27 Lecture 27. Baker's transformation

27.1 Baker's transformtion

The baker's transformation is a one-to-one map $T: M=[0,1)^{2} \rightarrow[0,1)^{2}$ defined as follows:

$$
T(x, y)=\left\{\begin{array}{ll}
(2 x, y / 2) & x \in[0,1 / 2) \tag{27.1}\\
(2 x-1,(y+1) / 2 & x \in[1 / 2,1)
\end{array} .\right.
$$

The transformation and its inverse are illustrated in Fig. 27.1

Figure 27.1: Baker's transformation and its inverse

27.2 Stable and unstable manifolds of baker's transformation

M may be decomposed into vertical sets and horizontal sets. The vertical set containing (x, y) is

$$
\begin{equation*}
\gamma_{-}(x, y)=\left\{\left(x, y_{1}\right) \mid y_{1} \in[0,1)\right\} \tag{27.2}
\end{equation*}
$$

and the horizontal set containing (x, y) is

$$
\begin{equation*}
\gamma_{+}(x, y)=\left\{\left(x_{1}, y\right) \mid x_{1} \in[0,1)\right\} . \tag{27.3}
\end{equation*}
$$

Since T expands $\gamma_{+}(x, y)$, it is an (local) unstable manifold of (x, y); we see $\gamma_{-}(x, y)$ is a (local) stable manifold of $(x, y) .{ }^{327}$

Notice that this decomposition defines an equivalence relation: If $x \in \gamma_{ \pm}(y) \Rightarrow$

[^0]$\gamma_{ \pm}(x)=\gamma_{ \pm}(y)$.

27.3 Invariant measure of baker's transformation

Obviously the area is preserved, so the usual Lebesgue measure is an invariant measure.

We can show that the measure is a mixing (of course ergodic) measure.

27.4 Symbolic dynamical expression of baker's transformation

Let us define the partition $\mathcal{A}=\left\{M_{0}, M_{1}\right\}$ (see 32.2 for a precise definition): $M=$ $M_{0} \cup M_{1}$, where $M_{0}=[0,1 / 2) \times[0,1)$ and $M_{1}=[1 / 2,1) \times[0,1)$.

How this partition is transformed according to T or T^{-1} may be understood easily from the figure 27.2.

Figure 27.2: The fate of partition $M_{0} \vee M_{1}$
As is clear from the figure $\vee_{n=0}^{\infty} T^{-n} \mathcal{A}$ consists of the totality of γ_{+}, and $\vee_{n=0}^{\infty} T^{n} \mathcal{A}$ consists of the totality of γ_{-}. Thus, an element of $\vee_{-\infty}^{\infty} T^{n} \mathcal{A}$ specifies a point in M. This allows us to assign a 01 sequence to each point in M such that $T M$ corresponds to the shift on $\{0,1\}^{\mathbb{Z}}$. The rule may be more explicitly stated as follows: For $x \in M$ if $T^{-n} x \in M_{\alpha}(\alpha=0$ or 1$) \omega(x)_{n}=\alpha$.

The correspondence is not one to one. $M \rightarrow\{0,1\}^{\mathbb{Z}}$ is injective. However, for binary rational numbers its binary expansion is not unique. However, these points are measure zero, so as a probabilistic system (= measure-theoretical dynamical system) we may totally ignore them and identify baker's transformation (with the Lebesgue measure) and the Bernoulli system $B(1 / 2,1 / 2)$.

[^0]: ${ }^{327}$ 'local' in general, because they may not be continuous.

