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2 Lecture 2: Setting the stage

2.1 Two main purposes of this lecture
There are two main topics today. Dynamical systems are defined as maps or flows
defined by vector fields on manifolds. Therefore, first, we discuss manifolds and vec-
tor fields on them.

For practical physicists, basically we have only to understand what happens in
the ordinary 𝑛-dimension Euclidean space E𝑛, because manifolds are patchworks of
Euclidean spaces. Thus, the purpose of the first part of this lecture is to introduce
concepts mathematically properly, but to tell you how to ‘ignore’ their technicality.
To discuss a dynamical system we need a stage: a manifold.

The second part reflects on what ‘common’ or ‘general’ means, because we are
interested in ‘general pictures’ of dynamical systems. We review very basic concepts,
openness, denseness, etc. Cantor sets are introduced and then we will discuss what
‘dimension’ is.

Although you must be able to find (and to understand) real math definitions, as
an active physicist it is very important to grasp math concepts and theorems intu-
itively (and even emotionally).

2.2 Discrete-time dynamical systems
A discrete time dynamical system is a map 𝑓 : 𝑀 → 𝑀 , where 𝑀 is a compact18

(often 𝐶𝑟-)manifold (see justbelow).
I hope you know what map is.
The stage (or the totality of the states of the system; the phase space in classical

statistical mechanics is an example) of the dynamical system may not be a simple
space like R𝑛 (𝑛-dimensional Euclidean space; E𝑛 may be a better notation). It could
be a 2-torus (𝑇 2), so it cannot be mapped continuously to R2. Usually, we choose
the stage to be a manifold.

An 𝑛-manifold is a geometrical object that can be constructed by ‘smoothly’ past-
ing a 𝑛-Cartesian coordinate patches that are ‘flexibly deformed’ (Fig. 2.1):

A formal definition is in 2.3. To understand this we need a concept ‘diffeomor-
phism’: Let 𝐴 and 𝐵 be sets (actually, topological spaces). A map 𝑓 : 𝐴 → 𝐵 is
a 𝐶𝑟-diffeomorphism, if it is continuously 𝑟-times differentiable (𝐶𝑟-map), and its

18In a finite dimensional space, ‘compact’ means that the object is covered with a finite number
of open sets. See 3.9
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chart

coordinate map

Figure 2.1: Intuitive idea of a manifold; here only some coordinate patches are illustrated; you
must fill the whole object with such a cover.

inverse 𝑓−1 is also a 𝐶𝑟-map. If 𝑓 and 𝑓−1 are continuous maps, we say 𝑓 is a home-
omorphism.

Practically, whenever we work on a manifold, we take a chart and then locally
work in a Cartesian system. We must seamlessly connect the local results, but that
part is usually only technical, so for physicists intuitively the core discussions are
over on the chart.

2.3 Manifold
A manifold 𝑀 = (ℳ,𝒰) consists of two elements:
(1) Basic set ℳ, which is usually a Hausdorff space.19

(2) Local coordinate system 𝒰 = {𝑈𝛼, 𝜑𝛼}𝛼∈𝐴, where 𝐴 is a subscript set. Here
(i) 𝑈𝛼 ⊂ ℳ is open and ∪𝛼𝑈𝛼 = ℳ (i.e., {𝑈𝛼} is an open cover of ℳ.
(ii) 𝜑𝛼 is a homeomorphism (or diffeomorphism)20 from 𝑈𝛼 to an open set

in R𝑛.
(iii) If 𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, then 𝜑𝛽 ∘ 𝜑−1

𝛼 : 𝜑𝛼(𝑈𝛼 ∩ 𝑈𝛽) → 𝜑𝛽(𝑈𝛼 ∩ 𝑈𝛽) is a homeo
or diffeomorphism.

(𝑈𝛼, 𝜑𝛼) is called a chart, and 𝒰 is called an atlas.21 Needless to say, charts in
an atlas of a manifold must be consistent as (iii).

19⟨⟨Hausdorff space⟩⟩ A topological space 𝑋 is a Hausdorff space if all distinct points in 𝑋 are
pairwise neighborhood-separable. That is, if 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦, there is a neighborhood 𝑈 of 𝑥
and that 𝑉 for 𝑦 such that 𝑈 ∩ 𝑉 = ∅.

20This choice depends on how smoothly you wish to set up your manifold.
21The largest atlas including all the atlases containing a given chart is called the maximal atlas

(or the differentiable structure). It may not be unique even diffeomorphically. 𝑆7 has 28 different
differentiable structures.
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Figure 2.2: Manifold: local coordinate system/charts

2.4 ‘Topological continuation’
When we discuss mathematics on a manifold, it is almost always the case that we
assume some convenient charts and on each chart we discuss what we are interested
in. Then, we show that we can continue the conclusion to different charts using the
‘smoothness’ of the relations between the overlapping charts. The latter steps may
be tedious, but intuitively without any trouble. Thus, in these lecture notes, we
almost always discuss mathematics on a chart and will not discuss the ‘second step,’
simply saying ‘according to the topological continuation’ we claim the statements on
the entire manifold. As you realize, this means that we may discuss things on an
appropriate Euclidean space.

2.5 Vector field on manifold
We wish to consider an ordinary differential equation (ODE) defined on a manifold
at each point 𝑥 ∈ 𝑀 . We take a chart (local coordinates) (𝑥1, 𝑥2, · · · , 𝑥𝑛). With
respect to this coordinates a vector field 𝑋(𝑥) at 𝑥 may be expressed as

𝑋(𝑥) = (𝑋1, 𝑋2, · · ·). (2.1)

Here, 𝑋𝑖 is the 𝑥𝑖-component of 𝑋. See Fig. 2.3.

Mathematicians express 𝑋 as follows:

𝑋(𝑥) =
∑︁
𝑖

𝑋𝑖
𝜕

𝜕𝑥𝑖

. (2.2)
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x
X(x)

Figure 2.3: Vector field on manifold. The dotted lines correspond to the tangential directions
𝜕

𝜕𝑥1
and 𝜕

𝜕𝑥2
.

Here 𝜕
𝜕𝑥𝑖

|𝑥 points the tangent direction along the local coordinate 𝑥𝑖 as illustrated in

Fig. 2.3. The vector space spanned by { 𝜕
𝜕𝑥𝑖

|𝑥} is called the tangent space of 𝑀 at 𝑥,
and is denoted by the symbol 𝑇𝑥𝑀 .

The notation (2.2) is very reasonable as you can see from the directional derivative
of a function 𝑓 on 𝑀 at 𝑥 along the curve 𝜉(𝑡) ∈ 𝑀 . Let the tangent vector for 𝜉 at
𝑥 be 𝑋:

𝑑

𝑑𝑡
𝜉(𝑡) = 𝑋 = (𝑋1, 𝑋2, · · ·). (2.3)

Then,
𝑑

𝑑𝑡
𝑓(𝜉(𝑡)) =

∑︁
𝑖

𝑋𝑖
𝜕

𝜕𝑥𝑖

𝑓(𝑥) = 𝑋𝑓(𝑥) =
∑︁
𝑖

𝑋𝑖
𝜕𝑓

𝜕𝑥𝑖

. (2.4)

Besides, the notation (2.2) automatically tells us how to rewrite the vector com-
ponents when we change a chart from (𝑈, 𝑥) to another overlapping chart (𝑉, 𝑦):

𝑋 =
∑︁
𝑗

𝑌𝑗
𝜕

𝜕𝑦𝑗
=

∑︁
𝑗

𝑌𝑗

∑︁
𝑖

𝜕𝑥𝑖

𝜕𝑦𝑗

𝜕

𝜕𝑥𝑖

. (2.5)

Thus, we have

𝑋𝑖 =
∑︁
𝑗

𝑌𝑗
𝜕𝑥𝑖

𝜕𝑦𝑗
. (2.6)

A more mathematically respectable explanation can be found in ‘indented’ 2.7-
2.9.

2.6 Continuous-time dynamical systems
An ODE on 𝑀 may be defined as

𝑑

𝑑𝑡
𝑥 = 𝑋. (2.7)

This implies ∑︁
𝑖

�̇�𝑖
𝜕

𝜕𝑥𝑖

=
∑︁
𝑖

𝑋𝑖(𝑥)
𝜕

𝜕𝑥𝑖

. (2.8)
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that is, as we know in the elementary calculus, �̇�𝑖 = 𝑋𝑖(𝑥).
If (3.1) is well-posed (i.e., there exists a unique solution to the Cauchy prob-

lem = initial value problem), it can define a continuous-time dynamical system
𝜑𝑡 : 𝑀 → 𝑀 , where 𝜑𝑡 is the time evolution operator ({𝜑𝑡} is a group if 𝑡 ∈ R
or a monoid if 𝑡 ∈ [0,+∞)):
(i) 𝜑0 = 1,22

(ii) 𝜑𝑡 ∘ 𝜑𝑠 = 𝜑𝑡+𝑠.

The totality of the 𝐶𝑟-vector fields on 𝑀 is written as 𝒳 𝑟(𝑀). As we will know,
𝑋 ∈ 𝒳 𝑟(𝑀) defines a continuous-time dynamical system.

Remark We discuss only the autonomous systems for which 𝑋 never depends on
𝑡 explicitly. If you wish to discuss a time-dependent vector field 𝑋(𝑡), you could
introduce a new component 𝑧 satisfying �̇� = 1.

2.7 Tangent vector
Let 𝜉(𝑡) be a (differentiable) curve in a manifold 𝑀 in the chart (𝑈, 𝜑). The
coordinate system is denoted by (𝑥1, · · · , 𝑥𝑛). Let 𝑓 : 𝑀 → R be a differentiable
function. If you wish to differentiate 𝑓 along the tangential direction of 𝜉 we
can compute

𝑑

𝑑𝑡
𝑓(𝜉(𝑡)) =

∑︁
𝑖

𝑑𝜉𝑖
𝑑𝑡

𝜕

𝜕𝑥𝑖

𝑓 ≡ 𝑋𝜉𝑓 (2.9)

where
𝜕

𝜕𝑥𝑖

𝑓 = 𝐷𝑖𝑓(𝜑−1). (2.10)

Here, 𝐷𝑖 is the differentiation with respect to the coordinate 𝑥𝑖 on the chart.
We use the following notational convention:

𝑋𝜉 =
𝑑𝜉

𝑑𝑡
=

∑︁
𝑖

𝑑𝜉𝑖
𝑑𝑡

𝜕

𝜕𝑥𝑖

. (2.11)

𝑋𝜉 denotes a vector in the tangential space of 𝑀 . If 𝑝 = 𝜉(0), then the totality
of 𝑋𝜉 at 𝑡 = 0 spans the tangential space of 𝑀 at 𝑝 denoted by 𝑇𝑝𝑀 :

𝑇𝑝𝑀 =

⟨
𝜕

𝜕𝑥1

, · · · , 𝜕

𝜕𝑥𝑛

⟩
. (2.12)

22‘1’ means ‘multiplying 1’ or the identity operator: 1𝑥 = 𝑥.
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2.8 Vector bundle
A vector bundle (𝑉,𝑀, 𝜋) on a manifold 𝑀 is a triple of a manifold 𝑀 , a vector
space 𝑉 and a map 𝜋 : 𝑉 → 𝑀 .

𝜋−1(𝑥) for 𝑥 ∈ 𝑀 is called the fiber at 𝑥.
𝑠 : 𝑀 → 𝑉 such that 𝜋𝑠(𝑥) = 𝑥.

If 𝑠 is 𝐶𝑟, the vector field 𝑋 is said to be a 𝐶𝑟-vector field. The totality of the
𝐶𝑟-vector field on 𝑀 is written as 𝒳 𝑟(𝑀).

M

sπ

x

fiber

section v(x)v(x)v(x)

Vvector bundle

Figure 2.4: Vector bundle

If 𝑀 is 𝐶∞, then 𝒳 𝑟(𝑀) is a separable Banach space.23

2.9 Tangent vector bundle
The vector field on a manifold 𝑀 whose fiber at 𝑥 ∈ 𝑀 is 𝑇𝑥𝑀 is called the
tangent vector bundle of 𝑀 and is denoted as 𝑇𝑀 . Thus, 𝒳 𝑟(𝑀) consists of
smooth sections of 𝑇𝑀 .

2.10 Pursuit of general pictures
Although particular examples, if representative enough in some sense, are often im-
portant to give us deep insights, our main goal is to have an overall general picture
of dynamical systems. We study discrete dynamical systems 𝐶𝑟(𝑀) or continuous
dynamical systems defined by the corresponding vector fields 𝒳 𝑟(𝑀). We wish to
know the common features of dynamical systems, or wish to characterize typical
examples in these collections of dynamical systems.

What do we wish to mean by ‘general’, ‘common’ or ‘typical’?
The most natural or desirable idea is that a general property is a property shared

by all the instances in 𝐶𝑟(𝑀), for example. However, in most cases exceptions exist
for any apparently very general properties, so ‘all’ should be relaxed to ‘almost all’

23A Banach space is a linear space with a complete norm (‘complete’ = any Cauchy sequence
converges). ‘Separable’ means that the space contains an everywhere dense countable set.
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or ‘most.’ Therefore, how to relax ‘all’ and still to secure ‘many’ in a precise sense24

is our key issue.
In the following we first discuss denseness 2.12 and openness 2.13. If systems

with property A are dense in the totality of dynamical systems (say, 𝒳 𝑟(𝑀)), we can
always find (need not be easy) a system with property A as close as you wish to a
system you pick up. If systems with property A make an open subset of the totality
of dynamical systems, then a system with property A is surrounded by systems with
property A, so property A is stable against perturbations. However, this does not
guarantee ‘many,’ although it tells us that ‘all’ (really all, not almost all) around the
example.

Then, ‘open-denseness’ = openness + denseness sounds desirable. Not quite as
we will see below.

2.11 Topology25

If we wish to say somethings are common, we must be able to classify the ob-
jects we are interested in, or at least, we must be able to tell which objects are
more similar or less so than other objects. Thus, we need a concept to judge
‘closeness’ or similarity. You might immediately have in your mind some sort
of distances, but a more basic concept is some sort of ‘nearness’ or being in the
same neighborhood. A topology furnishes this concept.

Let 𝜏 be a family of subsets of a set 𝑋. 𝜏 is a topology defined for a set 𝑋,
if
(i) 𝜏 ∋ ∅ and ∋ 𝑋.
(ii) If {𝐺𝑎 ∈ 𝜏}, then ∪𝑎𝐺𝑎 ∈ 𝜏 .
(iii) If {𝐺𝑎 ∈ 𝜏} is a finite collection, then ∩𝑎𝐺𝑎 ∈ 𝜏 .

(𝑋, 𝜏) is called a topological space, and the elements in 𝜏 are called open
sets.

Any open set containing 𝑥 ∈ 𝑋 is called a neighborhood of 𝑥 (in this topo-
logical space).

We can define continuous functions between two topological spaces 𝑋 and
𝑌 : 𝑓 : 𝑋 → 𝑌 is continuous around 𝑥 ∈ 𝑋, if for any nbh 𝑈 of 𝑓(𝑥) ∈ 𝑌 is a
nbh 𝑉 of 𝑥 ∈ 𝑋 such that if 𝑦 ∈ 𝑉 ⇒ 𝑓(𝑦) ∈ 𝑈 .

Thus, geometrical properties that are preserved by continuity are called topo-

24Here, ‘precise’ means, ultimately, ‘can be axiomatized’.
25For such basic concepts the following books are strongly recommended:

I. M. Singer and J. A. Thorpe, Lecture Notes on Elementary Topology and Geometry (Springer
Undergraduate Texts in Mathematics 1976)
A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis
(Martino Fine Books, 2012) $9.5 !
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logical properties.

2.12 Denseness
Let Ω be a set. A subset 𝑈 ⊂ Ω is dense if every neighborhood of any element
in Ω contains an element in 𝑈 .

As Q ⊂ R shows, denseness can still mean shear minority. If we evenly
and randomly sample a point from [0, 1] almost surely you are in Q𝑐. It is a
countable set, so its total length is zero (= measure zero).

Thus, a bigger subset than mere dense subset is desirable.

A countable set 𝑄 is measure zero (volume is zero; more precisely its Lebesgue measure
is zero). Since 𝑄 is countable, it is one-to-one correspondent to N+. Thus we can write
𝑄 = {𝑎𝑘}𝑘∈N+ . For example, let us assume 𝑄 ∈ R𝑛. Then, we choose a ball 𝐵𝑘 of
volume 𝜀/2𝑘+1 (𝜀 > 0, arbitrary) centered at 𝑎𝑘. Obviously 𝑄 ⊂ ∪𝑘𝐵𝑘. Therefore,
the total volume of 𝑄 (denoted as |𝑄|) must be less than the total volume of these
balls 𝐵1, 𝐵2, · · ·:

|𝑄| ≤
∑︁
𝑘

|𝐵𝑘| =
∑︁
𝑘

𝜀

2𝑘+1
= 𝜀. (2.13)

Since 𝜀 > 0 is arbitrary, |𝑄| must be smaller than any positive number: 0.

2.13 Openness, structural stability
A subset 𝑈 is open in Ω, if any element of 𝑈 has a neighborhood contained in
𝑈 .

Thus, intuitively speaking, when 𝑥 ∈ 𝑈 is perturbed to 𝑥+ 𝛿𝑥 with any suf-
ficiently small 𝛿𝑥 𝑥+𝛿𝑥 ∈ 𝑈 . This is a stability of the property. If a dynamical
system itself (in contrast to perturbing its initial condition) is perturbed and
if still the system ‘looks (behaves) similar’ to the original system, we say the
system is structurally stable.

In a certain sense ‘openness’ can be too strong or too weak, depending on
the situation. It can be too strong, because there can be special direction to
destroy the property we are interested in, although in all other directions it is
stable against small perturbations. A ‘too weak’ case is in 2.14. Also if we
recall that irrational numbers are with full measure but not open in R, de-
manding openness may not be wise to characterize ‘general.’

2.14 Open denseness
If a set 𝑈 is open, then it is measure positive for ‘natural sampling measure’ as

an open set in [0, 1] illustrates. Therefore, ‘open denseness’ could be a candidate of
‘naturalness,’ and certainly it is used to assert certain generality. However, the com-
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pliment of an open dense set could be as close to the full (measure) set as possible
as the fat Cantor set illustrates.26

However, unfortunately, it is often the case that most properties for dynamical
systems are vulnerable to a particular perturbation in a certain ‘direction’, so ‘open-
ness’ does not usually hold. Thus, we wish to relax ‘open denseness’.

Can we find an open dense set easily? Not so. See 2.19.

2.15 Cantor set
Cantor discussed a perfect nowhere dense set 𝐶 (Cantor set in the general
sense). ‘Perfect’ means no point is isolated. That is, for any neighborhood of
𝑥 ∈ 𝐶 is a point in 𝐶. ‘Nowhere dense’ means [𝐶]∘ = ∅.

The most famous example of a Cantor set is the one invented by H. J. S.
Smith, the set built by removing the open middle thirds of a line segment (see
2.7). Cantor mentioned this as an example, in passing, but it is now usually
recognized as ‘the Cantor set.’

Figure 2.5: ‘The’ Cantor set due to Smith (1874) constructed by removing the middle third
open set

This Cantor set may be analytically expressed as

𝐶 =

{︃
𝑥 =

∞∑︁
𝑛=1

𝑎𝑛
3𝑛

⃒⃒⃒⃒
⃒ 𝑎𝑛 ∈ {0, 2}

}︃
. (2.14)

It is a measure zero uncountable and self-similar set. Notice that the number
of gaps is a countable infinity. [0, 1] ∖ 𝐶 is an open dense set and with full
measure.

26B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis (Holden-Day, Inc. San
Francisco, 1964) is a great source book for delicate issues.



2. LECTURE 2: SETTING THE STAGE 23

2.16 Why Cantor sets are relevant to dynamical systems
Perhaps, you might think Cantor sets are rather contrived artificial sets. It is
actually not. As noted before, complicated behavior due to nonlinearity is due
to cofinement of the phase space in a finite domain by ‘folding.’ If the invariant
set27 is not identical with 𝑀 , then it is very natural to exhibit a self-similar
structure (see Fig. 2.8). Therefore, 𝑈 itself is a Cantor set or a direct product
of Cantor set and ‘an ordinary set’ (interval, circle, etc.).

AB

C D

AB

C D

B

C

D

A

Figure 2.6: Folding can produce self similar Cantor-like invariant set. This is a part of the
famous Smale’s horseshoe.

Figure 2.7: Is the ring of Saturn cantor?

27We will discuss this in detail, but here you may intuitively understand that a set 𝑈 ⊂ 𝑀 such
that 𝑓(𝑈) or 𝜑𝑡(𝑈) = 𝑈 .
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2.17 Cantor set due to ‘excessively tall’ tent maps
Consider a tent map 𝑓 : R → R

𝑓(𝑥) =

{︂
𝑘𝑥 for 𝑥 ≤ 1/2,
𝑘(1 − 𝑥) for 𝑥 > 1/2.

(2.15)

The points remaining in [0, 1] make a Cantor set. For 𝑘 = 3 we get the ‘stan-
dard Cantor set’ explained in Fig. 2.7.

0 1

1

0

Figure 2.8: Adjusting the slopes of a tent map, we can make a self-similar middle removed
Cantor set as an invariant set

2.18 Fat Cantor set
In the standard Cantor set, we remove 1/3 of the interval in a self-similar
fashion. What if we remove much smaller interval? If the construction is self
similar, the remaining (the resultant) Cantor set is measure zero. What if, then
we remove center pieces that are shrinking faster?

Let 𝛼 ∈ (0, 1).
(i) Remove (1/2 − 𝛼/4, 1/2 + 𝛼/4) from [0, 1].
(ii) Then, remove the middle 𝛼/24 fractions from the remaining two intervals.
(iii) Repeat this procedure ad infinitum (see Fig. 2.9).

The remaining set is a closed set and has no interior and perfect. That is, a
Cantor set = nowhere dense perfect set.
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α/2

α/2
3

α/2
3

α/2
5

Figure 2.9: Construction of fat cantor set. Remove successively the scaled copies of red chunks.
Left the usual measure zero cantor set; Right: a fat cantor set with a positive length (only the
values of 𝛼 are different).

The total length of the resultant cantor set is

1− 𝛼

2
−2

𝛼

23
−22 𝛼

25
−· · · = 1− 𝛼

2

(︂
1 +

1

2
+

1

22
+ · · ·

)︂
= 1− 𝛼

2

1

1 − 1/2
= 1−𝛼.

(2.16)
If 𝛼 < 1, then the resultant Cantor set is no where dense but with positive
measure, so it is called a fat Cantor set. We will actually encounter such a set
in chaos.

2.19 Very small open-dense set
Now, it should be clear how to make an open and dense set which is far from
the major part of the total set.

Let us construct a fat Cantor set of measure 1 − 𝜀 for small 𝜀 > 0. Then,
make its complement in [0, 1]. It is open and dense, but with measure 𝜀 (> 0),
which can be as small as you wish. Thus, we have constructed an open dense
set that is very hard to sample.

2.20 What is dimension?28

We usually say our space is 3D because we need three independent coordinates
to specify a point in the space uniquely. However, the space may not be metric
(i.e., distances may not be clearly defined; what is space?). Perhaps the sim-
plest idea is that our space is modeled by a 3-manifold. 3-manifold is defined
by 3D charts. The latter is defined as a 3D vector space, which we can define
mathematically (will not be discussed).

However, the concept of dimension should be ‘more primitive’; we should

28Detailed reference: Y. B. Pesin: Dimension theory in dynamical systems (Chicago Lectures in
Mathematics, Chicago UP 1997).
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not be required to have a metric, for example.

2.21 Inductive topological dimension29

A motivation comes from the fact that a bounded geometric object 𝐵 its di-
mension is the dimension of 𝜕𝐵 + 1. However, if 𝐵 is an open set 𝜕𝐵 = ∅,
even though 𝜕[𝐵] is not empty. Thus, the induction suggested above must be
formulated with some care.
The inductive dimension 𝑑I is defined as follows:
(i) 𝑑I(∅) = −1.
(ii) 𝑑I(𝐵) ≤ 𝑛 if for all 𝑥 ∈ 𝐵, there is a neighborhood 𝑈 such that an open
set 𝑉 ⊂ 𝑈 such that 𝑥 ∈ 𝑉 , [𝑉 ] ⊂ 𝑈 with 𝑑𝐼(𝜕[𝑉 ]) ≤ 𝑛− 1.
(iii) 𝑑I(𝐵) = 𝑚, if 𝑚 is the smallest number satisfying (ii).

Any totally disconnected sets30 have dimension zero. Therefore, the union of
two dimension zero sets can have a positive dimension. This does not happen for
the Lebesgue cover dimension (see 2.22): dim(𝑋∪𝑌 ) = max{dim(𝑋), dim(𝑌 )}.

2.22 Lebesgue covering dimension
Consider an open cover 𝒜 of a topological space 𝑋. Suppose for any 𝑥 ∈ 𝑋 we
can refine 𝒜 so that the covering order (= the min number of the open sets in
𝒜 covering a point is its covering order) is less than 𝑛+ 1. Then the minimum
value of 𝑛 is called the topological dimension of 𝑋.31

Figure 2.10: How to obtain the Lebesgue covering dimension of 𝑆1

If 𝑋 and 𝑌 are homeomorphic, both have the same topological dimension.
Cantor set has dimension zero, because we can alway find a disjoint subcover.

Every compact 𝑛-topological space can be embedded in ℛ2𝑚+1 (Whitney’s
theorem https://en.wikipedia.org/wiki/Whitney_embedding_theorem), which

29There are ‘small’ and ‘large’ inductive dimensions, but here only the former is mentioned.
30A topological space 𝑋 is totally disconnected if the connected components in 𝑋 are the one-

point sets.
31The illustrations in Wikipedia are wrong (or at best misleading).

https://en.wikipedia.org/wiki/Whitney_embedding_theorem
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will be discussed later.

A problem of this definition is that finding refinements could be daunting.

2.23 Box counting or Minkowski dimension
Let 𝑁𝛿(𝐴) be the smallest number of diameter 𝛿 sets covering 𝐴. If the following
limit exists, it is called the box counting (or Minkowski) dimension of 𝐴:

dim𝑀(𝐴) = lim
log𝑁𝛿(𝐴)

− log 𝛿
. (2.17)

Notice 𝐴 and [𝐴] have the same dim𝑀 . This is not a very desirable feature,
but since it is easy to compute and in many cases it agrees with the following
Hausdorff dimension 2.25. Also an unpleasant example is dim𝑀({1/𝑛}𝑛∈N) =
1/2.

2.24 Hausdorff measure
The 𝑠-dimensional Hausdorff measure of a set 𝐴 ⊂ R𝑛 is defined by

𝐻𝑠(𝐴) = lim
𝛿→0

𝐻𝑠
𝛿 (𝐴), (2.18)

where

𝐻𝑠
𝛿 (𝐴) = inf

𝒰

{︃∑︁
𝑖

diam(𝑈𝑖)
𝑠

⃒⃒⃒⃒
⃒ 𝑈𝑖 ∈ 𝒰(𝐴)

}︃
(2.19)

with 𝒰(𝐴) being the open cover of 𝐴.
𝐻𝑠 is a decreasing function of 𝑠.

2.25 Hausdorff dimension32

The Hausdorff dimension of a set 𝐴 is defined as

dim𝐻(𝐴) = sup
𝑠
{𝑠 |𝐻𝑠(𝐴) = ∞} = inf

𝑠
{𝑠 |𝐻𝑠(𝐴) = 0}. (2.20)

The H-dimension of a totally disconnected set is less than 1.
If 𝐴 is self similar, then dim𝑀(𝐴) = dim𝐻(𝐴).

32B. SimonReal Analysis (A comprehensive course in analysis, Part 1.) (AMS 2015) 8.2 is much
more detailed.
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2.26 Hausdorff dimension of Cantor set
The Hausdorff dimension of the middle third Cantor set is log 2/ log 3. This
can be confirmed due to the self-similarity of the Cantor set.

Let us consider the middle one ninth Cantor set. The first step removed 1/9.
The next step removes 1/9 of the remaining segments. Thus, (8/9)𝑛 → 0 that
is, the resultant set is not fat. As is clear, self-similar Cantor set is measure
zero. However, intuition tells us that the middle 1/9th Cantor set should be
‘larger’ than that of the middle third Cantor set. Thus, the Hausdorff dimen-
sion is useful.33

2.27 Fractals
A geometric object whose topological dimension is different from its Hausdorff
dimension is called a fractal object. A typical examples is the von Koch curve.
Its Hausdorff dimensiion is log 4/ log 3.

33⟨⟨Hausdorff⟩⟩ Felix Hausdorff (1868-1942) did his work on Hausdorff dimension in 1919. As a
World War I veteran, he could avoid the laws against Jews, but by the late 1930s he was dismissed.
He became concerned about being shipped to the camps. On the night of Jan 25, 1942, having
learned they were to be picked up the next day to be sent to the Endenich camp, Hausdorf, his
wife and his wife’s sister committed suicide by overdose of barbital [B Simon p49 + Wikipedia).
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Figure 2.11:
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2.28 Residual property
A nowhere dense set 𝐸 is defined by 𝐸

∘
= ∅. A meager set is a set described as a

countable union of nowhere dense sets. A set 𝐴 is almost open (or Baire set) if there
is an open set such that 𝐴∆𝑈 is meager.

A property that holds on Ω except for a meager set is called a residual property.
Needless to say, a residual set that is Ω∖ a meager set (i.e., the complement of a
meager set) is ‘smaller’ than an open dense set. A residual set can be measure zero
(but an open set is always with positive measure).

2.29 Ultimate conjectures on discrete dynamical systems due to Palis [no
explanation given here]
Palis conjectured:

Every diffeomorphism in Diff1(𝑀) can be approximated by an Axiom A dif-
feomorphism or else by one exhibiting a homoclinic bifurcation involving a
homoclinic tangency or a cycle of hyperbolic periodic saddles with different
indices.

For physicists, the following Milnor-Palis conjecture may be more interesting:34

For a typical smooth dynamical system 𝑓 : 𝑀 → 𝑀 , the global attractor 𝐴𝑓

is decomposed into finitely many minimal attractors 𝐴𝑖. Moreover, for almost
every point 𝑥 ∈ 𝑀 , the 𝜔-limit set 𝜔(𝑥) is equal to one of the 𝐴𝑖. Typically each
minimal attractor supports a unique SRB measure 𝜇 that governs behavior of
Lebesgue almost all points 𝑥 ∈ 𝑀 . The latter means that as 𝑛 → ∞

1

𝑛

𝑛−1∑︁
𝑖=0

𝜑(𝑓𝑘𝑥) →
∫︁

𝜑(𝑥)𝑑𝜇(𝑥) (2.21)

for any continuous function 𝜑 ∈ 𝐶(𝑀).

Here ‘typical’35 means:
Some property is considered to be typical if it is satisfied for almost all parameters

34in Abel Prize 2008-2012 by M Lyubich.
35The appropriate probabilistic notion (in infinitely dimensional space of systems) goes back to
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in a generic one-parameter family of systems.
For one-dimensional unimodal analytical maps the conjecture was proved.36

For example, it is still conceivable that from probabilistic point of view, the Newhouse phenomenon
is negligible.

36Lyubich, M.: Dynamics of quadratic polynomials, Ill. Parapuzzle and SBR measure. 11
Géométric complexe et systémes dynamiques. Asterisque Volume in Honor of Douady’s 60th Birth-
day, vol. 261, pp. 173- 200 (2000); Lyubich, M.: Almost every real quadratic map is either regular
or stochastic. Ann. Math. 156, 1-78 (2002); Avila, A., Lyubich, M., de Melo, W.: Regular or
stochastic dynamics in real analytic families of unimodal maps, Inv Math 154 451 (2003).
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