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26 Lecture 26. Symbolic dynamics

26.1 Shift
Let us consider a finite set 𝑆 whose elements we call symbols (thus 𝑆 may be un-
derstood as a set of alphabets). A finite sequence of symbols is called a word. Make
a set Σ consisting of some infinite sequences (both-sided or one-sided) 𝜔 = (𝜔𝑛)𝑛
(𝜔𝑛 ∈ 𝑆). Then we can make a shifted sequence 𝜔′ = 𝜎𝜔 from 𝜔 as 𝜔′ = (𝜔𝑛+1)𝑛:

𝜔 = · · ·𝜔−𝑘𝜔−𝑘+1 · · ·𝜔−1 𝜔0 𝜔1𝜔2 · · ·𝜔𝑘𝜔𝑘+1 · · · , (26.1)

𝜎𝜔 = 𝜔′ = · · ·𝜔−𝑘+1𝜔−𝑘+2 · · ·𝜔0 𝜔1 𝜔2𝜔3 · · ·𝜔𝑘+1𝜔𝑘+2 · · · . (26.2)

or in the one-sided case

𝜔 = 𝜔0 𝜔1𝜔2 · · ·𝜔𝑘𝜔𝑘+1 · · · , (26.3)

𝜎𝜔 = 𝜔′ = 𝜔1 𝜔2𝜔3 · · ·𝜔𝑘+1𝜔𝑘+2 · · · . (26.4)

The operator 𝜎 is called a shift operator or shift.

26.2 Shift dynamical systems
Σ ≡ 𝑆Z (resp. Σ+ = 𝑆N) is the totality of both-side (resp. one-side) infinite symbol
sequences on 𝑆. We can define shift on Σ and is called, as a dynamical system, the
full shift on 𝑆.

A subset 𝑀 of Σ is an invariant set if 𝜎𝑀 = 𝑀 . Then, we may define a restriction
of 𝜎 to 𝑀 (sometimes, it is written as 𝜎𝑀), which is called a subshift.

For example, we can consider all the sequences 𝑀 ⊂ {0, 1}Z that never contains
11. Needless to say, the shift never changes the sequence structures, so we can define
a shift dynamical system (𝜎,𝑀). This is an example of a Markov subshift.

A finite sequence of symbols is called a word. Thus 𝑀 above may be characterized
as a sequence without word 11.

26.3 Topology or metric in symbol sequence space
We wish to compare different sequences. As can be seen from the illustration 22.4
if the length 𝑛 words close to 0 are identical we should regard the sequences close.
Thus, we introduce the following metric in Σ:

𝑑(𝜔, 𝜔′) =
∑︁
𝑛

2−|𝑛|𝛿𝜔𝑛𝜔′
𝑛
. (26.5)
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The full shift (𝜎,ΣZ) (or (𝜎,ΣN)) has dense periodic orbits and topologically mix-
ing 26.4.

26.4 Topological mixing
Let 𝑓 : 𝑀 → 𝑀 be a topological dynamical system (= 𝐶0-endomorphism of a
(smooth) manifold 𝑀). For any 𝑈, 𝑉 ⊂ 𝑀 if 𝑓𝑛(𝑈)∪𝑉 ̸= ∅ for any sufficiently large
𝑛 ∈ N (i.e., there is a positive integer 𝑁(𝑈, 𝑉 ) and for all 𝑛 > 𝑁(𝑈, 𝑉 )), we say this
dynamical system is topologically mixing.

26.5 Cylinder set
A subset of sequence space 𝑀 with a particular word at a particular position is called
a cylinder set: for example

{𝜔 |𝜔0 = 𝛼1, 𝜔1 = 𝛼2, · · ·𝜔10 = 𝛼11, 𝜔 ∈ 𝑀} (26.6)

is a length (or rank) 11 cylinder set consisting of the totality of sequences in 𝑀 such
that

· · ·𝜔−2𝜔−1𝛼1𝛼2 · · ·𝛼10𝛼11𝜔11𝜔12 · · · , (26.7)

where 𝜔𝑘 can be anything as long as 𝜔 ∈ 𝑀 .

26.6 Markov subshift
Let 𝑆∘ = 𝑛 (the size of the alphabet). Let 𝐴 be a 𝑛× 𝑛 matrix whose elements are
0 or 1. Define

Σ𝐴 = {𝜔 ∈ Σ |𝐴𝜔𝑛,𝜔𝑛+1 = 1, 𝑛 ∈ Z}. (26.8)

Σ+
𝐴 for one-sided systems may be analogously defined by replacing Z with N. (𝜎,Σ𝐴)

is called a Markov subshift whose structure matrix is 𝐴.

26.7 Fixed points of Markov subshift
If there is an orbit starting from symbol 𝑥 that returns to itself after 𝑝 shift, (𝐴𝑝)𝑥𝑥 >
0. This number is actually the number of ways to go from 𝑥 to itself in 𝑝 steps.
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The fixed points of 𝜎𝑝 has the following structure:318

(𝑖1𝑖2 · · · 𝑖𝑝𝑖1𝑖2 · · · 𝑖𝑝 · · ·). (26.9)

Therefore, the total number 𝑁Fix(𝜎𝑝) of fixed points of 𝜎𝑝 is Tr𝐴𝑝:

𝑁Fix(𝜎𝑝) = Tr𝐴𝑝. (26.10)

Notice that this is closely related to the number of periodic orbits:

𝑁Fix(𝜎𝑛) =
∑︁

(𝑘,𝜏):𝑘𝜏=𝑛

𝜏, (26.11)

where 𝜏 is the period of a periodic orbit 𝜏 , and the summation is over all the pairs
(𝑘, 𝜏).

26.8 Zeta function of dynamical system
The zeta function 𝜁𝑓 for a dynamical system 𝑓 ∈ 𝐶𝑟(𝑀) is generally defined as

𝜁𝑓 (𝑠) = exp

[︃
∞∑︁
𝑛=1

𝑁Fix(𝑓𝑛)

𝑛
𝑠𝑛

]︃
. (26.12)

Using (26.11), we get

= exp

⎡⎣ ∞∑︁
𝑛=1

1

𝑛

∑︁
(𝑘,𝜏):𝑘𝜏=𝑛

𝜏𝑠𝑛

⎤⎦ . (26.13)

Here, all the combinations (𝑘, 𝜏) appear once and only once; the totality of 𝜏 (if
orbits are distinct, even if they have the same 𝜏 they must be counted separately) is
system dependent, but if the system has one 𝜏 , 𝑘𝜏 for all 𝑘 ∈ N+ appear. Thus, for
each 𝜏 the summation over 𝑘 runs from 1 to ∞:

𝜁𝑓 (𝑠) = exp

⎡⎣∑︁
(𝑘,𝜏)

1

𝑘𝜏
𝜏𝑠𝑘𝜏

⎤⎦ (26.14)

= exp

[︃∑︁
𝜏

∞∑︁
𝑘=1

1

𝑘
𝑠𝑘𝜏

]︃
= exp

[︃
−
∑︁
𝜏

log(1 − 𝑠𝜏 )

]︃
(26.15)

=
∏︁
𝜏

(1 − 𝑠𝜏 ). (26.16)

318Notice that (26.9) and its ‘cyclic permutation’, e.g., (𝑖2𝑖3 · · · 𝑖𝑝𝑖1𝑖2𝑖3 · · · 𝑖𝑝𝑖1 · · ·) are distinct
points.
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Here the summation (or product) over 𝜏 is over all the periods allowed to the system.
This is why it is called the zeta function.

26.9 Zeta function for Markov subshift
Let us compute the zeta function for (𝜎,Σ𝐴) with the structure matrix 𝐴. We have
an explicit formula for 𝑁Fix(𝜎𝑛), so319

𝜁𝜎(𝑠) = exp

[︃
∞∑︁
𝑛=1

Tr𝐴𝑛

𝑛
𝑠𝑛

]︃
= exp[−Tr log(1 − 𝑠𝐴)] = 1/det (1 − 𝑠𝐴). (26.17)

Thus, the inverse of the eigenvalue of 𝐴 with the largest modulus gives the conver-
gence radius 𝜌𝐴 for the zeta function.

As we will see, − log 𝜌𝐴 is the topological entropy of the dynamical system (the
sup of the KS entropy). The invariant measure that realizes this sup value (thus,
actually the max value) is the invariant measure of the Markov chain defined by the
transition matrix 𝐴.

26.10 Topologically transitive Markov subshift
If there is 𝑚 ∈ N such that 𝐴𝑛 > 0 (all the elements positive), we say the resultant
Markov subshift is topologically transitive: there is an orbit starting from any sym-
bol to reach any symbols with a finite number of steps.

A topologically transitive Markov subshift is topologically mixing and periodic
orbits are dense in Σ𝐴.320

The Perron-Frobenius theorem 26.11 tells us that 𝜌𝐴 = 1/𝜆PF, where 𝜆PF is the
Perron-Frobenius eigenvalue of 𝐴.

26.11 Perron-Frobenius theorem
Let 𝐴 be a square matrix whose elements are all non-negative, and there is a positive
integer 𝑛 such that all the elements of 𝐴𝑛 are positive. Then, there is a nondegenerate
real positive eigenvalue 𝜆 such that
(i) |𝜆𝑖| < 𝜆, where 𝜆𝑖 are eigenvalues of 𝐴 other than 𝜆,321

319Recall log det (𝐴) = log(
∏︀

eigenvalue of 𝐴) =
∑︀

log(eigenvalue of 𝐴) = Tr log𝐴.
320P1.9.9 KH p51
321That is, 𝜆 gives the spectral radius of 𝐴.
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(ii) the elements of the eigenvector belonging to 𝜆 may be chosen all positive.
This special real eigenvalue giving the spectral radius is called the Perron-Frobenius
eigenvalue.

For the ‘shortest demonstration’ see 26.13.322

26.12 Preview of thermodynamic formalism
As you realize, thus dynamical systems are closely related to 1D spin systems. Pe-
riodic states correspond to ordered states in spin systems; thus, periodic dynamical
systems correspond to spin systems with long-range interactions. Chaotic states cor-
responds to high-temperature states. Critical phenomena in spin systems correspond
to Feigenbaum critical phenomena 8.7.

Sinai introduced the thermodynamic formalism to understand dynamical systems,
which systematize the ideas above. Invariant measures correspond to Gibbs mea-
sures. Observability of chaos may be characterized by a special temperature.

26.13 Proof of the Perron-Frobenius theorem323

Let us introduce the vectorial inequality notation for 𝑛-column vectors): 𝑥 > 0 (≥ 0)
implies that all the components of 𝑥 are positive (non-negative). Also let us write 𝑥 ≥ (>)
𝑦, if 𝑥− 𝑦 ≥ (>) 0.

We use analogous symbols for 𝑛 × 𝑛 matrices 𝐴, 𝐵, · · · as well. 𝐴 > 0: (≥ 0) implies
that all the components of 𝐴 are positive (non-negative). Also let us write 𝐴 ≥ (>) 𝐵, if
𝐴−𝐵 ≥ (>) 0.

We consider 𝑛 × 𝑛 matrices 𝐴 ≥ 0 for which there is a positive integer 𝑚 such that
𝐴𝑚 > 0.

Let 𝑥 be a vector such that |𝑥| = 1 and 𝑥 ≥ 0. The largest 𝜌 satisfying

𝐴𝑥 ≥ 𝜌𝑥 (26.18)

is denoted by Λ(𝑥): Λ(𝑥) = max{𝜌 |𝐴𝑥 ≥ 𝜌𝑥}.

(o) Note that

Λ(𝑥) = min
𝑖 s.t. 𝑥𝑖 ̸=0

(𝐴𝑥)𝑖
𝑥𝑖

, (26.19)

so it is continuous for 𝑥 > 0.

(o′) 𝐴𝑚 > 0 implies 𝐴𝑚𝑥 > 0 for 𝑥 ≥ 0 ( ̸= 0).

322The newest version, taking account of H Tasaki’s critical comments (April, 2018).
323A standard reference may be E. Seneta, Non-negative matrices and Markov chains (Springer,

1980). The proof here is an eclectic version due to many sources, including N. Iwahori, Graphs
and Stochastic Matrices (Sangyo-tosho, 1974) and S. Sternberg: http://www.math.harvard.edu/
library/sternberg/slides/1180912pf.pdf..

http://www.math.harvard.edu/library/sternberg/slides/1180912pf.pdf
http://www.math.harvard.edu/library/sternberg/slides/1180912pf.pdf
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(i) Define a compact324 set 𝑈 = {𝑥 |𝑥 ≥ 0, |𝑥| = 1} and a continuous map 𝑄 on it as

𝑄𝑥 ≡ 𝐴𝑚𝑥

|𝐴𝑚𝑥|
> 0. (26.20)

Then, Λ(𝑄𝑥) ≥ Λ(𝑥) on 𝑈 .
[Demo] Let 𝐴𝑥 ≥ 𝜆𝑥 for 𝑥 ∈ 𝑈 . Then,

𝐴𝑚𝐴𝑥 = 𝐴𝐴𝑚𝑥 ≥ 𝜆𝐴𝑚𝑥 ⇒ 𝐴𝑄𝑥 ≥ 𝜆𝑄𝑥. (26.21)

Therefore, Λ(𝑄𝑥) ≥ Λ(𝑥) for any 𝑥 ∈ 𝑈 .

(ii) There is a vector 𝑧 ∈ 𝑈 that maximizes Λ(𝑥).
[Demo] Let 𝐶 = 𝑄(𝑈). Notice that

𝐶 ⊂ {𝑥 |𝑥 > 0, |𝑥| = 1}, (26.22)

because for any 𝑥 ∈ 𝑈 �̃� = 𝑄𝑥 satisfies |�̃�| = 1 and �̃� > 0. Thus. 𝐶 ⊂ 𝑈 . Since 𝑄 is
continuous on 𝑈 , 𝐶 is compact. 𝑥 > 0 for any 𝑥 ∈ 𝐶, so Λ(𝑥) is continuous and has a max
value on 𝐶. For any 𝑥 ∈ 𝑈 (i) says Λ(𝑄𝑥) ≥ Λ(𝑥), so Λ defined on 𝑈 is maximum on 𝐶,
since 𝐶 ⊂ 𝑈 .

(iii) Let us write 𝜆(𝐴) = Λ(𝑧). That is, 𝜆(𝐵) = max𝑥∈𝑈{Λ(𝑥) |𝐵𝑥 ≥ Λ(𝑥)𝑥} for any 𝑛× 𝑛
matrix with some positive 𝑚 such that 𝐵𝑚 > 0. 𝜆(𝐴) is an eigenvalue of 𝐴, and 𝑧 belongs
to its eigenspace: 𝐴𝑧 = 𝜆(𝐴)𝑧.
[Demo] Even if not, we have 𝑤 = 𝐴𝑧 − 𝜆(𝐴)𝑧 ≥ 0 (not equal to zero) by definition of 𝜆(𝐴).
Notice that for any vector 𝑥 ≥ 0 𝐴𝑚𝑥 > 0, so unless 𝑤 = 0

𝐴𝑚𝑤 = 𝐴𝐴𝑚𝑧 − 𝜆(𝐴)𝐴𝑚𝑧 > 0. (26.23)

This implies Λ(𝐴𝑚𝑧) > 𝜆(𝐴), but 𝜆(𝐴) is the maximum of Λ, so this is a contradiction.
Therefore, 𝑤 = 0. That is, 𝑧 is an eigenvector belonging to 𝜆.

(iv) 𝑧 > 0 because max of Λ is on 𝐶.

(v) 𝜆 is the spectral radius of 𝐴.
[Demo] Suppose 𝐴𝑦 = 𝜆′𝑦. Let 𝑞 be the vector whose components are absolute values of 𝑦:
𝑞𝑖 = |𝑦𝑖|. Then, 𝐴𝑞 ≥ |𝜆′|𝑞 (as seen from (26.19)). Therefore, |𝜆′| ≤ 𝜆(𝐴).

(vi) The absolute values of other eigenvalues are smaller than 𝜆(𝐴). That is, no eigenvalues
other than 𝜆(𝐴) is on the spectral circle.
[Demo] Suppose 𝜆′ is an eigenvalue on the spectral circle but is not real positive. Let 𝑞 be
the vector whose components are absolute values of an eigenvector belonging to 𝜆′. Since
𝐴𝑞 ≥ |𝜆′|𝑞 = 𝜆(𝐴)𝑞, actually we must have 𝐴𝑞 = 𝜆(𝐴)𝑞. Therefore, the absolute value of
each component of the vector 𝐴𝑚𝑦 = 𝜆′𝑚𝑦 coincides with the corresponding component of
𝐴𝑚𝑞. This implies ⃒⃒⃒⃒

⃒⃒∑︁
𝑗

(𝐴𝑚)𝑖𝑗𝑦𝑗

⃒⃒⃒⃒
⃒⃒ = ∑︁

𝑗

(𝐴𝑚)𝑖𝑗 |𝑦𝑗 | =
∑︁
𝑗

|(𝐴𝑚)𝑖𝑗𝑦𝑗 |. (26.24)

324Since we deal with finite-dimensional vector spaces, ‘closed’ can always replace ‘compact.’
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All the components of 𝐴𝑚 are real positive. Therefore, all the arguments of 𝑦𝑗 are identical,
325

so 𝑦 is parallel to 𝑞. Hence, 𝜆′ = 𝜆(𝐴).

(vii) 𝜆(𝐴) is non-degenerate.
We show that 𝜆(𝐴) is a non-degenerate root of the characteristic equation det(𝜆𝐼 −𝐴). We
use
(viia) For any matrix 𝐵 ≥ 0 ( ̸= 0) det(𝜆𝐼−𝐵) > 0 for real 𝜆 > 𝜆(𝐵) (= the spectral radius).
(viib) Let 𝐴(𝑖) be the matrix with the 𝑖th row and 𝑖th column removed from 𝐴. Then,326

𝑑

𝑑𝜆
det(𝜆𝐼 −𝐴) =

∑︁
𝑖

det(𝜆𝐼 −𝐴(𝑖)). (26.25)

Let 𝐴[𝑖] be the matrix with all the elements in 𝑖th row and 𝑖th column of 𝐴 being replaced
with 0. Suppose 𝐴[𝑖]𝑧 = 𝜎𝑧 (𝑧 ̸= 0). Then, for all 𝑖

𝐴|𝑧| ≥ 𝐴[𝑖]|𝑧| ≥ |𝜎||𝑧|. (26.26)

That is 𝜆(𝐴) ≥ |𝜎|. If 𝜆(𝐴) = |𝜎|, then 𝐴|𝑧| = |𝜎||𝑧|, so |𝑧| > 0 and (𝐴 − 𝐴[𝑖])|𝑧| = 0, but
this is impossible. Therefore, the spectral radius of 𝐴[𝑖] is smaller than 𝜆(𝐴) for any 𝑖. Since
𝐴[𝑖] and 𝐴(𝑖) have the same spectral circle, (viia) implies all the terms in (26.25) are positive
for 𝜆 = 𝜆(𝐴), so (viib) implies 𝜆(𝐴) is non-degenerate.

325𝑎, 𝑏 ̸= 0 and |𝑎 + 𝑏| = |𝑎| + |𝑏| imply the real positivity of 𝑎/𝑏. This means inductively that
|
∑︀

𝑎𝑖| =
∑︀

|𝑎𝑖| implies all 𝑎𝑖 must have the same argument.
326Let 𝑋 = 𝑛×𝑛 diagonal matrix with the diagonal 𝑥1, · · · , 𝑥𝑛. Then, expanding the determinant

with respect to the 𝑖th row, obviously,

𝑑

𝑑𝑥𝑖
det(𝑋 −𝐴) = det(𝑋(𝑖) −𝐴(𝑖)),

where 𝑋(𝑖) = (𝑛− 1)× (𝑛− 1) diagonal matrix with the diagonal 𝑥1, · · · , (𝑥𝑖), · · · , 𝑥𝑛 (𝑥𝑖 omitted).
The rest is due to the chain rule.
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