
260

23 Lecture 23. Randomness

23.1 Summary so far
Chaos, according to my definition, is characterized (defined) by its ‘close relation’ to
randomness. This is not so illogical or unnatural, if we recall the relation between a
Bernoulli system 𝐵(1/2, 1/2) (one-sided) and the coin-tossing process. Indeed, this
was the motivation for my characterization of chaos.

How ‘good’ is this characterization? Consistency with intuition, close connection
to fundamental concepts, equivalence to definitions based on very different points of
view, etc., may be signs of goodness. As long as we assume that “(apparent) ran-
dom behavior is fundamentally important characteristic of chaos,” consistency with
intuition is captured. Randomness must be a fundamental concept, so the charac-
terization has a close connection with a fundamental concept.245

What is then ‘randomness’?

23.2 Random number table that is not so random
To have some ‘feeling’ about ‘randomness’, let us look at the random number table.

What is a random number table? Intuitively, it is a table on which numbers are
arranged without any regularity. Whether there is regularity or not is checked ac-
tually by various statistical tests, so a random number table is a table tabulating a
number sequence that is recognized to have no regularity, passing all the statistical
tests.246

As an example, take the well-known Kitagawa random number table.247 The
Kitagawa table was constructed as follows:248

(i) On each page of the random number table of R. A. Fisher and F. Yates, Statistical
Tables for Biological, Agricultural and Medical Research (Oliver and Boyd, 1938),249

245It is also important to check the consistency and relations with other definitions of chaos to
confirm the naturalness of the definition. The comparison is already summarized in 22.13.

246For example, see A. L. Rukhin, “Testing randomness: a suite of statistical procedures,”
Theory Probab. Appl., 45, 111 (2001). The author’s math mentor Professor H. Watanabe once
said,“Random number is like God. Its existence might be admissible, but, if you are shown ‘this is
Him,’ it is quite doubtful.”

247See T. Kitagawa, Statistical Inference (Suisoku-Tokei Gaku) (Iwanami, 1958).
248in O. Miyataka and T. Nakayama, Monte Carlo Method (Nikkan-Kogyo, 1960)
249The Fisher-Yates table was constructed as follows: from the 20 digit logarithm table (of A.

J. Thompson, Logarithmetica Britannica: Logarithms to 20 Decimal Places 10,000-100,000 (This
work of Dr. Thompson’s is an attempt to commemorate in a worthy manner the first great table
of common logarithms, which was computed by Henry Briggs and published in London in 1624.

yoshioono
Highlight



23. LECTURE 23. RANDOMNESS 261

two consecutive numbers are paired, and
(ii) The resultant 25 × 50 pairs were scrambled.
(iii) Then, the columns on different pages of the resultant scrambled table were ex-
changed.
(iv) Then, the following statistical tests were performed to each page, and the best
4 pages were kept:

(1) Frequency test: using the 𝜒2-test, to check whether all the digits appear equally
frequently,

(2) ‘Pair’ test: the table is considered as the table of two consecutive number
pairs, and the frequencies of the pairs were tested just as in (1).

(3) Poker test: the frequencies of the various patterns of the consecutive, e.g., 5
digit blocks (say, abcde, abacd, aabac, etc.) were tested.

(4) Gap test: Reading the table column-wisely, the spacing between consecutive
identical digits were tested.

Is the Kitagawa table random? As illustrated in Fig. 23.1 it fails a simple test:
numbers tend to change oscillatingly:

a

a
n
+

n

1

0 100

Figure 23.1: Shown on the Left is the first 5 rows of the Kitagawa table converted into a sequence
of two digit number sequence 𝑎1, 𝑎2, · · ·, and then 𝑎𝑛+1 is plotted against 𝑎𝑛. The square is divided
into 100 square boxes of 10 × 10, and the numbers found in each square is counted as shown in the
Right. If the sequence is random, the points must be distributed uniformly on the square, so in the
right figure, we expect 79 points inside the square and 45 on the periphery. Actually, there are 65
inside and 59 outside, failing the uniformity test with the P value less than 0.5 %. In short, {𝑎𝑛}
HAS a tendency to change in an oscillatory fashion.

Incidentally, it is said that, when a person is asked to write down as random a

It brings together the series of nine separate parts, issued between 1924 and 1952 from University
College, London, in Karl Pearson’s Tracts for Computers series; reprinted from Cambridge Uni-
versity Press, 2008), 15,000 digits were selected randomly, and then they were randomly arranged.
However, the digit 6 appeared slightly more frequently than others, so 50 of them were randomly
selected and replaced with other digits randomly.

yoshioono
Highlight

yoshioono
Highlight



262

number sequence as possible, the randomness of the produced number sequence and
the intelligence of its writer are positively correlated.

The best random number is supposedly the natural random number that can be
made by counting the number of, e.g., 𝛽-decay. Thus, we might say that without
quantum phenomena there is no truly random numbers.

23.3 Featurelessness = randomness?
Statistical tests check the non-existence of particular patterns in the number se-
quence. The Kitagawa table was disqualified, because it has a significant (or de-
tectable) pattern. Therefore, it seems to be a good idea to declare that the sequence
without any feature (lawlessness) is a random number sequence. However, within
our usual logical system that admits the exclusion of middle (i.e., there are only two
possibilities 𝐴 or non-𝐴), ‘that there is no feature’ becomes a respectable feature;250

we fall into an impasse that the random number sequence is a sequence with a char-
acteristic that it has no characteristics.

von Mises (1883-1953) wanted to systematize probability theory based on ran-
domness, but it was difficult because formalizing featurelessness or lawlessness was
difficult. However, if we could positively characterize the feature that there is no
feature, in other words, if we can define ‘being without features’ by an explicitly
specifiable property, then ‘there is no characteristic feature’ is no more the negation
of ‘there are characteristic features.’ Still, the characteristics such as ‘lawlessness’ or
‘featurelessness” are ambiguous, allowing various interpretations.

23.4 Featurelessness = incompressibility?
Suppose we can find a feature (regularity) in a number sequence, we could save the
phone charge by exploiting the regularity when we wish to send it to the second
person. For example, if we wish to send 10101010· · ·10101010 that has one million
10’s, it is far better to send the message, “repeat 10 1,000,000 times,” than to send
the raw sequence itself. The number of digits required to describe a number 𝑁 is
asymptotically proportional to log𝑁 , so such a regular sequence may be sent with
the cost proportional to the logarithm of the original message length.251 This is, of
course, far more money-saving than the raw message.

250Of course, we must understand what ‘features’ mean.
251A student suggested that to send the number log𝑁 , we could take its logarithm to compress

it further and save money. Is it a good idea, or what is wrong?



23. LECTURE 23. RANDOMNESS 263

Let us consider another example:

0273900749 7297363549 6453328886 9844061196 4961627734 4951827369 5588220757 3551766515

8985519098 6665393549 4810688732 0685990754 0792342402 3009259007 0173196036 2254756478

9406475483 4664776041 1463233905 6513433068 4495397907 0903023460 4614709616 9688688501

4083470405 4607429586 9913829668 2468185710 3188790652 8703665083 2431974404 7718556789

3482308943 1068287027 2280973624 8093996270 6074726455 3992539944 2808113736 9433887294

0630792615 9599546262 4629707062 5948455690 3471197299 6409089418 0595343932 5123623550

This sequence may look random, but it is the 480 digits starting from the 10,501st
digit of 𝜋. If we wish to send this sequence, we can send a message, “the 480 digits
starting from the 10,501st digit of 𝜋,” and it is already shorter than the original
message.252 In this case as well, the message we must send is asymptotically propor-
tional to the length of the part specifying the length of the sequence (the underlined
part).

If we can compress the message, it is obviously non-random. Therefore, can we
characterize the randomness of a message by the fact that it cannot be compressed
(made shorter for communication) however we may try?

23.5 Algorithmic randomness
To compress a given sequence of symbols we must use its regularity and meaning,
so whether we can recognize them or not is the key issue of the randomness of the
sequence.253 However, by whom should the regularities be recognized?

The basic idea of the algorithmic randomness due to Solomonov (1926-), Kol-
mogorov and Chaitin (1947-) is that this recognition should be done by the most
powerful computer. Then, basic questions arise such as ‘What is the most powerful
computer?” and, in the first place, “What is a computer?”

A computer is a machine to perform computation. For this statement to make
sense, we must know what ‘computation’ is.254 Computation is to process a num-
ber into another number. The process of computation is not haphazard, but is
understood to obey strictly certain rules. Therefore, we may say intuitively that

252However, the receiver of the message must perform a considerable procedure to obtain the
message actually. Compressed information is often costly to expand. An interesting topic related
to this is D. Bailey, P. Borwein and S. Plouffe, “On the rapid computation of various polylogarith-
mic constants,” Math. Computat. 66, 903 (1997) (http://www.cecm.sfu.ca/ pborwein/) and V.
Adamchik and S. Wagon, “𝜋: a 2000-year search changes direction,” Mathematica in Education
and Research, 5(1) 11 (1996), D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe, “The
quest for Pi,” Math. Intelligencer 19(1) 50 (1997).

253However, we do not discuss the vague concept called ‘meaning.’
254What is a ‘machine’?



264

computation is to transform one finite number sequence into another, using finitely
many definite procedures.

23.6 Church’s characterization of computation in plain terms
If we use the expression everyone understands by now, Church(1903-1995)’s pro-
posal is essentially as follows. A function whose program can be accepted by a
digital computer is a “partial recursive function,’ and if the computation specified
by the program is guaranteed to be completed within a finite time, the function is a
‘recursive function’ = computable function. Computation is a process to obtain the
value of a computable function.

23.7 Number-theoretical functions
We consider only computation of a number with finitely many digits without any
roundoff errors. Consequently, we can understand computation as a map: N𝑘 → N
(𝑘 ∈ N+). Such a map is called a number-theoretic function or arithmetic function.
We consider only the computation of number-theoretic functions.

23.8 Church’s basic idea
First, take a few functions that everyone intuitively accepts to be obviously com-
putable as the starting point (see 23.10). The totality of computable functions is
constructed from these starting functions with a finite number of applications of the
procedures that everyone agrees to be executable (see 23.11).

To obtain values of the computable functions is called computation.
Thus, we need a characterization of ‘computable functions.’255

23.9 Partial and total functions
In the theory of computation in contrast to the ordinary analysis, when we speak of a
function, it need not be a map but can be a partial function. That is, 𝑓(𝑥1, · · · , 𝑥𝑛),
where 𝑥1, · · · , 𝑥𝑛 are nonnegative integers (i.e., 𝑥𝑖 ∈ N), need not be meaningful (need
not be defined) for all the 𝑛-tuples {𝑥1, · · · , 𝑥𝑛} of nonnegative integers (that is, the

255A classic introduction to the topic is M. Davis, Computability and Unsolvability (Dover, 1982).
Newer textbooks include D. S. Bridges, Computability, a mathematical sketchbook (Springer, Grad-
uate Texts in Mathematics 146, 1994), for example.



23. LECTURE 23. RANDOMNESS 265

domain is not specified beforehand). For those tuples for which 𝑓 is not defined, 𝑓 is
not evaluated. If 𝑓 is defined on the totality of {𝑥1, · · · , 𝑥𝑛} ∈ N𝑛, it is called a total
function.

23.10 Obviously computable functions
As the functions to start with, which everyone must agree to be computable, the
following three functions 𝑆, 𝑃 and 𝐶 are adopted:
(A) 𝑆(𝑥) = 𝑥 + 1,
(B) 𝑃 𝑛

𝑖 (𝑥1, · · · , 𝑥𝑛) = 𝑥𝑖,
(C) 𝐶𝑛

𝑚(𝑥1, · · · , 𝑥𝑛) = 𝑚.
𝑆 is a function to give the successor of 𝑥 in N. 𝑃 𝑛

𝑖 is a ‘projection operator’ to read
the 𝑖-th variable out of 𝑛 variables. 𝐶𝑛

𝑚 is a constant function assigning a constant
𝑚 to all the 𝑛-tuples {𝑥1, · · · , 𝑥𝑛}.

23.11 Basic operations
As unambiguous ‘procedures’ (basic operations) that everyone should agree to be
applicable to any function let us accept the following I−III:
I Composition: From functions 𝑔1, · · · , 𝑔𝑚 and ℎ we can make another function

𝑓(𝑥1, · · · , 𝑥𝑛) = ℎ(𝑔1(𝑥1, · · · , 𝑥𝑛), · · · , 𝑔𝑚(𝑥1, · · · , 𝑥𝑛)), (23.1)

where ℎ is an 𝑚-variable function and 𝑔𝑖 (𝑖 = 1, · · · ,𝑚) are 𝑛-variable functions.
II (Primitive) recursion: Starting with 𝑓(𝑥1, · · · , 𝑥𝑛, 0) = 𝑔(𝑥1, · · · , 𝑥𝑛), we can con-
struct 𝑓(𝑥1, · · · , 𝑥𝑛,𝑚) recursively as follows:

𝑓(𝑥1, · · · , 𝑥𝑛,𝑚) = ℎ(𝑥1, · · · , 𝑥𝑛,𝑚− 1, 𝑓(𝑥1, · · · , 𝑥𝑛,𝑚− 1)), (23.2)

where 𝑔 and ℎ are, respectively, 𝑛 and 𝑛 + 2 variable functions.
III Minimalization (or minimization) or unbounded search: Let 𝑓(𝑥1, · · · , 𝑥𝑛) be a
total function. For each {𝑥1, · · · , 𝑥𝑛−1} we can determine the smallest 𝑥𝑛 satisfying
𝑓(𝑥1, · · · , 𝑥𝑛) = 0.256

23.12 Partial recursive function
A function that can be constructed from the basic functions (A)−(C) with a finite

256Here, it is crucial that 𝑓 is a total function. Each step of the algorithm must be guaranteed
to end within a finite number of steps, so 𝑓 must be total.



266

number of applications of the basic procedures I−III is called a partial recursive
function.

There is no problem with I being a computable procedure. II is the same. Per-
haps it may be tedious, but applying finitely many steps patiently step by step can
complete the procedure.257.

However, Procedure III (minimalization) is tricky. Since 𝑓 is a total function, for
any {𝑥1, · · · , 𝑥𝑛−1} we can certainly evaluate 𝑓(𝑥1, · · · , 𝑥𝑛−1,𝑚) for any 𝑚 with a
finitely many steps. Therefore, fixing {𝑥1, · · · , 𝑥𝑛−1}, and putting 𝑚 starting with 0
in the ascending order into 𝑓 one by one, we can check whether 𝑓(𝑥1, · · · , 𝑥𝑛−1,𝑚)
is zero or not. If 𝑓 becomes zero for the first time with 𝑚 = 𝑞, then we de-
fine ℎ(𝑥1, · · · , 𝑥𝑛−1) = 𝑞. However, the existence of such a non-negative integer
𝑞 is not known beforehand (in other words, we do not know beforehand whether
ℎ(𝑥1, · · · , 𝑥𝑛−1) is a total function or not). Therefore, we cannot know beforehand
whether the minimalization process even ends or not. Indeed, there is a way to check
whether a given 𝑚 is an answer or not however large it may be, but no one knows
the upper bound of 𝑚 such that if there is no answer up to the value there is really
no answer.

Thus, a partial recursive function is a number-theoretical function which con-
struction procedure can be described unambiguously (i.e., its algorithm is given).
However, whether it can be actually computed (constructed) cannot be known be-
forehand (due to minimalization).258

Suppose we begin evaluating a partial recursive function for variable 𝑥. If we have
not obtained the value after some computation, this may imply that the function
is not defined for this 𝑥 (because the minimalization step does not have a solution)
or it is defined but we must be much more patient. We hesitate to declare such a
function computable.

23.13 Recursive functions
The functions we can really compute must be such that not only its each computa-
tional step is explicitly and unambiguously specifiable, but also the whole compu-
tation is guaranteed to be completed with a finite number of steps. Such functions
are called recursive functions. That is, total partial recursive functions are called

257Functions that can be constructed only with the aid of these two procedures are called primitive
recursive functions.

258Informally (but actually in a not very inaccurate way), a function whose procedure to compute
can be programmed on the usual digital computer is a partial recursive function. There is no
guarantee that the program actually completes the computation and produces its value for all the
inputs.



23. LECTURE 23. RANDOMNESS 267

recursive functions. A recursive function is a function with an algorithm that is
guaranteed to be completed with a finite number of steps for any (admissible) in-
puts.259

Note that there are only countably many recursive functions. All the recursive
functions can be numbered as 𝑓1, 𝑓2. · · ·.

23.14 Computation, the Church thesis
Church defined ‘computation’ as a procedure to evaluate a recursive function.

That is, Church identifies the set of computable functions and the set of recursive
functions. This proposal is called the Church thesis.260 Impeccably unambiguous
computation is possible only when the computational procedures are given purely
syntactically (that is, given just as symbol sequences that do not require any inter-
pretation). This is a sort of ultimate reductionism.

The crucial points of this proposal are that the algorithm is explicitly given and
that the whole process is completed with a finite number of steps.

23.15 Church’s proposal was not easily accepted
When Church’s thesis was proposed, it was not immediately and generally accepted
that being a recursive function is a convincing characterization of any computable
function. The reason was that there was no clear feel for constructive procedures
that may be explicitly written down; aren’t there not recursive (that is, not I-III
above) completely new types of algorithms with which different class of functions
may become computable? Isn’t the above proposal under the restriction of the era
(i.e., the level of mathematics of the day)? Furthermore, since such an intuitively
appealing concept as continuity requires, to be defined clearly, the axioms of the
topological space, it is possible that apparently intuitively obvious basic procedures

259Continuing the above informal expression, we can say that a recursive function is a function
which can be programmed on the usual digital computer, and the program produces a number
(with sufficient but finite computational time and memory) for any (admissible) input.

260The definition here is consistent with M. Davis, Computability and Unsolvability (Dover, 1982).
However, names and definitions are different in different books. In M. Li and P. Vitànyi, An
Introduction to Kolmogorov Complexity and Its Applications (Springer, 1993) and J. E. Hopcroft
and J. D. Ullman, Introduction to Automata Theory, Languages and Computation (Addison Wesley,
1979) Church’s thesis is the proposal that partial recursive functions are computable. Bridges call
them computable partial function. Davis call partial recursive functions as partially computable
functions.



268

and basic functions may not be logically simple.261

Subsequently, various definitions of computability were proposed, but interestingly
all the definitions were equivalent to Church’s thesis. That is, it gained a certain
signature of naturalness. Usually, this is the explanation of the relevant history, but
actually, one of the reasons that Church confidently proposed his thesis was that var-
ious definitions were equivalent.262 Still, as mentioned above, the oppositions could
not be quenched.

However, the characterization of computability in terms of the Turing machine ex-
plained below (roughly speaking, a digital computer with indefinitely large memory
capacity) silenced all the oppositions to Church’s proposal. Church himself wrote
that Turing computability did not require any preparation to relate constructibility
and the existence of effective procedures in the ordinary sense. In short, for basic
concepts clear consistency with our intuition is crucial, so the best characterization
of basic concepts is often supplied by explicitly visualizable machineries.

23.16 Basic idea of Turing
If a computer is a machine that performs computation, to characterize computation,
one should formalize/construct a machine that can do all the elementary steps ‘me-
chanical calculation’ can make. This is the basic idea of the Turing machine.263

Turing chose the restrictions built in the basic mechanism/function of the Tur-
ing machine, taking account of the limits of our sensory organs and intelligence.
Our sensory organs can distinguish only finitely many distinct signals, and the
number of distinguishable states of our brain is also finite. The number of
kinds and quantities of tasks our brain and effectors can perform are also fi-
nite. These conclusions may be reasonable, because even if the signals and
states are continuous, they are meaningful only after ‘quantized’ in the actual
noisy world, and because our brain is a finite object. In short, Turing conceived

261See R. Gandy, “The Confluence of Ideas in 1936,” in The Universal Turing Machine, a half-
century survey (Oxford University Press, 1988). Neither Gödel nor Post accepted the proposal.
[1936 was full of disastrous events: remilitarization of the Rhineland, Spanish Civil War started,
X’ian Incident; J. M. Keynes, The general theory of employment, interest, and money].

262The situation is explained in detail in W. Sieg, “Step by recursive step: Church’s analysis of
effective calculability,” Bull. Symbolic Logic 3, 154 (1997).

263C. Petzold, The annotated Turing (a guided tour through Alan Turing’s historic paper on com-
putability and the Turing machine) (Wiley, 2008) is strongly recommended. It includes historical
comments on many related topics, many interesting anecdotes (and gossips). It is a serious book,
but fun to read.



23. LECTURE 23. RANDOMNESS 269

our brain as a finite automaton = an automaton that relies on finitely many
symbols, finitely many rules and operations, and finitely many internal states.

Thus, he required an ‘artificial brain’ the following:
(i) Only finitely many kinds of symbols can appear on each cell (on the tape).
(ii) It can survey only a finitely many cells at once.
(iii) At each instance, it can rewrite only one cell.
(iv) Only finite range of the whole tape can be used (scanned).
(v) There are only finitely many states of the black box, and there are only
finitely many instructions that can be performed.

The only idealization, from Turing’s point of view, is that there is no mem-
ory capacity limit. However, since computers and our brains can indefinitely
increase their external memory capacity, it is a benign idealization.

23.17 Turing machine264

A Turing machine consists of an infinite tape, a read/write head, and a black box
with a finite number of internal states (Fig. 23.2). The tape is divided into cells.
The read/write head can scan only one cell on the tape at a time. The head position
and what it should do is specified by the Turing program. See 23.18.

TM

blackbox

tapehead

Figure 23.2: A Turing machine consists of an infinite tape that is divided into cells, a read/write
head that can scan a single cell at a time, and a black box with a finite number of the internal
states.

23.18 Turing program
A Turing program is a finite set of four tuples (𝑞, 𝑆, *, 𝑞′), where
(1) 𝑞 and 𝑞′ are the internal states of the black box,

264There are many different versions, e.g., with many tapes or a tape that is only infinite in one
direction, but the reader has only to be able to have a general notion of TM. See J. H. Hopcroft and
J. D. Ullman, Introduction to Automata Theory, Languages, and Computation (Addison Wesley,
1979), for example. The exposition here uses the machine revised by Kleene and M. Davis (who
was in Illinois Math department and is know for his contribution to Hilbert’s tenth problem).



270

(2) 𝑆 is the symbol in the cell being scanned now (it may be 1 or blank 𝐵, or 0, 1,
𝐵, etc., depending on authors, but in any case there are only finitely many of them),
(3) * denotes 𝑅, 𝐿 or 𝑆 ′: 𝑅 (resp., 𝐿) implies that the head moves to the right (resp.,
to the left) in the next time step (or it may be better to say the tape is moved in the
opposite direction); 𝑆 ′ implies that the head does not move but rewrite the symbol
in the cell being scanned as 𝑆 → 𝑆 ′.

The implication of (𝑞, 𝑆, *, 𝑞′) is as follows:
If the internal state of the black box is 𝑞 and if 𝑆 is written in the tape cell being
scanned by the head, then the head performs *, and the internal state of the black
box is changed to 𝑞′.

A Turing machine may be identified with its Turing program.265 That is, the
machine is understood as a single task machine.

The input non-negative integer 𝑥 is written on the tape according to a certain
rule as, e.g., a 01 sequence (there are many different schemes, but here no details
are important). The Turing machine (its black box) is initially in the initial state
𝑞𝐼 , and the head is located at the leftmost non-blank cell on the tape (the portion
where numbers are written is bounded).

The machine has a special final state called the halting state 𝑞𝐻 . The sequence
written on the tape when the machine state reaches 𝑞𝐻 is interpreted as the compu-
tational result 𝑦 of the Turing machine. Thus, the Turing machine defines a function
𝑥 → 𝑦. If the Turing machine halts for any input, it defines a total function. How-
ever, a Turing machine may not define a total function, because it may not halt (𝑞𝐻
may never be reached) for particular inputs.266

23.19 Turing computability
A function defined by a Turing machine that halts for any input is called a Turing
computable function. The fundamental theorem is:

Theorem [Turing] Turing computable functions are computable functions in Church’s
sense and vice versa.

This theorem is proved through demonstrating that the three basic functions 𝑆,
𝑃 and 𝐶 and the fundamental operations I-III can be Turing-programmable. For

265To identify the program and the machine is not as simple as we think. The program lives in
the world of symbols, which is distinct from the real world, so how to specify the correspondence
between the symbols and the actual movements of the parts of the actual machine is nontrivial.
We have already mentioned the concept called ‘adaptors.’ This will be discussed in Chapter 4.

266Will the Turing machine ever halt for input 𝑥? This is the famous halting problem. There is
no algorithm to answer this question. This is a typical decision problem that cannot be decided.



23. LECTURE 23. RANDOMNESS 271

example, Davis’ textbook explains detailed construction of the programs.267

The equivalence of Church’s computability and Turing’s computability convinced
many people the naturalness of Church’s thesis.268

23.20 Universal Turing machine
Notice that a Turing machine can be encoded as a number sequence (i.e., we can
make an integer that can be deciphered to give a Turing program269, e.g., the Gödel
numbering of the Turing program).270 Now, it is possible to make a machine (=
compiler) that spits the four-tuples of the Turing program upon reading the corre-
sponding Gödel number. Then, if we subsequently feed the ordinary input to this
master Turing machine, it can perform any computation that can be done by any
Turing machine (it is a by-now common programmable digital computer).

A formal proof of this statement may not be simple, but we are not at all surprised
thanks to our daily experience. This machine is called a universal Turing machine.
We may understand it as an ideal digital computer without any memory capacity
limit. Turing demonstrated that everything a machine with constraints (i)-(v) above

267Reading the programs to check their functions (to check that indeed they work) is a matter of
patience; to write such a program is something like writing a program in a machine language (less
efficient, actually), so for the ordinary scientists checking the demonstration is probably useless.
Therefore, no further discussion will be given on the equivalence demonstration. Now that digital
computers are everywhere, the theorem should be almost obvious.

268However, this does not mean the acceptance of Turing’s basic idea, which seems to have mo-
tivated the formulation of Turing machines, that we are finite automata. Gödel (1906-1978) and
Post (1897-1954) always believed that our mathematical intelligence was not mechanical. Espe-
cially, Gödel argued that our capability to manipulate abstract concepts is not restricted by the
finiteness that Turing respected literally; the restrictions apply only when we manipulate (poten-
tially) concrete objects such as symbol sequences; we had to take into account non-finitary creative
thoughts to understand our mathematical capabilities.
⟨⟨Natural intelligence and finiteness constraints⟩⟩ Perhaps, Gödel may have wished to say
that our natural intelligence is not restricted by the finiteness constraints. Our natural intelligence
is ‘embodied.’ It is open to the external physical world through our body. It may be more sen-
sible to idealize our brain as a nonfinitary system. Thus, after all, Gödel’s intuition may well be
correct. Indeed, abstract concepts are much more concretely supported than concrete concepts by
the materialistic basis (or, we could even say, by the molecular biological basis) that is ancient
phylogenetically. That is, abstract concepts are directly connected to our body. Abstract concepts
are more embodied than concrete concepts.

269𝑞, 𝐿, etc., appearing in the Turing program is encoded into numbers.
270⟨⟨Gödel numbering⟩⟩ Assigning positive integers to symbols, we can convert any symbol

sequence into a positive number sequence 𝑛1𝑛2 · · ·𝑛𝑘 · · ·. This is converted into 𝑁(𝑛1𝑛2 · · ·𝑛𝑘 · · ·) =
2𝑛13𝑛2 · · · 𝑝𝑛𝑘

𝑘 · · ·, where 𝑝𝑘 is the 𝑘-th prime. We can decipher 𝑛𝑖 form 𝑁 uniquely.



272

can perform can be done by a universal Turing machine. Thus, we may regard a uni-
versal Turing machine as the most powerful computer. If we accept Turing’s analysis
of our intelligence, any intelligent task we can do can be done by a universal Turing
machine (with a suitable input).

A universal Turing machine is not a parallel computer. However, whether a ma-
chine is parallel or not is not fundamental. It is still a finite automaton. Therefore,
the universal Turing machine being not parallel is an unimportant restriction. In
the theory of computation we totally ignore computational speed; what matters is
whether a required computation can be performed within a finite time.271

23.21 All the universal TM are equivalent
Since there are many ways to formulate Turing machines, universal Turing machines
cannot be unique. We wish to have the most powerful computer, so perhaps we have
to look for the most powerful universal Turing machine. Actually, all the universal
Turing machines are equally powerful, so we may choose any of them for our pur-
pose:

Theorem [Solomonov-Kolmogorov] Let 𝑀 and 𝑀 ′ be two universal Turing ma-
chines, and ℓ𝑀(𝑥) (resp., ℓ𝑀 ′(𝑥)) be the length of the shortest program for 𝑀 (resp.,
𝑀 ′) to produce output 𝑥 (measured in, say, bits). Then, we have

ℓ𝑀(𝑥) ⪯ ℓ𝑀 ′(𝑥), ℓ𝑀 ′(𝑥) ⪯ ℓ𝑀(𝑥), (23.3)

where 𝐴(𝑥) ⪯ 𝐵(𝑥) implies that there is a positive constant 𝑐 independent of 𝑥 such
that 𝐴(𝑥) ≤ 𝐵(𝑥) + 𝑐; 𝑐 may depend on 𝐴 and 𝐵.

The key to prove this theorem is that 𝑀 can emulate 𝑀 ′ and vice versa. For
example, the program for 𝑀 to emulate 𝑀 ′ must be finite, however long it may be.
Therefore, if we disregard the length of the program for this overhead (that is, if we
write this length as 𝑐 in the definition of ⪯), the length of the needed program does
not change whether 𝑥 is computed directly on 𝑀 ′ or computed on the emulated 𝑀 ′

on 𝑀 . The meaning of ⪯ is just the inequality disregarding an additive constant
(corresponding to the overhead), so the theorem should hold.

Thus, when we wish to write the shortest program length ℓ𝑀(𝑥) (i.e., when we
wish to compress 𝑥), we will not explicitly specify the universal Turing machine 𝑀
to use and write simply ℓ(𝑥).

271Quantum computers may drastically change the required time, but even they cannot compute
Turing noncomputable functions. Thus, when we ask the fundamental question what computers
can ever do, quantum computers need not be considered.



23. LECTURE 23. RANDOMNESS 273

23.22 Program length, a preliminary observation
Let 𝜔[𝑛] be the first 𝑛 digits of a binary sequence 𝜔. How does ℓ(𝜔[𝑛]) (see 23.21)
behave generally?

For example, for the uninteresting 1111 · · ·, asymptotically the information re-
quired to specify the number of digits 𝑛 dominates the program, so ℓ(11 · · · [𝑛])
behaves as log 𝑛. For a number sequence 𝜔 with an obvious regularity the shortest
program to specify 𝜔[𝑛] is independent of 𝑛 except for the portion needed to specify
𝑛 itself. There are only countably many such regular sequences.

On the other hand, in the 𝑛 → ∞ limit if ℓ(𝜔[𝑛])/ log 𝑛 can be indefinitely large,
the pattern in the sequence cannot be specified asymptotically by a finite length
program, so it should not be simple. However, such sequences include many subtle
sequences.272

If no regularity is discernible at all in 𝜔, to specify 𝜔[𝑛] requires to specify almost
all the 𝑛 digits, so we expect ℓ(𝜔[𝑛]) ∼ 𝑛. In other words, a typical random sequence
must be such 𝜔 that for infinitely many 𝑛 ℓ(𝜔[𝑛]) ∼ 𝑛.

23.23 Algorithmic randomness
Let us call a sequence 𝜔 such that for infinitely many 𝑛 ℓ(𝜔[𝑛]) ∼ 𝑛 an algorithmically
random sequences.

Definition 2.11.1
𝐾(𝜔) ≡ lim sup

𝑛→∞
ℓ(𝜔[𝑛])/𝑛 (23.4)

is called the randomness of a binary sequence 𝜔 ∈ {0, 1}N. Here, 𝜔[𝑛] is the first
𝑛 digits of 𝜔 and ℓ(𝜔[𝑛]) is the length of the shortest program (written in 01) to
produce 𝜔[𝑛].273

Thanks to Kolmogorov and Solomonov (23.21) the randomness does not depend
on the choice of the universal Turing machine 𝑀 (so it is not written already).

Kolmogorov used the word ‘complexity’ to describe the above quantity. in this
lecture notes the word should be reserved for genuine complex systems, so we use
the word ‘randomness’ instead.274

272This situation is exactly the same as the KS entropy zero dynamical systems.
273The reason why we must use lim sup is, for example, we cannot ignore the appearance of

meaningful sequences occasionally. That is why it was said ℓ(𝜔[𝑛]) ∼ 𝑛 for infinitely many 𝑛
instead of all 𝑛.

274M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications



274

23.24 Undecidability of random sequence
Notice that no program can be written to compute 𝐾(𝜔) (there is no algorithm for
it). This should be easily inferred from the appearance of the expression as ‘the
shortest program’ in the definition. For an arbitrarily chosen number sequence, ex-
cept for almost trivial cases, it is hard to show that it is not a random sequence,
because we must write down a short program to produce it. Worse still, it is harder
to claim that a given sequence is random, because we must show that however hard
one tries one cannot write a short program. Therefore, for a given number sequence,
generally we cannot compute its randomness 𝐾 (except for some almost trivial cases
with 𝐾 = 0, it is very hard, if not impossible.)

However, we can say something meaningful about a set of number sequences. For
example, for almost all (with respect to the Lebesgue measure) numbers in [0, 1] their
binary expansion sequences are algorithmically random. All the algebraic numbers275

are not random. In the next section we will discuss the average randomness.276

23.25 Is our characterization of randomness satisfactory?
To make the concept ‘random’ mathematical, we identified it with the lack of any
computable regularity. This identification does not seem to contradict our intuition.
However, is it really true that all the regularities are all those detectable by com-
puters? There can be the following fundamental question: why can we say that if
computers cannot detect any pattern, Nature herself cannot, either? In this char-
acterization don’t we admit that the Turing computer or computation itself is more
fundamental a concept than randomness? Is this consistent with our intuition?

(Springer, 1993) is the standard textbook of the Kolmogorov complexity. The reader will real-
ize that there are many kinds of definitions and concepts, but here, to be simple, the most basic
definition is used. The explanation in this section roughly follows A. K. Zvonkin and L. A. Levine,
“The complexity of finite objects and the development of the concepts of information and random-
ness by means of the theory of algorithms,” Russ. Math. Surveys 25(6), 83 (1970).

275numbers that can be zeros of integer coefficient polynomials.
276There is an attempt to make a computable measure of randomness. One approach is to use

much less powerful computers. However, such an approach appears to be fundamentally off the
mark to characterize the concept of randomness, because ‘randomness’ may well be a transcendental
concept. There can be a point of view that within our mathematics it is natural that we cannot
tell whether a given sequence is random or not in general.



23. LECTURE 23. RANDOMNESS 275

23.26 Axiomatic approach to randomness
If we consider randomness as a fundamental concept, as long as there is no other
concepts that we can accept as more fundamental, we cannot define it. In the end,
randomness would be formalized only as a primitive concept of an axiomatic system
for randomness, just as points and lines in Euclidean geometry. As far as the author
is aware, the most serious approach in this direction is due to van Lambalgen.277 As
we have seen, randomness is algorithmically characterized by incompressibility. We
needed the theory of computation to define incompressibility unambiguously. The
axiomatic approach may be roughly interpreted as an attempt to axiomatize the
concept corresponding to ‘incompressibility.’278

As we have seen in Chapter 1, randomness is really significant only in nonlinear
systems. We have also seen that the standard axiomatic system of sets is a legitimate
heir of Fourier analysis, so to speak. A wild and heretic guess is that even on the
foundation of mathematics is a shadow of linear systems, so it is not very suitable
to study nonlinear systems and the concept of randomness.

277M. van Lambalgen, “The axiomatization of randomness,” J. Symbolic Logic 55, 1143 (1990).
278This axiomatic system is not compatible with the standard axiomatic system of sets (ZFC).

The author does not understand how serious this incompatibility is. See M. van Lambalgen, “In-
dependence, randomness and the Axiom of Choice,” J. Symbolic Logic 57, 1274 (1992). See also
“Logic: from foundations to applications, European logic colloquium” edited by W. Hodges, M.
Hyland, and J. Truss (Clarendon Press, 1996) Chapter 12 “Independence structures in set theory.”


	Lecture 23. Randomness

