
25. LECTURE 25. COMPUTABLE ANALYSIS 299

25 Lecture 25. Computable analysis

An accessible reference is: M. B. Pour-El and J. I. Richards, Computability in Anal-
ysis and Physics (Springer, Perspective in Mathematical Logic, 1987).

25.1 Decision problem
Given a set of problems (or a set of instances of a problem, e.g., whether a polynomial
has 0 as its root or not), we ask whether there is an algorithm to answer all the
problems in the set. This problem is called a decision problem. If there is such an
algorithm, we say the set (or the problem) is decidable. If not, we say it is undecidable.
The word ‘algorithm’ was unclear before Turing, but now we can clearly state that
‘algorithm = existence of Turing program.’

25.2 Remark
If a set is finite, or the problem has only finite instances, then it is trivially decidable,
because we can check all of them one by one blindly. The decision problem becomes
nontrivial only if the problem has infinitely many instances like the one due to
Diophantus in 25.3.

25.3 Decision problem examples.
(1) Hilbert’s 10th problem. Decide whether a polynomial 𝑃 (𝑥1, 𝑥2, · · · , 𝑥𝑛) with
integer coefficients (Diophantine equations) has an integer root. This is decidable if
𝑛 = 2,310 but is undecidable for general 𝑛.311

(2) Is ∃𝑥1∃𝑥2∃𝑥3∀𝑦1 · · · ∀𝑦𝑚𝒰 true (𝑚 ∈ 𝑁)? Here, 𝒰 is any logical formula within
the first order logic312 without including ∃, ∀ and free object variables. This is
undecidable.

25.4 Halting problem of Turing machine
Suppose we have a Turing machine 𝑇 . We feed a number 𝑛 to it, and ask whether
𝑇 ever stops (that is, the solution is given within a finite time or not). Certainly, we

310A. Baker, Phil. Trans. Roy. Soc. London A 263 (1968).
311Ju. V. Matyasevich, 1970: The theorem is called the Matyasevich-Robinson-Davis-Putnam

(MRDP) theorem. There is a moving short movie of Julia Robinson: “Julia Robinson and Hilbert’s
Tenth Problem” (A film by G Csicsery, Zala Films, 2008).

312I recommend H. D. Ebbinghaus, J. Flum and W. Thomas, Mathematical Logic (Springer
Undergraduate Texts in Mathematics, 1984; there is a new edition).

300

can run the program on 𝑇 , but that the machine has not yet stopped does not mean
anything about its final result. Is there any algorithm to judge that 𝑇 halts upon 𝑛?
This is called the halting problem.

25.5 Halting problem is undecidable
We can identify a Turing machine 𝑋 and its program = its Gödel number 𝑛(𝑋).
Since 𝑛(𝑋) is a number, we can feed this into 𝑋. Let us collect all the Turing
machines 𝑋 such that 𝑋[𝑛(𝑋)] (the result of the computation) is computed (that
is, 𝑋 halts on input 𝑛(𝑋)) and make a set 𝐾 of such Turing machines:

𝐾 = {𝑋 |𝑋[𝑛(𝑋)] is well defined.}. (25.1)

If the halting problem is decidable, then, since 𝐾 is a collection of special Turing
machines, in particular, we must have an algorithm to judge whether a given Turing
machine 𝑋 is in 𝐾 or not. Thus, we can make a Turing machine 𝑌 that halts for
any input and gives the following output:

𝑌 [𝑛(𝑋)] =

{︂
𝑋[𝑛(𝑋)] + 1, if 𝑋 ∈ 𝐾,
0, otherwise .

(25.2)

Note that 𝑌 ∈ 𝐾, since it halts for any input.
This 𝑌 is defined for any input Gödel number, so, in particular, we may input

𝑛(𝑌). The outcome is
𝑌 [𝑛(𝑌)] = 𝑌 [𝑛(𝑌)] + 1, (25.3)

a contradiction; we cannot make such 𝑌 . There is no algorithm to decide the halting
problem.

25.6 Recursive set
A set whose characteristic function is a recursive function (23.13) is called a recur-
sive set.

What this means is: if a set is a recursive set, then we have an algorithm to tell
whether a given number is in the set or not. In this sense, we can tell the member
of the set without referring to how to generate the set.

In other words, a set is a recursive set, if and only if we can construct a Turing
machine (or a program for a universal Turing machine) such that it can print 1 if
the element313 is in the set and 0 otherwise with finite steps.

313Of course, this must be suitably encoded so that the machine can understand it.

25. LECTURE 25. COMPUTABLE ANALYSIS 301

25.7 Recursively enumerable set
A set 𝐴 which is a range of a recursive function 𝑓 is called a recursively enumerable
set. We say 𝑓 enumerates 𝐴.

Hence, if a set is a recursively enumerable set, we know how to produce the set
(there is a computer program which generates the set). We simply feed the elements
in N one by one to the recursive function, and collect its outcomes.314

25.8 Nondeterministic Turing machines
To produce a recursively enumerable set, we feed N one by one into a Turing ma-
chine. Instead, we could prepare infinitely many copies of the Turing machine and
feed N at once. This is an ideal parallel computation, and the infinite bank of the
Turing machine is called a nondeterministic Turing machine.

The output of a nondeterministic Turing machine is a recursively enumerable set.

The index of a recursively enumerable set is partially recursive 23.6, since we can
use its enumerating function (25.7) to make the required index function.

25.9 Existence of recursively enumerable non-recursive set
Theorem: There exists a recursively enumerable but not recursive (RENR) set.
This is important, so a demonstration is given here. You will realize the following is
very similar to the logic in 25.5.

Let 𝜑𝑥(𝑦) be the output (if any) of the Turing machine whose Gödel number is 𝑥
(remember that there are only countably many Turing machines), when its input is
𝑦. Here, both 𝑥 and 𝑦 are in N. Make a set

𝐾 ≡ {𝑥 : 𝜑𝑥(𝑥) is defined}. (25.4)

That is, 𝐾 is the set of all the numbers 𝑥 such that the corresponding Turing machine
halts with the input 𝑥. Certainly, this is a recursively enumerable set, because we
know how to perform each step needed to compute 𝜑𝑥(𝑥), although we do not know
whether it actually gives a number or not. Now define a function 𝑓 such that

𝑓(𝑥) ≡
{︂

𝜑𝑥(𝑥) + 1, if 𝜑𝑥(𝑥) is defined,
0, otherwise.

(25.5)

314In this case it is known that the enumeration can be done without repetition. See e.g., Zvonkin
and Levine, op. cit. Theorem 0.4.

302

That is,

𝑓(𝑥) ≡
{︂

𝜑𝑥(𝑥) + 𝜒𝐾(𝑥), if 𝜑𝑥(𝑥) is defined,
𝜒𝐾(𝑥), otherwise,

(25.6)

where 𝜒𝐾 is the characteristic function of 𝐾. If 𝐾 is recursive, then 𝜒𝐾 is recursive,
so there must be a Turing machine which reproduces 𝑓 . However, there cannot be
such a Turing machine; if any, there must be an 𝑥 such that 𝑓(𝑧) = 𝜑𝑥(𝑧) for any
𝑧 ∈ N, but obviously this is untrue for 𝑧 = 𝑥. Thus we cannot assume that 𝜒𝐾 is a
recursive function.

Remark.
(1) I believe most recursive sets are RENR sets, but I do not find any such statement.
(2) Notice that whether RENR or not the totality of recursively enumerable sets is
a countable set, since the number of Turing machines is countable. In contrast, the
totality of algorithmic random numbers is uncountable.

25.10 Condition for recursiveness
Theorem. A set 𝑄 is recursive if and only if both 𝑄 and 𝑄𝑐 are recursively enu-
merable (25.7).

[Demo] We assume 𝑄 and 𝑄𝑐 are non-empty.
(⇒) Let 𝜒 be the index function of 𝑄. Then there is a TM that compute 𝜒 (or 𝜒
is a recursive function 𝑓). Then 1 − 𝑓 is also recursive, which is the index of 𝑄𝑐, so
𝑄𝑐 is recursive. A recursive set is recursively enumerable,315 so 𝑄 and 𝑄𝑐 are both
recursively enumerable.
(⇐) Suppose 𝑓 enumerate 𝑄 and 𝑓 𝑐 enumerates 𝑄𝑐. Both are recursive functions.
Therefore, we can make the index function for 𝑄, since we know 𝑄 explicitly.

25.11 Computable rational sequence
We say a rational number sequence {𝑟𝑘} is a computable rational number sequence,
if for any 𝑘 ∈ N there are recursive functions (23.13) 𝑎, 𝑏 and 𝑠 (𝑏 ̸= 0) such that

𝑟𝑘 = (−1)𝑠(𝑘)
𝑎(𝑘)

𝑏(𝑘)
. (25.7)

315If 𝐴 is a recursive set, we have a Turing machine that accepts it; that is 𝑇 (𝑎) = 1 for any
𝑎 ∈ 𝐴 and 𝑇 (𝑏) = 0 for any 𝑏 ̸∈ 𝐴. Make a TM based on 𝑇 such that if 𝑇 (𝑎) = 1, spit 𝑎. For 𝑏 ̸∈ 𝐴,
we could leave this TM not to halt, or to print one known element in 𝐴.

25. LECTURE 25. COMPUTABLE ANALYSIS 303

25.12 Effective convergence
Let {𝑟𝑘} be a computable rational sequence. We say it converges effectively to 𝑥 ∈ R,
if there is a recursive function 𝑒(𝑁) such that

𝑘 ≥ 𝑒(𝑁) ⇒ |𝑟𝑘 − 𝑥| ≤ 2−𝑁 . (25.8)

That is, if {𝑟𝑘} converges to 𝑥 in the ordinary sense of this word and if there is an
algorithm to estimate error, we say {𝑟𝑘} converges effectively to 𝑥.

25.13 Computable real number
𝑥 is a computable real number, if there is a computable rational number sequence
effectively converging to 𝑥.

25.14 Remark: Effectiveness
We say we can do something effectively, if we have an algorithm. We say a concept is
effective, if we can define it with an algorithm (for example, whether it is correct or
not can be decided). An asymptotic object such as irrational numbers is said to be an
effective object when its construction and the distance (error) from the asymptotic
limit can be estimated effectively. Thus, ‘effectiveness’ is a precise formalization of
‘constructibility.’

25.15 How to destroy effectiveness
Let 𝐴 = {𝑎(𝑛)} be a RENR set 25.9 without repetition (i.e., 𝑎(𝑛) ̸= 𝑎(𝑚), if 𝑛 ̸= 𝑚).
We can compute each 𝑎(𝑛), but we cannot effectively tell whether, say, 10 appears
in 𝐴 or not. Hence, if we can construct a procedure whose error estimate is bounded
by 2−𝑎(𝑚), then effective estimation is destroyed.

25.16 Waiting lemma
Let 𝐴 = {𝑎(𝑛)} be a RENR set (25.9) without repetition (i.e., 𝑎(𝑛) ̸= 𝑎(𝑚) if
𝑛 ̸= 𝑚). Let

𝑤(𝑛) ≡ max{𝑚 | 𝑎(𝑚) ≤ 𝑛}. (25.9)

304

Then, there is no recursive function (23.13) 𝑐(𝑛) such that

𝑤(𝑛) ≤ 𝑐(𝑛). (25.10)

That is, there is no algorithm to estimate the needed 𝑚 so that {1, · · · , 𝑛} ⊂
{𝑎(1), · · · , 𝑎(𝑚)}.

[Demo]
If 𝑐(𝑛) were recursive, then we could tell whether 𝑛 ∈ 𝐴 or not with a finite number
of steps. First, compute 𝑐(𝑛) = 𝑚, then check all 𝑎(𝑚′) for 𝑚′ up to 𝑚. If we could
find 𝑛 among the output, certainly 𝑛 ∈ 𝐴; if we could not, then 𝑛 ̸= 𝐴. Hence, 𝐴
would be a recursive set, a contradiction.

25.17 Existence of converging noneffectively converging series
Theorem. There is a bounded monotone increasing series consisting of computable
rational numbers that does not converge effectively (that is, although its convergence
is guaranteed in the ordinary mathematics, we have no means to compute its value
for sure).
[Demo]
Take 𝐴 in the above and construct

𝑆 =
∞∑︁
𝑛=0

2−𝑎(𝑛). (25.11)

This is a desired example of the series claimed in the theorem, because 𝐴 is not
repetitive; it is bounded from above and the partial sums are monotone increasing.
Since, for example, we do not know whether 2 is in 𝐴 or not effectively, we cannot
estimate 𝑆 (which must be less than 2) better than the error of 1/4.

𝑆 is not computable according to the expansion (25.11). There must be many
other series converging to the same 𝑆, so you might think the non-computability
of 𝑆 may ‘series expression’-dependent. This is not the case at least if there is a
monotone converging noncomputable series.316

25.18 Computable function
We say a function from R into itself is computable, if its values at computable reals

316Pour-El & Richards p20.

25. LECTURE 25. COMPUTABLE ANALYSIS 305

are computable reals. Pour-El and Richards impose further the following effective
uniform continuity. There is a recursive function 𝑑 such that for any 𝑛 ∈ 𝑁

|𝑥− 𝑦| ≤ 1/𝑑(𝑛) ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 2−𝑛. (25.12)

25.19 ‘Ordinary functions’ are computable
sin, cos, exp, 𝐽𝑛, etc., are computable. Behind this statement lies the following
‘effective Weierstrass’ theorem.’

If we can find a recursive function 𝐷(𝑛) such that

𝑝𝑛(𝑥) =

𝐷(𝑛)∑︁
𝑖=0

𝑟𝑛𝑗𝑥
𝑗, (25.13)

where 𝑟𝑛𝑗 are computable rationals, we say {𝑝𝑛} is a computable sequence of rational
polynomials.

Effective Weierstrass. If we can find a recursive function 𝑒(𝑛) such that

𝑚 ≥ 𝑒(𝑁) ⇒ |𝑓(𝑥) − 𝑝𝑛(𝑥)| < 2−𝑁 , (25.14)

then 𝑓 is a computable function.317

25.20 Computable operations on functions
Composition 𝑓 ∘ 𝑔, sum 𝑓 ± 𝑔, multiplication 𝑓𝑔, and many other elementary op-
erations preserve computability. Integration also preserves computability. Hence, it
is not hard to guess that the derivatives of computable analytic functions are again
computable. However,

25.21 Myhill’s theorem
Theorem [Myhill]. Even if 𝑓 is a computable 𝐶1 function, 𝑓 ′ may not be com-
putable.

[Demo]

317See Pour-El and Richards, Chapter 0, Section 5 and 7.

306

The following is the counterexample. Let

𝜙(𝑥) =

{︂
exp(−𝑥2/(1 − 𝑥2)) for |𝑥| < 1,

0 otherwise,
(25.15)

which is a 𝐶∞ function. Let 𝐴 = {𝑎(𝑛)} be the RENR set mentioned before. Define

𝜙𝑛(𝑥) = 𝜙[2𝑛+𝑎(𝑛)+2(𝑥− 2−𝑎(𝑛))]. (25.16)

Construct

𝑓(𝑥) =
∞∑︁
𝑘=0

4−𝑎(𝑘)𝜙𝑘(𝑥). (25.17)

This is computable, but
𝑓 ′(2−𝑚) = 4−𝑚𝜒𝐴(𝑚), (25.18)

where 𝜒𝐴 is the characteristic function of 𝐴, which cannot be computed.

25.22 PDE and computability
(1) Laplace and diffusion equations preserve the computability of the auxiliary con-
ditions.
(2) In 𝑑(≥ 2)-space, the wave equation cannot preserve computability. More explic-
itly, even if the initial data is computable, the solution at time, say, 𝑡 = 1 is not
computable. It is not hard to understand this, if we notice that the Radon trans-
formation formula (𝑑 ≥ 2) involves differentiation. See 32D.9-10 (For the Radon
transformation see 32D.2) of
https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf.

25.23 Real physics implications?
There are uncountably many algorithmically random numbers, but the recursive and
recursively enumerable sets are both only countably many, because all the number
of Turing machines or Turing programs (“Gödel numbers”) is countable.

There is no way to construct a non-computable functions nor RENR sets. How-
ever, it is expected that most recursively enumerable sets are not recursive. There-
fore, if we ‘sample’ a series ‘randomly’, we will hit unpleasant examples easily. [TBC].

https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf

	Lecture 25. Computable analysis

