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24 Lecture 24. Characterization of chaos

24.1 Basic motivation
Chaos is characterized by ‘complicate’ or ‘apparently random’ trajectories. We have
refined the concept of randomness in the preceding section. ‘Algorithmic randomness’
is the refined concept, but, as noted there, there is no general way (no algorithm)
to judge whether a given sample sequence or an object (coded appropriately as a
number sequence) is random or not. However, collectively we can determine whether
a set consists of mostly random numbers or not. We know almost all the binary
expansions of the numbers in [0, 1] are algorithmically random (because there are
only countably many non-random numbers). Therefore, the basic idea to connect
chaos and randomness is to check whether there is a bunch of trajectories that are
‘almost surely’ random or not. Thus, we wish to claim that a dynamical system
which has an invariant set on which most trajectories are algorithmically random
(after appropriate discretization = coding).

24.2 Can we be quantitative?
The claim “a dynamical system which has an invariant set on which most trajectories
are algorithmically random” is actually already built in into my definition of chaos
22.10 through the coin-tossing process, because most numbers in [0, 1] is algorith-
mically random.

We must recall that the definition of algorithmic random numbers is in terms
of complexity 𝐾. We wish to define a corresponding number within the theory of
dynamical systems and compare it with 𝐾 (23.23). Since 𝐾 measures how much
information we need to specify a symbol in the coding sequence, it is a very natural
idea that it must be compared with the Kolmogorov-Sinai entropy, which was in-
tuitively introduced as the information loss rate (or required information to predict
the future; 17.18). The KS entropy ℎ will be discussed in detail later mathemati-
cally (-31.9), but here let us use its intuitive meaning, and actually show 𝐾 = ℎ,
completing our characterization of chaos even quantitatively.

About coding: We have extensively used symbolic dynamics (or shift dynamics) isomorphic

or homomorphic to the original dynamical system to analyze it. Some people bitterly crit-

icize this strategy, saying that this approach does not respect how ‘random sequences’ are

actually produced. We could produce the same ‘01 sequence’ from a black box containing

a person with a coin. Therefore, if one observes only the coded results, one can never infer

the content of the black box (even if it is driven by a tent map). Hence, characterizing the
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dynamical system in terms of the coded result is impossible. A fortiori characterizing chaos

with the randomness of the trajectories is flawed. How do you respond?305

24.3 Randomness of a trajectory
Let ℬ = {𝐵1, · · · , 𝐵𝑘} be a generator (= the best coding scheme; see 31.10) for
a map 𝑇 defined on 𝑀 with an invariant measure (= stationary distribution) 𝜇
(denoted as (𝑇, 𝜇,𝑀) in standard books). We can code a trajectory starting from
𝑥 at time 0 as 𝜔 in terms of 𝑘 symbols with the rule 𝜔𝑛 = 𝑎 if the trajectory goes
through 𝐵𝑎 at time 𝑛 (𝑇 𝑛𝑥 ∈ 𝐵𝑎). Define the randomness of the trajectory starting
from 𝑥 as

𝐾(𝑥, 𝑇 ) ≡ lim sup
𝑛→∞

1

𝑛
ℓ(𝜔[𝑛]), (24.1)

where 𝜔[𝑛] is, as before, the first 𝑛 symbols of 𝜔, and ℓ(𝑧) is the code length of the
minimal program for 𝑧 in terms of 𝑘 symbols as defined in the preceding lecture
(there, 𝑘 was 2).

24.4 Brudno’s theorem306

Brudno’s theorem adapted to the current situation: coding of (𝑇, 𝜇,𝑀) with 𝑘 sym-
bols reads:

For 𝜇-almost all 𝑥 ∈ 𝑀

𝐾(𝑥, 𝑇 ) = ℎ𝜇(𝑇 )/ log 𝑘.

Here, ℎ𝜇 is the Kolmogorov-Sinai entropy of (𝑇, 𝜇,𝑀) defined (as usual) in
terms of the natural logarithm, but it is divided by log 𝑘, so the right-hand side
gives the entropy defined in terms of the base 𝑘 logarithm.

305Since this is a good discussion topic, no comment should be added, but note that we do
not simply treat dynamical systems as black boxes. The correspondence between a shift and a
dynamical system must be at least homomorphic. There cannot be any deterministic dynamical
system homomorphic to the package of a person + a coin.

306A. A. Brudno, THE COMPLEXITY OF THE TRAJECTORIES OF A DYNAMICAL SYS-
TEM, Russ. Math. Surveys 33 197 (1978); Entropy and the complexity of the trajectories of a
dynamical system. Trans. Moscow Math. Soc., 2 127 (1983). See also H. S. White, Algorithmic
complexity of points in dynamical systems, Ergod. Th. & Dynam. Sys., 13 807 (1993).

The following exposition is taken from TNW Chapter 2, but probably more readable (reader-
friendly).
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What is claimed is, qualitatively, the equality between the amount of the extra
information required for prediction of the state time 𝑡 in the future and the amount
of information to describe the trajectory for the time span 𝑡. It is quite a natural
assertion. To predict a chaotic trajectory for a long time, we need a tremendous
amount of information initially. Since such an amount of information is needed to
single out a trajectory, the coding sequence needed to describe the trajectory cannot
be simple and information compression is out of question. Thus, Brudno’s theorem
confirms the goodness of our definition of chaos.

24.5 Brudno’s theorem for symbolic dynamics
The information needed to describe a trajectory may be considered in terms of the
symbol sequence after coding. Therefore, the core of Theorem in 24.4 is the following
fact about the shift dynamical system (isomorphic to the dynamical system under
consideration):

Theorem. Let (𝜎,Ω) be a certain shift dynamical system with 𝑘 symbols, and 𝜇 its
ergodic invariant measure. Then, for 𝜇-almost all 𝜔 ∈ Ω

𝐾(𝜔) = ℎ𝜇(𝜎)/ log 𝑘,

where ℎ𝜇(𝜎) is the Kolmogorov-Sinai entropy of the measure theoretical dynamical
system (𝜎, 𝜇,Ω), and 𝐾(𝜔) is the randomness defined in (23.4) (as in 24.4, it is
defined for 𝑘-symbol sequences instead of binary sequences and ℎ uses natural log;
that is why log 𝑘 appears).

The above theorem is proved by showing the following two statements:
(i) 𝜔 satisfying 𝐾(𝜔) < ℎ𝜇(𝜎)/ log 𝑘 is 𝜇-measure zero.
(ii) 𝜇-almost surely (= for 𝜇-almost all 𝜔) 𝐾(𝜔) ≤ ℎ𝜇(𝜎)/ log 𝑘.

24.6 Demonstration of (i)
The number of 𝜔[𝑛] satisfying

𝐾(𝜔) ∼ ℓ(𝜔[𝑛])/𝑛 ≤ 𝑠 (24.2)

is no more than 𝑘𝑛𝑠 (in our context 𝜔 is the 𝑘-symbol sequence). On the other
hand, according to the Shannon-McMillan-Breiman theorem 31.13, the measure of
the cylinder set specified by 𝜔[𝑛] is estimated as 𝑒−𝑛ℎ𝜇(𝜎). Therefore, the measure of
all 𝜔 satisfying (24.3)

𝐾(𝜔) < ℎ𝜇(𝜎)/ log 𝑘 (24.3)
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is bounded by 𝑒𝑛(𝑠 log 𝑘−ℎ𝜇(𝜎)). This exponent is negative (𝑠 log 𝑘 < ℎ𝜇(𝜎); do not
forget that ℎ𝜇 is defined with the natural logarithm), so the upper bound converges
to zero in the large 𝑛 limit. Therefore the possibility of (24.3) is almost surely ignored.

24.7 Demonstration of (ii)
Next, we wish to show that 𝜇-almost surely (= for 𝜇-almost all 𝜔)

𝐾(𝜔) ≤ ℎ𝜇(𝜎)/ log 𝑘. (24.4)

If this is demonstrated, then, since we just showed that the cases with 𝐾(𝜔) <
ℎ𝜇(𝜎)/ log 𝑘 may be ignored almost surely, only the equality remains.

Since we have only to estimate the upper limit of 𝐾(𝜔), let us estimate the
upper limit of ℓ(𝜔[𝑛]). 𝜔[𝑛] is decomposed as follows in terms of 𝑞 length-𝑚-symbol-
sequences 𝜔𝑚

𝑖 (𝑖 = 1, · · · ,𝑀 , where 𝑀 is the total number of distinct length-𝑚-
symbol-sequences; 𝑛 = 𝑚𝑞 + 𝑟, i.e., 𝑞 = [𝑛/𝑚] and 𝑟 is the residue):

𝜔[𝑛] = 𝜔𝑟
0𝜔

𝑚
𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 . (24.5)

Here, 𝜔𝑚
𝑖 is the 𝑖th kind of length-𝑚-symbol-sequence, which is assumed to appear 𝑠𝑖

times. With this representation, 𝜔[𝑛] can be uniquely specified by 𝑟, 𝑚, 𝑠1, · · · , 𝑠𝑀 ,
𝜔𝑟
0 and the arrangement of 𝑞 length-𝑚-symbol sequences 𝜔𝑚

𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 . Therefore, the

needed information to specify 𝜔[𝑛] is given by (or, the length of the shortest required
program with 𝑘 symbols, or the information measured with the base 𝑘 logarithm is
given by)

ℓ(𝜔[𝑛]) ≤ ℓ(𝑟) + 𝑅 + ℓ(𝑚) + ℓ(𝑞) +
𝑀∑︁
𝑗=1

ℓ(𝑠𝑗) + 𝐻(𝜔𝑚
𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 ), (24.6)

where 𝐻(𝜔𝑚
𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 ) is the information needed to specify the arrangement (order-

ing) of 𝑞 length-𝑚-symbol sequences 𝜔𝑚
𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 and 𝑅 is the information required
to specify 𝜔𝑟

0, which is bounded by a constant independent of 𝑛. That is, except for
the last term, all the terms are 𝑜[𝑛] and unrelated to the randomness. Hence,

𝐾(𝜔) ≤ lim sup
𝑛→∞

𝐻(𝜔𝑚
𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 )/𝑛. (24.7)

𝐻(𝜔𝑚
𝑖1
𝜔𝑚
𝑖2
· · ·𝜔𝑚

𝑖𝑞 ) is bounded by the information (in terms of base 𝑘 logarithm)
carried by the possible sequences under the assumption that all such sequences ap-
pear with equal probability. Therefore, it cannot exceed the logarithm (base 𝑘) of the
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number of sequences that can appear as 𝜔[𝑛]. That is, 𝐾(𝜔) ≤ lim𝑛→∞[log𝑘 𝑁(𝑛)]/𝑛.
[Beyond this point you need rudiments of KS entropy: Lecture 31] 𝑁(𝑛) is equal to
the number of non-empty elements ∨𝑛

𝑘=0𝜎
−𝑘ℬ for a generator ℬ. According to the

Shannon-McMillan-Breiman theorem, for the cylinder sets contributing to entropy
𝜇(𝜔[𝑛])/𝑒−𝑛ℎ𝜇(𝜎) must not vanish in the 𝑛 → ∞ limit. Therefore, the number of
cylinder sets we must count must be, since the sampling probability of each cylinder
set is 𝑒−𝑛ℎ𝜇(𝜎), the order of its inverse: 𝑁(𝑛) ∼ 𝑒𝑛ℎ𝜇(𝜎). Thus, we can understand
(24.4).

As can be seen from the explanation here, Brudno’s theorem is based on very
crude estimates, so it is a natural theorem. Such a theorem should have been discov-
ered by theoretical physicists without any help of mathematicians. Most physicists
in the US did not know this theorem well into the 1990s.

24.8 What is chaos, after all?
Out conclusion is that chaos is a deterministic dynamical system whose trajectories
are algorithmically random. Actually, equivalently, we can say that a dynamical
system with a positive KS entropy invariant measure is a chaotic dynamical system.

Is this a satisfactory outcome? That a trajectory is random is, with the quantifi-
cation in terms of the Kolmogorov-Sinai entropy, invariant under the isomorphism
of the dynamical systems. Isomorphism is a crude correspondence ignoring even the
topology of the phase space, so the characterization we have pursued has nothing at
all to do with how the correlation function decays or what the shape of the attractor
is. Even the observability of chaos by computer experiments is not invariant under
isomorphism.

Perhaps we should conclude that chaos is very common random phenomenon
exhibited by deterministic dynamical systems and is far more basic than the expo-
nential decay of the correlation function, or the invariant sets being fractal.

24.9 Does chaos exist in Nature?
Since we started this chapter with a simple realizable example, the question whether
there is actually chaos may sound strange. However, it is difficult to tell whether
the actual apparently chaotic phenomenon is really chaos or not due to the existing
noise.307 For example, it is easy to make an example that apparently exhibits ob-
servable chaos, even though there is no observable chaos without noise. It is difficult

307Here, ‘noise’ need not mean the effect of the unknown scale, but any unwanted external dis-
turbance as usual.
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to answer affirmatively the question whether there is really chaos without external
noise in a system for which the existence of chaos is experimentally confirmed (this is
in principle impossible308). Therefore, whether the concept of chaos is meaningful in
natural science or not depends on whether it is useful as an ideal concept to under-
stand the real world just as points and lines in elementary geometry. The relevance
of chaos to the instabilities in some engineering systems or instabilities in numerical
computation shows that it is a useful ideal concept.

For actual systems, what is important is its response to small perturbations. For
a deterministic chaos, its practically important aspect is almost exhausted by the ex-
ponential separation of nearby trajectories. Whether the system is deterministic or
not is unimportant. What is practically important is that the phase space is bounded
and the trajectory itinerates irregularly various ‘key’ points in the phase space that
are crucial to the system behavior. However, in order to model a system that easily
exhibits such trajectories with small external perturbations, use of a chaotic system
is at least metaphorically effective.309

308For example, for a one dimensional map, indefinitely small modification of the map can change
it to have a stable fixed point. Such a system behaves just as before the modification, if a small
noise is added. M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, “Chaos or noise:
difficulties of a distinction,” Phys. Rev. E 62, 427 (2000) recommend a more practical attitude
toward chaos.

309See for chaotic itinerancy view of brain by I. Tsuda, “Hypotheses on the functional roles of
chaotic transitory dynamics,” Chaos 19, 015113 (2009).
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