿(𝑓(𝑥))𝜙(𝑥)𝑑𝑥 =
1

|𝑓 ′(𝑎)|
𝜙(𝑎).

Here, 𝜙 is a sufficiently smooth test function. Therefore, if 𝑓 has a several isolated real zeros 𝑎𝑖,
we can add each contribution to get∫︁ ∞

−∞
𝛿(𝑓(𝑥))𝜙(𝑥)𝑑𝑥 =

∑︁
𝑖

1

|𝑓 ′(𝑎𝑖)|
𝜙(𝑎𝑖).

362YO talk in Aug 1979 at Res Inst Math Sci, Kyoto
363Its definition at 𝑥 = 0 is subtle, but since we do not care for measure zero sets, we may choose

it for our convenience.
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Introducing this into the Perron-Frobenius equation, we have

𝑔(𝑥) = −
∫︁ 1

0

𝑑𝑦 𝑔(𝑦)
1

𝐹 ′(𝑦)

𝑑

𝑑𝑦
Θ(𝑥− 𝐹 (𝑦)). (31.14)

Performing an integration by parts, this yields

𝑔(𝑥) =
𝑔(0)

𝐹 ′(0)
Θ(𝑥−𝐹 (0))− 𝑔(1)

𝐹 ′(1)
Θ(𝑥−𝐹 (1))+

∫︁ 1

0

𝑑𝑦 Θ(𝑥−𝐹 (𝑦))
𝑑

𝑑𝑦

𝑔(𝑦)

𝐹 ′(𝑦)
. (31.15)

For a map with 𝐹 (1) = 0, we know 𝑔(0) = −𝑔(1)/𝐹 ′(1), this reads

𝑔(𝑥) = 𝑔(0) +
𝑔(0)

𝐹 ′(0)
Θ(𝑥− 𝐹 (0)) +

∫︁ 1

0

𝑑𝑦 Θ(𝑥− 𝐹 (𝑦))
𝑑

𝑑𝑦

𝑔(𝑦)

𝐹 ′(𝑦)
. (31.16)

Iterative substitution can solve the above equation for unimodal maps,364 𝛽-transformations,
etc.

𝑔(𝑥) = 𝑔(0)

[︃
1 +

∞∑︁
𝑘=1

Θ(𝑥− 𝐹 𝑘(0))

[𝐹 𝑘(0)]′

]︃
. (31.17)

Here the derivative of 𝐹 𝑘(0) at the breaking point of 𝐹 is computed as the left deriva-
tive: [𝑓(𝑥) − 𝑓(𝑥− 𝜀)]/𝜀 (𝜀 > 0).365

31.6 KS entropy for billiards
17.18 explains the general strategy to compute the KS entropy (= information loss
rate) and the idea is applied to the Sinai billiard in 17.26. For these expansive dy-
namical systems, we have only to pay attention to the stretching rate of the unstable
manifolds. We will see this more systematically, when we study Axiom A systems
later.

31.7 KS entropy of Markov chain
For an ergodic Markov chain366 the extra information required for equi-precision may

364Ito et al. ibid.
365to be consistent with our choice of Θ.
366See, for example, Durrett, ibid.; Z. Brzeźniak and T. Zastawniak, Basic Stochastic Processes, a

course through exercises (Springer, 1998) is a very kind measure-theoretical introduction to stochas-
tic processes.
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be computed by the same idea as explained above. If its transition matrix is given
by Π ≡ {𝑝𝑖→𝑗}, then

ℎ(Π) = −
∑︁
𝑖,𝑗

𝑝𝑖𝑝𝑖→𝑗 log 𝑝𝑖→𝑗, (31.18)

where 𝑝𝑖 is the invariant measure (stationary state) (i.e.,
∑︀

𝑖 𝑝𝑖𝑝𝑖→𝑗 = 𝑝𝑗). In partic-
ular, for a Bernoulli process 𝐵(𝑝1, · · · , 𝑝𝑛), we have

ℎ(𝐵(𝑝1, · · · , 𝑝𝑛)) = −
𝑛∑︁

𝑖=1

𝑝𝑖 log 𝑝𝑖. (31.19)

It is easy to understand (31.18). Suppose we are in state 𝑖 now. After one time
step what do we know? With probability 𝑝𝑖→𝑗 we will be in state 𝑗. Thus, we lose
on the average the following amount of information

−
∑︁
𝑗

𝑝𝑖→𝑗 log 𝑝𝑖→𝑗. (31.20)

We should average this over the probability of our being in state 𝑖.

31.8 Sanov’s theorem, a large deviation of observable probabilities
Consider an uncorrelated (= statistically independent) symbol sequence consisting of
𝑛 symbols. The probability to fine symbol 𝑘 is given by 𝑞𝑘 > 0:

∑︀
𝑞𝑘 = 1. Suppose

we know these probabilities. Observing 𝑁 symbols, we can obtain the empirical
distribution of symbols as

𝜋𝑘 =
1

𝑁

𝑁−1∑︁
𝑡=0

𝛿𝑥𝑡,𝑘, (31.21)

where 𝑥𝑡 is the 𝑡-th symbol we actually observe.
The law of large numbers for the symbol distribution tells us for any 𝜀 > 0

lim
𝑁→∞

𝑃

(︃⃦⃦⃦⃦
⃦ 1

𝑁

𝑁−1∑︁
𝑡=0

𝛿𝑥𝑡,𝑘 − 𝑞𝑘

⃦⃦⃦⃦
⃦ > 𝜀

)︃
= 0. (31.22)

If 𝑁 is finite, we inevitably observe fluctuations of {𝜋𝑘} around {𝑞𝑘}. Using the
multinomial distribution, we can estimate the probability to observe {𝜋𝑘}.

If event 𝑖 occurs 𝑛𝑖 times (
∑︀𝑚

𝑖=1 𝑛𝑖 = 𝑁), the empirical probability is 𝑝𝑖 = 𝑛𝑖/𝑁 .
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Therefore, the probability to get this empirical distribution from 𝑁 sampling is given
by the following multinomial distribution:

𝑃 (𝜋 ≃ 𝑝) =
𝑚∏︁
𝑖=1

𝑁 !

(𝑁𝑝𝑖)!
𝑞𝑁𝑝𝑖
𝑖 . (31.23)

Taking its log and using Stirling’s approximation, we obtain

log𝑃 (𝜋 ≃ 𝑝) = log𝑁 ! +
𝑚∑︁
𝑖=1

{𝑁𝑝𝑖 log 𝑞𝑖 −𝑁𝑝𝑖 log(𝑁𝑝𝑖) + 𝑁𝑝𝑖}. (31.24)

That is, we get a large deviation principle for the probability distribution.

𝑃 (𝜋 ≃ 𝑝) ≈ 𝑒−𝑁
∑︀

𝑖 𝑝𝑖 log(𝑝𝑖/𝑞𝑖). (31.25)

This relation is called Sanov’s theorem.367

If we introduce the following quantity called the Kullback-Leibler entropy

𝐾(𝑝‖𝑞) =
∑︁

𝑝𝑖 log
𝑝𝑖
𝑞𝑖
, (31.26)

Sanov’s theorem reads
𝑃 (𝜋 ≃ 𝑝) ≈ 𝑒−𝑁𝐾(𝑝‖𝑞). (31.27)

As to the nonnegative definite nature of the Kullback-Leibler entropy 𝐾, see 32.7.

31.9 Information via Sanov’s theorem
Since we know the true answer for the symbol distribution, we would not be surprised
if 𝜋 ≃ 𝑞. How should we quantify our surprise?
Suppose we actually observed an event whose probability is 𝑝 < 1. What is the
most rational measure of surprise. It is − log 𝑝 (or − log2 𝑝 bits). This is called the
surprisal.

The ‘extent of surprise’ 𝑓(𝑝) we get, spotting a symbol that occurs with proba-
bility 𝑝 or knowing that an event actually happens whose expected probability
is 𝑝, should be

367 Sanov, I. N. (1957). On the probability of large deviations of random variables, Mat. Sbornik,
42, 11-44. Ivan Nikolaevich Sanov (1919-1968); obituary in (1969). Russ. Math. Surveys, 24, 159.



31. LECTURE 31 INFORMATION LOSS RATE 345

(1) A monotone decreasing function of 𝑝 (smaller 𝑝 should give us bigger sur-
prise).
(2) Nonnegative.
(3) Additive: 𝑓(𝑝𝑞) = 𝑓(𝑝) + 𝑓(𝑞).
Therefore, 𝑓(𝑝) = −𝑐 log 𝑝 (𝑐 > 0) is the only choice.368

Thus the average surprise per symbol we get is 𝐾(𝑝‖𝑞). If we know that the
true distribution is flat (even), then the surprisal may be measured by the Shannon
formula:

𝐻(𝑝) = −
∑︁
𝑘

𝑝𝑘 log 𝑝𝑘. (31.28)

368We could invoke the Weber-Fechner law in psychology.
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