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30 Lecture 30 Ergodic theorems

This section is based on I Kubo Dynamical systems I (Iwanami 1997) Section 2.2.

30.1 Measure preserving transformation
Let (𝑀,ℱ , 𝜇) be a probability space (but we will ‘ignore ℱ .’ See 29.3). A map
𝑇 : 𝑀 → 𝑀 preserves 𝜇 if 𝜇 = 𝜇 ∘ 𝑇−1. In this case 𝜇 is said to be 𝑇 -invariant. For
any 𝜇-integrable function 𝑓∫︁

𝑀

𝑓(𝑇𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝑓(𝑥)𝑑𝜇(𝑥). (30.1)

This can be shown easily if we note343 for any 𝐴 ⊂ 𝑀344∫︁
𝑀

𝜒𝐴(𝑇𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝜒𝐴(𝑥)𝑑𝜇(𝑥), (30.2)

because ∫︁
𝑀

𝜒𝐴(𝑇𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝜒𝐴(𝑦)𝑑𝜇(𝑇−1𝑦) =

∫︁
𝑀

𝜒𝐴(𝑦)𝑑𝜇(𝑦). (30.3)

30.2 Poincare’s recurrence theorem
Consider a measure-theoretical dynamical system (𝑇, 𝜇,𝑀).

Theorem. Let 𝐵 ⊂ 𝑀 with 𝜇(𝐵) > 0. Then, 𝜇-almost all 𝑥 ∈ 𝐵 (i.e., 𝜇-∀̃𝑥 ∈ 𝐵)
𝑇 𝑘𝑥 ∈ 𝐵 for infinitely many 𝑘 ∈ N.

[Demo] We show that the totality of the points 𝑥 ∈ 𝐵 that do not return to 𝐵
infinitely many times is 𝜇-measure zero. Since 𝑥 does not return to 𝐵 infinitely
many times, there must be 𝑛 ∈ N such that 𝑇 𝑘𝑥 ∈ 𝐵𝑐 (i.e., 𝑥 ∈ 𝑇−𝑘𝐵𝑐) for ∀𝑘 > 𝑛.

Let 𝐸𝑛 = ∩𝑘≥𝑛𝑇
−𝑘𝐵𝑐 (the totality of points that stays in 𝐵𝑐 after time 𝑛; i.e.,

points that never return to 𝐵 after time 𝑛− 1). 𝑇−1𝐸𝑛 consists of points going into
𝐸𝑛 by one time step, that is, points that do not return after time 𝑛−1 + one. Thus,
𝑇−1𝐸𝑛 = 𝐸𝑛+1 ⊃ 𝐸𝑛. 𝐸 = ∪∞

𝑛=0𝐸𝑛 is the totality of the points never returns to 𝐵

343Integrals are all Lebesgue integrals, so 𝑓 is considered as a limit of simple functions (= piecewise
constant functions).

344𝐴 ∈ ℱ , precisely speaking, but as announced, I will not mention such a thing again.
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or never in 𝐵 (that is 𝐸0). Suppose for some 𝑛 𝜇(𝐸𝑛+1 ∖ 𝐸𝑛) > 0. Then, this holds
for all 𝑛, because 𝜇 is 𝑇 -invariant:

𝜇(𝐸𝑛+1 ∖𝐸𝑛) = 𝜇(𝑇−1[𝐸𝑛+1 ∖𝐸𝑛]) = 𝜇(𝑇−1𝐸𝑛+1 ∖𝑇−1𝐸𝑛) = 𝜇(𝐸𝑛+2 ∖𝐸𝑁+1). (30.4)

Therefore,

𝜇(𝐸) = 𝜇[∪∞
𝑛=1(𝐸𝑛+1 ∖ 𝐸𝑛) + 𝐸0] =

∞∑︁
𝑛=1

𝜇(𝐸𝑛+1 ∖ 𝐸𝑛) + 𝜇(𝐸0) ↗ ∞. (30.5)

Thus, 𝜇(𝐸 ∖ 𝐸0) = 0, but 𝐸0 is the set of points never touching 𝐵, so 𝐸0 ∩ 𝐵 = ∅.
Therefore,

0 = 𝜇(𝐵 ∩ (𝐸 ∖ 𝐸0)) = 𝜇(𝐸 ∩𝐵). (30.6)

There is almost no points in 𝐵 that cannot return to 𝐵 infinitely often.

Remark: Note that 𝑄𝑛 = 𝐸𝑛+1 ∖ 𝐸𝑛 is the totality of points in 𝐵 that returns to
𝐵 at time 𝑛 and stays in 𝐵 ever since. Thus, 𝑇−1𝑄𝑛 = 𝑄𝑛+1. All have the same
measure and disjoint and in 𝐵𝑐 = 𝑀 ∖𝐵. All 𝑄𝑛 must stay in 𝐵𝑐 without overlap, so
𝜇(𝑄𝑛) must be zero. As is clear from this what matters is that 𝜇 is normalizable.
Whether 𝑀 is bounded or not (as a metric space) is irrelevant. Thus, this theorem
can be used to destroy Boltzmann’s logic.

30.3 Zermelo’s Wiederkehreinwand345,346

This theorem played an important role when Zermelo347 pointed out Boltzmann’s
logical error. Boltzmann claimed that (after responding to the criticism Umkehrein-
wand348 by Loschmidt just after the Boltzmann equation paper) his approximate
dynamical system explains irreversibility: due to approximation irreversibility en-
sues. Zermelo (1895) pointed out still reversibility occurs indefinitely accurately due
to this theorem (published in 1890); recurrence is not due to any property of the
dynamics, but merely due to the finiteness of the total mass of the relevant invariant
measure. He was confident because of the correct math and the moral support of his
boss M. Planck.

345‘Wiederkehr’ = recurrence, ‘Einwand’ = objection.
346H.-D. Ebbinghaus, Ernst Zermelo, an approach to his life and work (Springer, 2007) p15-26

1.4 Boltzmann Controversy.
347A road in Freiburg was named in his honor in 2017 (Wikipedia).
348‘Umkehr’ = turning back.
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30.4 Birkhoff’s individual ergodic theorem
Theorem. Under the same condition as 30.5
(i) The time average exists for 𝜇-∀̃𝑥 ∈ 𝑀

𝑓(𝑥) = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥). (30.7)

(ii) This convergence is also in 𝐿1.
(iii) For any invariant set 𝐵∫︁

𝐵

𝑓(𝑥)𝑑𝜇(𝑥) =

∫︁
𝐵

𝑓(𝑥)𝑑𝜇(𝑥). (30.8)

Remark: Notice that for this theorem to hold whether 𝜇 is ergodic or not does not
matter. We need ergodicity to reduce (iii) to our familiar formula (see 30.8):

Time average of 𝑓 =

∫︁
𝑀

𝑓(𝑥)𝑑𝜇(𝑥). (30.9)

We demonstrate these below 30.6-30.7. The maximal ergodic theorem 30.5 dras-
tically simplifies the original almost unreadable proof.

30.5 Maximal ergodic theorem
Let 𝑇 : 𝑀 → 𝑀 preserves a measure 𝜇. For 𝜇-integral function 𝑓 define the following
functiions for 𝑛 ∈ N

𝑆𝑛(𝑓 ;𝑥) =
𝑛−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥), 𝑆0(𝑓 ;𝑥) = 0. (30.10)

Notice that
𝑆𝑛(𝑓 ;𝑇𝑥) = 𝑆𝑛+1(𝑓 ;𝑥) − 𝑓(𝑥). (30.11)

Theorem ∫︁
{𝑥 | sup𝑛≥0 𝑆𝑛(𝑓 ;𝑥)>0}

𝑓(𝑥)𝑑𝜇(𝑥) ≥ 0. (30.12)

[Demo]349

We make a ‘finite approximation’ of 𝐵 = {𝑥 | sup𝑛≥0 𝑆𝑛(𝑓 ;𝑥) > 0} as 𝐵𝑛 = {𝑥 |𝑀𝑛(𝑥) >
0}:

𝑀𝑛(𝑥) = max{0, 𝑆1(𝑓 ;𝑥), · · · , 𝑆𝑛(𝑓 ;𝑥)}. (30.13)

349All the detailed are filled in, so you should be able to follow the proof without pencil.
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Note 𝑆0(𝑓 ;𝑥) = 0. Since (30.11)

𝑀𝑛(𝑇𝑥) = max{0, 𝑆2(𝑓 ;𝑥) − 𝑓(𝑥), · · · , 𝑆𝑛+1(𝑓 ;𝑥) − 𝑓(𝑥)}. (30.14)

We also introduce
𝑀*

𝑛(𝑥) = max{𝑆1(𝑓 ;𝑥), · · · , 𝑆𝑛(𝑓 ;𝑥)}. (30.15)

This means (notice that 𝑆1(𝑓 ;𝑥) = 𝑓(𝑥) from (30.10))

𝑀*
𝑛+1(𝑥) = max{𝑆1(𝑓 ;𝑥), · · · , 𝑆𝑛+1(𝑓 ;𝑥)} = max{𝑓(𝑥), 𝑆2(𝑓 ;𝑥), · · · , 𝑆𝑛+1(𝑓 ;𝑥)}.

(30.16)
Since max{𝑥𝑛 + 𝑐} = max{𝑥𝑛} + 𝑐,

𝑀𝑛(𝑇𝑥) + 𝑓(𝑥) = 𝑀*
𝑛+1(𝑥). (30.17)

That is, (note that 𝑀*
𝑛(𝑥) is an increasing sequence in 𝑛)

𝑓(𝑥) = 𝑀*
𝑛+1(𝑥) −𝑀𝑛(𝑇𝑥) ≥ 𝑀*

𝑛(𝑥) −𝑀𝑛(𝑇𝑥). (30.18)

We make an approximation of the integral (recall 𝐵𝑛 = {𝑥 |𝑀𝑛(𝑥) > 0})∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝐵𝑛

[𝑀*
𝑛(𝑥) −𝑀𝑛(𝑇𝑥)]𝑑𝜇(𝑥). (30.19)

If 𝑥 ∈ 𝐵𝑛, then you can ignore 0 in the definition of 𝑀𝑛(𝑥), so 𝑀*
𝑛(𝑥) = 𝑀𝑛(𝑥).

Therefore, ∫︁
𝐵𝑛

𝑀*
𝑛(𝑥)𝑑𝜇(𝑥) =

∫︁
𝐵𝑛

𝑀𝑛(𝑥)𝑑𝜇(𝑥). (30.20)

Therefore, (30.19) reads∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝐵𝑛

𝑀𝑛(𝑥)𝑑𝜇(𝑥) −
∫︁
𝐵𝑛

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.21)

Since 𝑀𝑛 = 0 oputside 𝐵𝑛, we have∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝑀

𝑀𝑛(𝑥)𝑑𝜇(𝑥) −
∫︁
𝐵𝑛

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.22)

Since 𝑀𝑛(𝑇𝑥) ≥ 0, ∫︁
𝐵𝑛

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥) ≤
∫︁
𝑀

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.23)
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Therefore, we have obtained∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝑀

𝑀𝑛(𝑥)𝑑𝜇(𝑥) −
∫︁
𝑀

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.24)

Now, take the 𝑛 → ∞ limit, and the right-hand side vanishes to reach (30.12).

30.6 Existence of time average
Notice that (i) in 30.4 is a generalization of the (weak) law of large numbers.

We wish to show that 𝑆𝑛(𝑓 ;𝑥)/𝑥 converges almost 𝜇-surely. If this does not
converge lim sup and lim inf must be different. Therefore, there must be reals 𝑎 < 𝑏
such that the following set has a positive measure:

𝐵(𝑎, 𝑏) =

{︂
𝑥

⃒⃒⃒⃒
lim inf

1

𝑛
𝑆𝑛 < 𝑎 < 𝑏 < lim sup

1

𝑛
𝑆𝑛

}︂
. (30.25)

Since 𝐵(𝑎, 𝑏) is an invariant set with a positive measure, let us confine ourselves
to 𝐵(𝑎, 𝑏) and apply the maximal ergodic theorem to 𝑎 − 𝑓(𝑥) and 𝑓(𝑥) − 𝑏. For
example, for 𝑔(𝑥) = 𝑎− 𝑓(𝑥) the maximal ergodic theorem reads:

𝑆𝑛(𝑔;𝑥) = 𝑛𝑎−
𝑛−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥). (30.26)

and∫︁
{𝑥 | sup𝑛≥0 𝑆𝑛(𝑔;𝑥)>0}∩𝐵(𝑎,𝑏)

𝑔(𝑥)𝑑𝜇(𝑥) =

∫︁
{𝑥 | 𝑎>sup𝑛≥0 𝑆𝑛(𝑓 ;𝑥)/𝑛}∩𝐵(𝑎,𝑏)

(𝑎−𝑓(𝑥))𝑑𝜇(𝑥) ≥ 0.

(30.27)
However, {𝑥 | sup𝑛≥0 𝑆𝑛(ℎ;𝑥) > 0} ⊃ 𝐵(𝑎, 𝑏), so this means

𝑎𝜇(𝐵(𝑎, 𝑏)) −
∫︁
𝐵(𝑎,𝑏)

𝑓(𝑥)𝑑𝜇(𝑥) ≥ 0. (30.28)

Analogously, for ℎ(𝑥) = 𝑓(𝑥) − 𝑏

0 ≤
∫︁
𝐵(𝑎,𝑏)

ℎ(𝑥)𝑑𝜇(𝑥) =

∫︁
𝐵(𝑎,𝑏)

𝑓(𝑥)𝑑𝜇(𝑥) − 𝑏𝜇(𝐵(𝑎, 𝑏)). (30.29)

Hence,

𝑎𝜇(𝐵(𝑎, 𝑏)) ≥
∫︁
𝐵(𝑎,𝑏)

𝑓(𝑥)𝑑𝜇(𝑥) ≥ 𝑏𝜇(𝐵(𝑎, 𝑏)), (30.30)

a contradiction.
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30.7 𝐿1 convergence and (iii)
First we show (ii) to guarantee the commutativity of the integration and limit in
(30.31).

If 𝑓 is bounded as |𝑓(𝑥)| ≤ 𝐾, |𝑆𝑛/𝑛| ≤ 𝐾, so |𝑓(𝑥)| ≤ 𝐾. Therefore, we
may apply Lebesgue’s bounded convergence theorem, implying the 𝐿1-convergence
of the time average. For general 𝑓 we 𝐿1-approximate 𝑓 with a sequence of bounded
functions to complete the proof. Thus (ii) holds.

If 𝑔 is integrable on 𝑀 , then (ii) allows

∫︁
𝑀

𝑔(𝑥)𝑑𝜇(𝑥) = lim
𝑁→∞

∫︁
𝑀

1

𝑁

𝑁−1∑︁
𝐾=0

𝑔(𝑇 𝑘𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝑔(𝑥)𝑑𝜇(𝑥), (30.31)

Now let 𝑔(𝑥) = 𝜒𝐵(𝑥)𝑓(𝑥). Since 𝐵 is invariant, 𝑔(𝑥) = 𝜒𝐵(𝑥)𝑓(𝑥), which concludes
the demonstration.

Notice that the above theorem holds for any invariant measure.

30.8 Time average and phase average
If 𝜇 is an ergodic invariant measure, then the time average agrees with the phase
average (or the ensemble average):

∫︁
𝑀

𝑓(𝑥)𝑑𝜇 = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥). (30.32)

Notice that 𝑓(𝑥) is time independent: 𝑓(𝑇𝑥) = 𝑓(𝑥). Then, 𝑓(𝑥) must be 𝜇-almost
surely constant: Let 𝐴(𝑐) = {𝑥 | 𝑓(𝑥) = 𝑐}. It is an invariant set, so its measure is 0
or 1. (iii) in 30.4 tells us 𝑐 = the phase average value.

30.9 von Neumann’s mean ergodic theorem
Before Birkhoff von Neumann proved the 𝐿2 convergence

lim
𝑁→∞

∫︁
𝑀

⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥) − 𝑓(𝑥)

⃒⃒⃒⃒
⃒
2

𝑑𝜇 = 0. (30.33)
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No proof will be given, but if 𝑓 is bounded, then 𝐿1 and 𝐿2 convergence on 𝑀 is
equivalent.

30.10 Weyl’s equidistribution theorem
Historically, the first ergodic theorem is the following:

Theorem. For an integrable function 𝑓 defined on a unit circle

lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(2𝜋𝑘𝛾+̇𝜃) =

∫︁
𝑓(𝑥)𝑑𝜇(𝑥), (30.34)

where +̇ is the sum mod 2𝜋, 𝛾 an irrational number and 𝜇 the uniform probability
measure on the unit circle.

𝜇 is an ergodic invariant measure for rotation. A more direct proof (e.g., using
Fourier expansion) may be a good exercise.

30.11 Tragicomical history of ergodicity350

The word ‘ergode’ was used to specify the microcanonical ensemble. Maxwell in
his “On Boltzmann’s theorem on the average distribution of energy in a system of
material points,”351 he clarified the logic of Boltzmann’s attempt (his second paper
written at age 22) to derive equipartition of energy and the second law from me-
chanics, saying “The only assumption which is necessary for the direct proof is that
the system, if left to itself in its actual state of motion, will, sooner or later, pass
through every phase which is consistent with the equation of energy.” Maxwell then
considered an ensemble of systems having this property to develop a statistical the-
ory. Actually Boltzmann adopted the idea of ‘ensemble’ and introduced his ‘ergodic
ensemble.’

Lord Kelvin on April 27, 1900 gave a talk on the clouds over the dynamical the-
ory of heat and light352 The second cloud he mentioned was the anomaly of the
specific heat ratio 𝛾 = 𝐶𝑃/𝐶𝑉 . “Spectrum analysis showing vast numbers of lines
for each gas makes it certain that the numbers of freedoms of the constituents of each
molecule is enormously greater than those which we have been counting,” 𝛾 should

350Based, in part, on I. Kubo’s article on the history of ergodic theory (1982 September-December
351Cambridge Phil. Soc. Trans. 7 547 (1979). This is his last paper.
352“Nineteenth century clouds over the dynamical theory of heat and light,” Phil. Mag. Series 6,

2: 7, 1-40 (1901). ‘Cloud II’ starts at Section 12. The outline I give here should be regarded as a
hasty one by a very impatient theoretical physicist.
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be very close to 1 in contrast to empirical results. Since Maxwell and Boltzmann
premised “that the mean kinetic energies with which the Boltzmann-Maxwell doc-
trine (=equipartition of energy) is concerned are time integrals of energies divided
by totals of the times,” their hypothesis (ergodic hypothesis) should be questioned.
The, he goes on to the study of ergodicity of simple dynamical systems—billiards!
He studies an elliptic billiard and says, “It seems not improbable that if the figure
deviates by ever so little from being exactly ellipsoidal, Maxwell’s condition might be
fulfilled.” “the meaning of the doctrine is that a single geodesic drawn long enough
will not only fulfil Maxwell’s condition of passing infinitely near to every point of
the surface in all directions.” “I have made many efforts to test it for the case in
which the closed surface is reduced to a plane with other boundaries than an exact
ellipse.’ He studied (not convex) polygons and ‘experimentally’ (by the assistant Mr
Anderson with a straight rule) studied the equipartition: after 600 collisions ⟨𝐾𝑥⟩ =
⟨𝐾𝑦⟩ was not fulfilled with an error of 7.5 %. He also studied a converging billiard
as well (see Fig. 30.1; even he studied the ice cream cone!).

Figure 30.1: Kelvin’s ‘simulation’ for this failed to demonstrate ergodicity

Thus Lord Kelvin extremely seriously cast doubt on ergodicity.
A and T Ehrenfest clearly formulated ‘ergodic hypothesis’ in their encyclopedia

article:353 according to their definition, ‘ergodic’ means, as Maxwell said, a trajectory

353P. Ehrenfest & T. Ehrenfest (1911) Begriffliche Grundlagen der statistischen Auffassung in der
Mechanik, in: Enzyklopdie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen.
Band IV, 2. Teil ( F. Klein and C. Mller (eds.). Leipzig: Teubner, pp. 390. Translated as The
conceptual Foundations of the Statistical Approach in Mechanics, New York: Cornell University
Press, 1959. ISBN 0-486-49504-3.
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passes every point energetically allowed and ‘quasiergodic’ means, as formulated by
Lord Kelvin, a trajectory passes any neighborhood of any point energetically allowed.
Then, ‘ergodic hypothesis’ means that the time average along an ergodic trajectory
is identical to the microcanonical average.

This hypothesis was immediately shot down by Plancherel and by Rosenthal (in-
dependently in 1913): there cannot be such an orbit; simply topologically impossible.
In those days, physicists realized that Gibbs’ statistical mechanics is practically us-
able, so the interest in ergodicity faded, and the topic came to be considered as a
pure mathematical question.

Then, in 1914 Weyl proved his theorem 30.10, showing that quasiergodicity may
be enough. His theorem is about 𝑇 𝑛. von Neumann extended this to a general do-
main354:355

Theorem [Mean ergodic theorem] If 𝑓 is 𝐿2(𝑋), then a function 𝑓(𝑥) exists such
that

lim
𝑡→∞

∫︁
𝑋

⃒⃒⃒⃒
1

𝑡

∫︁ 𝑡

0

𝑓(𝑇𝑡𝑥) − 𝑓(𝑥)

⃒⃒⃒⃒2
𝑑𝜇(𝑥) = 0. (30.35)

This means

Corollary. 𝜇-almost every 𝑥 there is an increasing time sequence {𝜏𝑛} such that

𝑓(𝑥) = lim
𝑛→∞

1

𝜏𝑛

∫︁ 𝜏𝑛

0

𝑓(𝑇𝑡𝑥)𝑑𝑡. (30.36)

This is basically what physicists ‘needed.’
On Oct 22, 1931, Birkhoff received von Neumann’s letter on the proof of the

mean ergodic theorem, and started his study vehemently.356 He declared that the
quasiergodic hypothesis was now replaced by its modern version: measure-theoretical
transivity.

Has Birkhoff unraveled or resolved the secret of statistical mechanics? Simply,
the question becomes whether the Liouville measure (i.e., the Lebesgue measure on
the phase space) is ergodic or not. For almost all systems of interest, this has never
been proved.

We now clearly recognize that ergodicity cannot found statistical mechanics; er-
godicity has been a big red herring.

3541932
355This possibility was suggested to him by Koopman (in 1930) and by A Weil (in 1931).
356You must learn a great lesson from this episode; you should not tell even what you are studying.
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