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29 Lecture 29. Measure-theoretical dynamical sys-

tems

29.1 Why measure-theoretical dynamical systems?
We have realized that even for a single dynamical system (that is defined by a defi-
nite law or rule) its behavior depends on initial conditions. Thus, even if we are told
that the system exhibit periodic movements or apparently random (that is, chaotic)
behaviors, we may not be lucky enough to observe them. How lucky can we be?
That is a question of probability, and probability is a ‘measure’ of our confidence.

For example, for a continuous time dynamical system 𝒳 𝑟(𝑀) defined on 𝑀 , a
trajectory starting from 𝑥0 ∈ 𝑀 at 𝑡 = 0 𝜙𝑡(𝑥0) depends on 𝑥0. Suppose the sys-
tem exhibits an unstable periodic orbit, you can observe it only when 𝑥0 is on the
orbit. What is your chance to observe it? If we throw a dart ‘randomly’ on 𝑀 , you
would expect that you would never hit the orbit. However, if there is some device
channeling the darts on to the orbit, with probability one, you will observe it. If
𝑥0 is in the basin of attraction of a stable periodic orbit and the basin is of positive
Riemann volume defined on 𝑀 , then we may have a finite (not infinitesimal) chance
to observe the periodic motion. Even in this case if there is a fixed point to whose
basin of attraction all the initial conditions are channelled, there will be no chance
to observe the stable periodic orbit.

These trivial considerations clearly tell us that it is very important (especially for
physicists) to specify how we can sample the initial condition. This is the question
of the sampling measure.

Once the system settles down to a steady state, that is, the system is in a certain
attractor, then we may be interested in its average behavior. For example, in the
case of a chaotic attractor, we could ask how nearby orbits leave each other on the
average (that is, we ask ‘how chaotic’ the system is). Inevitably we need a measure
to average the behavior.

Thus, if we ask about observability and about the average behavior, we need
(probability) measures.

29.2 Measure
What is a measure? See Appendix. You should be able to answer the question:
What is the area?
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29.3 Remark on family of measurable sets
If you read a respectable book on probability you will see a setup of probability space
(𝑀,ℱ , 𝜇), where 𝜇 is a (probability) measure defined on 𝑀 and ℱ is a set of all the
measurable sets on which 𝜇 is defined. Not all the subsets of 𝑀 can be assumed to
have ‘probability.’ This restriction is a must under the usual axioms of mathematics.

Therefore, when we consider a measure-theoretical dynamical system on 𝑀 with
an invariant measure the ‘dynamical rule’ (say, the map defining a discrete time
dynamical system) must be compatible with (preserved) ℱ . When we say two dy-
namical systems are isomorphic (= equivalent), then there must be a correspondence
(modulo 𝜇-measure zero sets) between the families of measurable sets for these dy-
namical systems.

However, in this exposition we will not mention about ℱ .

29.4 Invariant measure: introduction
Prepare numerous clones of the dynamical system under consideration, and plot their
states in the same phase space. Then, we would see a cloud of points that describe
individual clones in the phase space (Fig. 29.1).

Γ

Figure 29.1: Distribution or ensemble. The space is the phase space Γ. Each point represents an
instantaneous state of each system. An invariant measure corresponds to a steady state for which
the cloud as a whole becomes time-independent, although individual points may keep wandering
around.

The distribution described by the cloud, if the total mass is normalized to be
unity, may be understood as a probability measure on the phase space. Following
the time evolution of the system, the cloud may change its shape.

After a sufficiently long time, often the cloud representing an ensemble ceases
to change its shape. Then, we say that the ensemble has reached its steady state.
Individual points corresponding to the members of the ensemble may still keep wan-
dering around in the cloud, but the cloud as a whole is balanced and the distribution
on the phase space becomes invariant. The (probability) distribution corresponding
to this invariant cloud is called an invariant measure of the dynamical system.
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29.5 Invariant measure of dynamical system: discrete time
Discrete time case: Measure 𝜇 on the phase space 𝑀 is an invariant measure of a
dynamical system 𝑇 ∈ 𝐶𝑟(𝑀), if

𝜇 = 𝜇 ∘ 𝑇−1 (29.1)

holds. That is, for an arbitrary (𝜇-measurable) subset 𝐴 ⊂ 𝑀

𝜇(𝐴) = 𝜇(𝑇−1𝐴) (29.2)

holds, where 𝑇−1𝐴 is the totality of points that comes to 𝐴 after a unit time step
(Fig. 29.2).

T A
A-1

T

T

Figure 29.2: The preimage 𝑇−1𝐴 of 𝐴 by the time evolution operator 𝑇 need not be connected
(in this figure it consists of two connected components). Since 𝑇 (𝑇−1𝐴) = 𝐴, 𝑇−1𝐴 is the totality
of the points that come to 𝐴 after one time step. As you see from the figure, unless 𝑇 is invertible,
𝜇 = 𝜇 ∘ 𝑇 does not guarantee the invariance of 𝜇.

For an arbitrary measurable set 𝐴, if we know 𝑇−1𝐴 at present, we know everything
we can discuss probabilistically that will occur after one time step. (29.2) expresses
the condition that the evaluation of the weights of 𝐴 and 𝑇−1𝐴 by 𝜇 is consistent
with the conservation law of th members of the ensemble.

29.6 Invariant measure of dynamical system: continuous time
Continuous time case: Measure 𝜇 on the phase space 𝑀 is an invariant measure of
a dynamical system 𝜙𝑡 defined by a vector field 𝒳 (𝑀), if

𝜇 = 𝜇 ∘ 𝜙−1
𝑡 (29.3)

holds for all 𝑡. That is, for an arbitrary (𝜇-measurable) subset 𝐴 ⊂ 𝑀

𝜇(𝐴) = 𝜇(𝜙−1
𝑡 𝐴) (29.4)

holds (quite analogous to the discrete time case).
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29.7 Invariant measures are not unique for a given dynamical system
Generally speaking, an invariant measure for a given dynamical systems is not unique
(as already suggested in 29.1). For example, 𝑇𝑥 = {2𝑥} discussed previously has
actually uncountably many distinct invariant measures.

For a Hamiltonian system we know the phase volume is invariant, but there are
many other invariant measures. Furthermore, not all the invariant measures can
give ‘natural averages’ that agree with averages obtained by continuous even obser-
vations.328

29.8 Measure-theoretical dynamical system
Let 𝜇 be an 𝑇 ∈ 𝐶𝑟(𝑀)-invariant measure on 𝑀 . The triplet (𝑇, 𝜇,𝑀) is called a
measure theoretical dynamical system. This may be interpreted as a mathematical
expression of a steady state allowed to the dynamical system 𝑇 ∈ 𝐶𝑟(𝑀); given
a dynamical system 𝑇 ∈ 𝐶𝑟(𝑀), for each invariant measure 𝜇, a distinct measure
theoretical dynamical system is constructed.

For a continuous time dynamical system defined by 𝑋 ∈ 𝒳 𝑟(𝑀), (𝑋,𝜇,𝑀) may
be understood as a measure-theoretical dynamical system.

29.9 Absolutely continuous invariant measure
If a measure 𝜇 satisfies 𝜇(𝐴) = 0 for any Lebesgue-measure zero set329 𝐴, 𝜇 is called
an absolutely continuous measure. For a dynamical system with an absolutely con-
tinuous invariant measure, chaos may often be observed by numerical experiments.

If a measure is absolutely continuous, its probability density 𝑔 may be defined as
𝑑𝜇 = 𝑔𝑑𝜆, where 𝜆 is the Lebesgue measure.330

Absolutely continuous invariant measures are observable (see 22.3) (e.g., compu-
tationally).

328As we will see later, invariance does not mean ergodicity.
329More precisely, we should say ‘for any set whose Riemann volume is zero.’ Riemann volume is

the volume based on the Riemann metric = the usual length. It seems that the volume based on
the length is the most natural measure for us.

330That is, 𝑔 is the Radon-Nikodym derivative 𝑑𝜇/𝑑𝜆. See, e.g., Kolmogorov and Fomin cited
already.
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29.10 Ergodic measure
For any invariant set 𝐴 ⊂ 𝑀 (that is, any set satisfying 𝐴 = 𝑇−1𝐴331), if 𝜇(𝐴) = 0
or 1, the measure theoretical dynamical system is said to be ergodic.

Note that this is neither the property of the measure nor the property of the dy-
namicarule 𝑇 .

Roughly speaking, if a dynamical system is ergodic, the trajectory starting from
any initial point332 can eventually go into any 𝜇-measure positive set.

In fact, if there is a positive measure set 𝐶 to which any trajectory starting from
a certain positive measure set 𝐷 cannot reach, then there must be an invariant set
𝐵 with 0 < 𝜇(𝐵) < 1 such that 𝐵 ⊃ 𝐶 and 𝐵𝑐 ⊃ 𝐷.

Conversely, if there is an invariant set 𝐵 such that 0 < 𝜇(𝐵) < 1. Then, we can
choose a measure positive set 𝐶 with 𝐵 ∩ 𝐶 = ∅ such that any trajectory starting
from 𝐶 never visits 𝐵 [if possible, 𝜇(∪∞

𝑘=1𝑇
−𝑘𝐵∩𝐶) > 0 (note that 𝑇−𝑘𝐵∩𝐶 means

the points now in 𝐶 and will be in 𝐵 after 𝑘), but 𝑇−1𝐵 = 𝐵, so 𝐵 ∩ 𝐶 ̸= ∅, a
contradiction].

Let Γ be a unit circle, and 𝑓 be a rigid rotation around the center by an angle
that is irrational multiple of 2𝜋. Since the uniform distribution 𝜇𝑈 on the circle is
rotation-invariant, we can make a measure-theoretical dynamical system (𝑓, 𝜇𝑈 ,Γ),
which is ergodic. This not so interesting example illustrates why ergodicity is to-
tally insufficient for modeling irreversible phenomena such as relaxation exhibited by
usual many-body systems.

29.11 Mixing measure
For any sets333 𝐴 and 𝐵 (both ⊂ 𝑀), if

lim
𝑛→∞

𝜇(𝑇−𝑛𝐴 ∩𝐵) = 𝜇(𝐴)𝜇(𝐵) (29.5)

holds, the measure-theoretical dynamical system is said to be mixing, where 𝑇−𝑛

implies to apply 𝑇−1 𝑛-times. 𝑇−𝑛𝐴 is the set that agrees with 𝐴 after 𝑛 time steps.
𝑇−𝑛𝐴 ∩𝐵 is the totality of the points that is at present in 𝐵 and will be in 𝐴 after
𝑛 time steps. Intuitively, the cloud of points starting from 𝐵 spread over the phase
space evenly if 𝑛 is sufficiently large, so the probability for the cloud to overlap with
𝐴 is proportional to the ‘statistical weight’ of 𝐴. It is obvious that initial conditions

331This condition must be, precisely speaking, the equality ignoring the 𝜇-measure zero difference.
332Precisely speaking, starting from 𝜇-almost all initial points. ‘𝜇-almost all’ implies that all

except for 𝜇-measure zero sets.
333Precisely speaking, any 𝜇-measurable sets. From now on, such statements will not be added.
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cannot be used to predict the future. Physically, irreversible processes such as re-
laxation phenomena occur. In particular, the time-correlation function eventually
decays to zero.

Appendix: What is measure334

The concept of measure does not appear in elementary calculus, but it is a fundamental and
important concept. It is not very difficult to understand, since it is important. Besides, the
introduction of the Lebesgue measure by Lebesgue is a good example of conceptual analysis,
so let us look at its elementary part. A good introductory book for this topic is the already
quoted Kolmogorov-Fomin. It is desirable that those who wish to study fundamental aspects
of statistical mechanics and dynamical systems have proper understanding of the subject.

29.12 What is the volume?
For simplicity, let us confine ourselves to the two dimension. Thus, the question is: what
is the area? Extension to higher dimensions should not be hard. If the shape of a figure is
complicated, whether it has an area could be a problem,335 so let us begin with an apparently
trivial case.

“The area of the rectangle [0, 𝑎]× [0, 𝑏] is 𝑎𝑏.”
Is this really so? If so, why is this true? Isn’t it strange that we can ask such a question

before defining ‘area’? Then, if we wish to be logically conscientious, we must accept the
following definition:
Definition. The area of a figure congruent to the rectangle ⟨0, 𝑎⟩ × ⟨0, 𝑏⟩ (here, ‘⟨’ implies
‘[’ or ‘(’, ‘⟩’ is ‘]’ or ‘)’, that is, we do not care whether the boundary is included or not) is
defined as 𝑎𝑏.
Notice that the area of a rectangle does not depend on whether its boundary is included or
not. This is already included in the definition.

29.13 The area of a fundamental set
A figure made as the direct sum (that is, join without overlap except at edges and vertices)
of a finite number of rectangles (whose edges are parallel to the coordinate axes and whose
boundaries may or may not be included) is called a fundamental set (Fig. 29.3). It should
be obvious that the join and the product (common set) of two fundamental sets are both
fundamental sets. The area of a fundamental set is defined as the total sum of the areas of
the constituent rectangles.

29.14 How to define the area of more complicated figures; a strategy
For a more complicated figure, a good strategy must be to approximate it by a sequence of

fundamental sets allowing increasingly smaller rectangles. Therefore, following Archimedes,
we approximate the figure from inside and from outside (that is, the figure is approximated
by a sequence of fundamental sets enclosed by the figure and by a sequence of fundamental
sets enclosing the figure). If the areas of the inside and the outside approximate sequences

334Taken from TNW Chapter 2 Appendix
335(Under the usual axioms of mathematics) we encounter figures without areas.
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Figure 29.3: Fundamental set: it is a figure made of a finite number of rectangles whose edges
are parallel to a certain Cartesian coordinate axes and the rectangles do not overlap except at edges
and vertices. Its area is the total sum of the areas of the constituent rectangles.

agree in the limit, it is rational to define the area of the figure by the limit.
Let us start from outside.

29.15 Outer measure
Let 𝐴 be a given bounded set (that is, a set that may be enclosed in a sufficiently large

disk). Using a finite number of (or countably many) rectangles 𝑃𝑘 (𝑘 = 1, 2, · · ·), we cover
𝐴, where the boundaries of the rectangles may or may not be included, appropriately. If
𝑃𝑖 ∩ 𝑃𝑗 = ∅ (𝑖 ̸= 𝑗) and ∪𝑃𝑘 ⊃ 𝐴, 𝑃 = {𝑃𝑘} is called a finite (or countable) cover of 𝐴
by rectangles (Fig. 29.4O). Let the area of the rectangle 𝑃𝑘 be 𝑚(𝑃𝑘). We define the outer
measure 𝑚*(𝐴) of 𝐴 as follows:

𝑚*(𝐴) ≡ inf
∑︁
𝑘

𝑚(𝑃𝑘). (29.6)

Here, inf336 is taken over all the possible finite or countable covers by rectangles.

O I

A A A

X

E

Figure 29.4: Let 𝐴 be the set enclosed by a closed curve. O denotes a finite cover by rectangles. If
there is an area of 𝐴, it is smaller than the sum of the areas of these rectangles. The outer measure
is defined by approximating the area from outside. In contrast, the inner measure is computed by
the approximation shown in I by the rectangles included in the figure 𝐴. In the text, by using
a large rectangle 𝐸 containing 𝐴, 𝐸 ∖ 𝐴 is made and its outer measure is computed with the aid
of finite covers; the situation is illustrated in X. The relation between I and X is just the relation
between negative and positive films. If the approximation O from outside and the approximation I
from inside agree in the limit of refinement, we may say that 𝐴 has an area. In this case, we say 𝐴
is measurable, and the agreed area is called the area of 𝐴.

336The infimum of a set of numbers is the largest number among all the numbers that are not
larger than any number in the set. For example, the infimum of positive numbers is 0. As is
illustrated by this example, the infimum of a set need not be an element of the set. When the
infimum is included in the set, it is called the minimum of the set. The above example tells us that
the minimum need not exist for a given set.
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29.16 Inner measure
For simplicity, let us assume that 𝐴 is a bounded set. Take a sufficiently large rectangle

𝐸 that can enclose 𝐴. Of course, we know the area of 𝐸 is 𝑚(𝐸). The inner measure of 𝐴
is defined as337

𝑚*(𝐴) = 𝑚(𝐸)−𝑚*(𝐸 ∖𝐴). (29.7)

It is easy to see that this is equivalent to the approximation from inside (Fig. 29.4I). Clearly,
for any bounded set 𝐴 𝑚*(𝐴) ≥ 𝑚*(𝐴) holds.

29.17 Area of figure, Lebesgue measure
Let 𝐴 be a bounded set. If 𝑚*(𝐴) = 𝑚*(𝐴), 𝐴 is said to be a measurable set (in the

present case, a set for which its area is definable) and 𝜇(𝐴) = 𝑚*(𝐴) is called its area (2-
dimensional Lebesgue measure).

At last the area is defined. The properties of a fundamental set we have used are the
following two:
(i) It is written as a (countable) direct sum of the sets whose areas are defined.
(ii) The family of fundamental sets is closed under ∩, ∪ and ∖ (we say that the family of the
fundamental sets makes a set ring.338)
An important property of the area is its additivity: If 𝑃𝑖 are mutually non-overlapping rect-
angles, 𝜇(∪𝑃𝑖) =

∑︀
𝜇(𝑃𝑖). Furthermore, the 𝜎-additivity for countably many summands

also holds.339

Notice that such a summary as that the area is a translationally symmetric 𝜎-additive
set-theoretical function which is normalized to give unity for a unit square does not work,
because this does not tell us on what family of sets this set-theoretical function is defined.340

The above summary does not state the operational detail about how to measure the areas
of various shapes, so no means to judge is explicitly given what figures can be measurable.
Lebesgue’s definition of the area outlined above explicitly designates how to obtain the area
of a given figure.

29.18 General measure (abstract Lebesgue measure)
The essence of characterization of the area is that there is a family of sets closed under certain
‘combination rules’ and that there is a 𝜎-additive set-theoretical function on it. Therefore, we
start with a 𝜎-additive family ℳ consisting of subsets of a set 𝑋: A family of sets satisfying
the following conditions is called a 𝜎-additive family:
(s1) 𝑋, ∅ ∈ ℳ,
(s2) If 𝐴 ∈ ℳ, then 𝑋 ∖𝐴 ∈ ℳ,

337𝐴 ∖𝐵 in the following formula denotes the set of points in 𝐴 but not in 𝐵, that is, 𝐴 ∩𝐵𝑐.
338More precisely, that a family 𝒮 of sets makes a ring implies the following two:

(i) 𝒮 includes ∅,
(ii) if 𝐴,𝐵 ∈ 𝒮, then both 𝐴 ∩𝐵 and 𝐴 ∪𝐵 are included in 𝒮.

339Indeed, if 𝐴 = ∪∞
𝑛=1𝐴𝑛 and 𝐴𝑛 are mutually exclusive (i.e., for 𝑛 ̸= 𝑚 𝐴𝑛 ∩ 𝐴𝑚 = ∅), for an

arbitrary positive integer 𝑁 𝐴 ⊃ ∪𝑁
𝑛=1𝐴𝑛, so 𝜇(𝐴) ≥

∑︀𝑁
𝑛=1 𝜇(𝐴𝑛). Taking the limit 𝑁 → ∞, we

obtain 𝜇(𝐴) ≥
∑︀∞

𝑛=1 𝜇(𝐴𝑛). On the other hand, for the external measure 𝑚*(𝐴) ≤
∑︀∞

𝑛=1 𝑚
*(𝐴𝑛),

so 𝜇(𝐴) ≤
∑︀∞

𝑛=1 𝜇(𝐴𝑛).
340If we assume that every set has an area, under the usual axiomatic system of mathematics, we

are in trouble. See Banach-Tarski’s theorem (Discussion 2.4A.1).
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(s3) If 𝐴𝑛 ∈ ℳ (𝑛 = 1, 2, · · ·), then ∪∞
𝑛=1𝐴𝑛 ∈ ℳ.

(𝑋,ℳ) is called a measurable space. A nonnegative and 𝜎-additive set-theoretical function
𝑚 defined on a measurable set that assigns zero to an empty set is called a measure, and
(𝑋,ℳ,𝑚) is called a measure space. Starting with this measure 𝑚, we can define the outer
measure on a general set 𝐴 ⊂ 𝑋, mimicking the procedure already discussed above. The
inner measure can also be constructed. When these two agree, we can define a set-theoretical
function 𝜇 as 𝜇(𝐴) = 𝑚*(𝐴), and we say 𝐴 is 𝜇-measurable. Thus, we can define 𝜇 that
corresponds to the Lebesgue measure explained above in the context of the area. 𝜇 is called
the Lebesgue extension of 𝑚 (this is called an abstract Lebesgue measure, but often this is
also called a Lebesgue measure). This construction of 𝜇 is called the completion of 𝑚. In
summary, if (𝑋,ℳ,𝑚) is a measure space, we define a new family of subsets of 𝑋 based on
ℳ as

ℳ = {𝐴 ⊂ 𝑋 : ∃𝐵1, 𝐵2 ∈ ℳ where 𝐵1 ⊂ 𝐴 ⊂ 𝐵2,𝑚(𝐵2 ∖𝐵1) = 0}, (29.8)

and if 𝜇 is defined as 𝜇(𝐴) ≡ 𝑚(𝐵2) for 𝐴 ∈ ℳ, (𝑋,ℳ, 𝜇) is a measure space, and is called
the completion of (𝑋,ℳ,𝑚).341

The final answer to the question, “What is the area?” is: the area is the completion of the
Borel342 measure, where the Borel measure is the 𝜎-additive translation-symmetric measure
that gives unity for a unit square and is defined on the Borel family of sets which is the
smallest 𝜎-additive family of sets including all the rectangles. Generally speaking, a measure
is something like a weighted volume. However, there is no guarantee that every set has a
measure (𝜇-measurable). It is instructive that a quite important part of the characterization
of a concept is allocated to an ‘operationally’ explicit description (e.g., how to measure, how
to compute). Recall that Riemann’s definition of the integral was based on this operational
spirit, so it can immediately be used to compute integrals numerically.

341The completion is unique. In a complete measure space, if 𝐴 is measure zero (𝜇(𝐴) = 0),
then its subsets are all measure zero. Generally, a measure with this property is called a complete
measure. Completion of (𝑋,ℳ,𝑚) may be understood as the extension of the definition of measure
𝑚 on the 𝜎-additive family generated by all the sets in ℳ + all the measure zero set with respect
to 𝑚.

342E. Borel (1871-1956)
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