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22 Lecture 22. Interval maps

22.1 Interval maps = interval endomorphism
Let 𝐼 be an interval (often closed). A map 𝑓 : 𝐼 → 𝐼 is called an interval map, or
an interval endomorphism. Starting from 𝑥 ∈ 𝐼, we can define (at least a one-sided)
sequence {𝑓𝑛(𝑥)}𝑛∈N.footnote𝑓𝑛(𝑥) = (𝑓 ∘ 𝑓 ∘ · · · ∘ 𝑓)(𝑥) = 𝑓(𝑓(𝑓 · · · (𝑓(𝑥)) · · ·)).
𝑛 𝑓 ’s show up in each expression. We have already encountered with a nontrivial
examples in Figs. 18.12, 19.4 and 20.3. In these cases the relations of these maps
to the original higher dimensional (often time continuous) systems are ‘natural’ (not
very artificially contrived), so from the maps we can learn a lot about the original
systems as Lorenz demonstrated.

The word ‘chaos’ was introduced into mathematics (and subsequently into physics)
by Li and Yorke (see 22.2). The simplest nontrivial example may be 𝑥𝑛+1 = 2𝑥𝑛

(mod 1) defined on [0, 1] (see 22.4).
Utida239 used such a discrete systems to describe the population dynamics of

insects (although empirically ‘cyclic fluctuations’ were observed, no simulation results
were reported):

𝑃𝑛+1 = 𝑃𝑛

(︂
1

𝑏 + 𝑐𝑃𝑛

− 𝜎

)︂
, (22.1)

where 𝑃𝑛 is the population of the generation 𝑛 and 𝑏, 𝑐, 𝜎 are non-negative param-
eters. The existence of complicate behavior in nonlinear difference equations was
reviewed by May240, who discussed

𝑃𝑛+1 = 𝜆𝑃𝑛(1 + 𝑃𝑛)−𝛽 (22.2)

and compared with some experimental and observational results (Fig. 22.1).

239S Utida, Population fluctuation, an experimental and theoretical approach, Cold Spring Harbor
Symposia on Quantitative Biology, 22 139 (1957).

240RMMay Simple mathematical models with very complicated dynamics, Nature 261 459 (1976)
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Figure 22.1: The solid lines demarcate the stability domains for the density dependence param-
eter 𝛽 and the population growth rate 𝜆 in (22.2); the dashed line shows where 2-point cycles give
way to higher cycles of period 2𝑛. The solid circles come from analyses of life table data on field
populations, and the open circles from laboratory populations [Fig. 6 of May N 261 459 (1976)]

22.2 Period three implies ‘chaos’241

Stimulated by Lorenz’s map 19.3, Li and Yorke proved the following famous theorem.
Theorem. Let 𝐽 be an interval and let 𝐹 : 𝐽 → 𝐽 be continuous. Assume there is
a point 𝑎 ∈ 𝐽 for which the points 𝑏 = 𝐹 (𝑎), 𝑐 = 𝐹 2(𝑎) and 𝑑 = 𝐹 3(𝑎), satisfy

𝑑 ≤ 𝑎 < 𝑏 < 𝑐 (or 𝑑 ≥ 𝑎 > 𝑏 > 𝑐).

Then

T1: for every 𝑘 = 1, 2, · · · there is a periodic point in 𝐽 having period 𝑘.

Furthermore,

T2: there is an uncountable set 𝑆 ⊂ 𝐽 (containing no periodic points), which satisfies
the following conditions:
(A) For every 𝑝, 𝑞 ∈ 𝑆 with 𝑝 ̸= 𝑞,

lim sup
𝑛→∞

|𝐹 𝑛(𝑝) − 𝐹 𝑛(𝑞)| > 0 (22.3)

and
lim inf
𝑛→∞

|𝐹 𝑛(𝑝) − 𝐹 𝑛(𝑞)| = 0. (22.4)

241T-Y Li and J A Yorke, Period three implies chaos. Amer Math Month 82 985 (1975).
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(B) For every 𝑝 ∈ 𝑆 and periodic point 𝑞 ∈ 𝐽 ,

lim sup
𝑛→∞

|𝐹 𝑛(𝑝) − 𝐹 𝑛(𝑞)| > 0. (22.5)

The authors added:
REMARKS. Notice that if there is a periodic point with period 3, then they will be
satisfied.

The uncountable set 𝑆 is called a ‘scrambled set.’ Their definition of chaos is the
existence of a scrambled set:

A system exhibits the Li-Yorke chaos, if the system has a scrambled set.

We know 𝑆 is generally non-measurable, and if measurable, it is measure zero
(i.e., the inner measure of 𝑆 is always zero).242

Thus, observable chaos (numerically detectable chaos) cannot be characterized as
LI-Yorke chaos. Therefore, in these lecture notes, we do not demonstrate the theo-
rem and will adopt a more natural definition of chaos.

22.3 Observability
Definition [Observability] We say a set 𝐵 is observable with respect to a given dy-
namical system (𝑓,𝑀), if the totality of the points on the trajectories that can reach
𝐵 has a positive Lebesgue measure. In other words, 𝐵 is observable, if 𝐵 has a basin
with a positive Lebesgue measure or the set {𝑥 : ∃𝑛 ≥ 0, 𝑓𝑛(𝑥) ∈ 𝐵, 𝑥 ∈ Γ} has a
positive Lebesgue measure.

In short, if you throw at the collection of what you wish to observe, and if you
can hit what you wish to see with a finite probability, it is observable.

242Y Baba, I Kubo and Y Takahashi, Li-Yorke’s scrambled sets have measure zero, Nonlinear
Anal 25 1611 (1996). Smital [A chaotic function with some extremal properties, PAMS 87 54
(1983)] constructed a scrambled set 𝑆 of outer measure 1 for the tent map and mentioned also that
measurable scrambled sets have measure zero for this case.

If a map is only continuous (not differentiable), then there are examples of scrambled sets that
are measurable and with positive measure: see, for example, I. Kan, “A chaotic function possessing a
scrambled set with positive Lebesgue measure,” Proc. Amer. Math. Soc. 92, 45 (1984) or J. Smital,
“A chaotic function with a scrambled set of positive Lebesgue measure,” Proc. Amer. Math. Soc.
92, 50 (1984).
V. J. Lopez, “Paradoxical functions on the interval,” Proc. Amer. Math. Soc., 120, 465 (1994)
proves the following: If a map 𝑓 from an interval 𝐼 to 𝐼 is expansive, then the dynamical system
cannot have a measure positive scrambled set. However, if in 𝐼×𝐼, 𝑥 and 𝑦 are both in the scrambled
set, then the totality Ch(𝑓) of {𝑥, 𝑦} is always measurable. Furthermore, if 𝑓 is expansive and its
derivative is piecewisely Lipshitz, then Ch(𝑓) has a positive measure.
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22.4 The simplest genuine chaotic dynamical system243

The purpose of this unit is to give a preview and outline of our logic with the aid of
perhaps the simplest example of chaos.

A map 𝑇 from [0, 1] into itself is defined as

𝑇𝑥 = 2𝑥 mod 1. (22.6)

If we use the symbol {𝑟} that extracts the fractional part of a real number 𝑟, we
may write 𝑇𝑥 = {2𝑥} (i.e., multiply 2 and then remove the integer part). Important
points are summarized in Fig. 22.2.
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Figure 22.2: A simple map 𝑇𝑥 = {2𝑥} that produces chaos.

Fig. 22.2 A simple map 𝑇𝑥 = {2𝑥} that produces chaos

A: ⟨⟨How to chase history graphically⟩⟩ A method to chase the trajectory which is determined

by the initial condition 𝑥0 on the graph is illustrated. The broken line diagonal denotes 𝑦 = 𝑥

where the values on the horizontal and vertical axes coincide. Oblique thick parallel lines denote

the graph of 𝑦 = 𝑇𝑥. If an initial condition 𝑥0 is given on the horizontal axis, look vertically

upward to find the point on the graph of 𝑇 . Its vertical coordinate is 𝑥1. To find 𝑥2, we must find

𝑥1 on the horizontal axis, and then 𝑇𝑥1 = 𝑥2 may be obtained just as before. To this end, with

the aid of the diagonal, we can fold the vertical axis onto the horizontal axis and locate 𝑥1 on the

latter. Therefore, if we chase the vertical or horizontal lines with an arrow we can successively find

𝑥2, 𝑥3, · · ·.
B: ⟨⟨Exponential separation of nearby trajectories⟩⟩ Doubling of the gap is shown due to each

243YO TNW Appendix 2.1A
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application of 𝑇 between the gray and black trajectories that are initially very close. The positions

after 6 applications of 𝑇 are denoted by the gray and black small disks on the horizontal axis.

C: ⟨⟨Coding of trajectory⟩⟩ How to convert a trajectory into a 01 symbol sequence is illustrated.

The interval [0, 1] is divided into two and each is named [0] or [1]?[0] is further subdivided into [00]

and [01]. 𝑇 maps [00] onto [0] and [01] onto [1]. If the subdivision of [10] is named [100] or [101]

as in the figure, 𝑇 maps [100] onto [00] and [101] onto [01]. If we recursively use this prescription,

each point in [0, 1] becomes correspondent to a particular 01 infinite sequence. This is nothing but

the binary expansion of a number in [0,1] (however, [111· · ·] is not identified with [0]).

⟨⟨History is determined by initial condition⟩⟩ If an initial condition is given,
an indefinitely long sequence {𝑥𝑛} may be constructed as 𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1 =
𝑇 2𝑥0, · · ·; the future is perfectly determined by 𝑥0. How to chase this trajectory
graphically is illustrated in Fig. 22.2A.

⟨⟨Chaos directly connects the unknown world to our world⟩⟩ Fig. 22.2B il-
lustrates how chaos expands the world of microscopic scales and connect it to the
world we can directly observe. In this example, the microscopic world is doubled
every time 𝑇 is applied. Therefore, although the system we consider at present is a
deterministic system, we lose our predictive power. Roughly speaking, for large 𝑛 𝑥𝑛

becomes indistinguishable from a random number.

⟨⟨Coding trajectories or correspondence to number sequence⟩⟩ To see the
random nature of chaotic trajectories more explicitly, their discrete coding 𝑠0, 𝑠1, · · ·
is introduced in terms of symbols 𝑠𝑛 that take 0 or 1. It is a rather obvious trans-
formation in this case; the interval [0, 1] is divided into two intervals, [0, 1/2] and
(1/2, 1], and we call them, [0] and [1], respectively. Generally, [𝑠0𝑠1, · · · 𝑠𝑛] is defined
as a set {𝑥 : 𝑇 𝑘𝑥 ∈ [𝑠𝑘] for 𝑘 = 0, · · ·𝑛}, where 𝑠𝑘 are 0 or 1. In Fig. 22.2C,244 we
see that if we apply 𝑇 once to the interval, say, [011], it is mapped onto [11].
One more application of 𝑇 to it coincide [1] (it is easy to see this, if we chase the end
points as explained in Fig. mod2mapA). That is, [011] is a bundle of trajectories for
which 𝑥0 is in [0], 𝑥1 is in [1] and 𝑥2 is in [1] (Such a bundle of trajectories is called
a cylinder set.).

⟨⟨How prediction becomes difficult⟩⟩ If we follow the way to construct small
intervals in Fig. 22.2C, we see that, for example, the bundle of trajectories named
as [0011010011] (there are 10 digits) is mapped by 𝑇 successively as [011010011] →
[11010011] → [1010011] → [010011] → [10011] → · · · → [011] → [11] → [1](digits are
lost one by one from the left end). One more application of 𝑇 makes the trajectories
‘all over’ [0, 1]. The lesson we have learned is that even if the initial condition is in

244The reader might worry about to which interval the boundary points belong, but in this
example, no careful assignment of symbols is important.



262

the interval [0011010011] of width 1/210 ∼ 10−3, after 10 consecutive 𝑇 map applica-
tions we will totally lose the location information. Perhaps, the reader might guess
that we will do much better if we specify the initial point (the cylinder set) more
accurately. If we wish to keep some knowledge of the initial position for 20 seconds,
we need the accuracy of unrealistic 1/220 ∼ 10−6. In short, sooner or later we will
fail to predict the behavior of the system.
Even if we fail to make any prediction, it does not imply the end of the world. Be-
yond the predictable time range what determines 𝑥𝑛? The system is deterministic,
so it is determined by the far right portion of the 01 sequence obtained by coding
of the initial condition, which we can never know beforehand. Isn’t it virtually the
same as an arbitrary 01 sequence? Then, after a while, chaotic behavior would be
indistinguishable from the head-tail sequence obtained by tossing a coin. This is the
intuitive meaning of the definition of chaos given later.

⟨⟨Chaos is a random deterministic behavior⟩⟩ After all, it is a natural idea
that the essence of chaos is randomness with a tint of initial condition effects due to
determinism. However, without carefully reflecting on the concept of randomness,
we cannot express this intuition precisely. After a rather ‘heavy’ preparation, even-
tually we will arrive at the conclusion that chaos is a phenomenon that deterministic
trajectories exhibit randomness.

⟨⟨Quantitative correspondence of chaos and randomness⟩⟩ The reader may
think the above argument provides only a qualitative characterization of chaos. How-
ever, there is a way to quantify randomness, which allows us to make a quantita-
tive correspondence between chaos and randomness. This quantification is realized
through quantifying the needed information to predict the future with a predeter-
mined fixed accuracy. This is not hard in terms of the model being considered. How
the information we know at the initial time becomes insufficient to describe the sys-
tem behavior can be seen almost explicitly from Fig. 22.2C and loss of digits from
the ‘cylinder sets’ due to the application of 𝑇 . The information is lost by 1 bit every
time 𝑇 is applied. Suppose we wish to predict the position of the point at time
𝑡 in the future with the same accuracy we describe the system now (𝑡 = 0). The
information we must prepare now increases by 1 bit, if we push the future time 𝑡
further to 𝑡 + 1. The increasing rate of the needed information (1 bit per unit time
in the present example) is called the Kolmogorov-Sinai entropy (already discussed
informally). On the other hand, to describe an arbitrary 01 sequence we of course
need 1 bit per digit. That is, the needed information to describe a trajectory is 1
bit per unit time. This equality of the amounts of information needed to predict
the future and to describe the trajectory is a general assertion of Brudno’s theorem
(24.4). Thus, we may conclude that our definition of chaos is right on the mark.
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22.5 Chaos in the logistic map
The logistic map: [0, 1] → [0, 1] is given by

𝐹 (𝑥) = 4𝑥(1 − 𝑥). (22.7)

We can define a dynamical system on [0, 1] as 𝑥𝑛+1 = 𝐹 (𝑥𝑛). Run the system for
some intial conditions 𝑥0. You will find quite erratic sequences {𝑥𝑘}∞𝑘=0.

There is a very important warning: whether we can have an explicit analytical
expression for 𝑥𝑛 as a function of 𝑥0 and 𝑛 and whether the system exhibits chaotic
behaviors are generally not logically related. Indeed, for the logistic map we have an
explicit formula

𝑥𝑛 = sin2[2𝑛Arcsin
√
𝑥0]. (22.8)

You might think that these sequences can be predicted for any far future time thanks
to such analytic expressions, but try to evaluate this for three digits with 𝑛 = 100.

There are many other examples.245

22.6 Coin-tossing, deterministic or not
Throwing a coin many times, we can construct a sequence of heads and tails. If we
denote ‘head’ by 1 and ‘tail’ by 0, we have a 01 sequence. In this case, the phase space
is Γ = {0, 1} and the time set is 𝑇 = N+ ≡ {1, 2, · · ·} (i.e., discrete). As its path
space Ω we may choose the totality of one-sided 01 infinite sequences Ω = {0, 1}N+

,
because heads and tails can appear in any order. The resultant dynamical system
(𝜎,Ω) is called the coin-tossing process. Let 𝜔 ∈ Ω. If 𝜔(𝑛) happens to be 0, this
implies that the 𝑛-th outcome is a tail. Even if we know a history of this system
up to time 𝑛: 𝜔(1), · · · , 𝜔(𝑛), no one can predict anything beyond. Therefore, “the
system is not deterministic.”

22.4 already mentioned that the sequences we can get from ‘the simplest’ chaotic
map 𝑇𝑥 = {2𝑥} correspond (one-to-one) to all the possible outcomes of a ‘coin toss-
ing process.’ You might say one is deterministic, and the other stochastic. However,
there is a basic question: Can you distinguish deterministic and non-deterministic
systems from their trajectories alone?

It is possible to regard the difference between the deterministic and non-deterministic
dynamical systems is due to the difference of view points. Take a discrete dynami-
cal system (one-sided), whose history starting from 𝜔(0) 𝜔 ∈ 𝒟 may be written as

245K. Umeno, “Method of constructing exactly solvable chaos,” Phys. Rev. E 55, 5280 (1997).
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𝜔(0)𝜔(1)𝜔(2) · · ·. 𝜔(𝑡) is the state at time 𝑡. In our simplest example. The whole se-
quence 𝜔(0)𝜔(1)𝜔(2) · · · is just the binary expansion of the initial position 𝑥 ∈ [0, 1],
perfectly deterministic, although, of course, you cannot tell even 𝜔(1) from 𝜔(0)
alone.

Now, let us define the shift operator (or simply, shift) 𝜎 : 𝒟 → 𝒟 as

(𝜎𝜔)(𝑡) = 𝜔(𝑡 + 1). (22.9)

The shift is a vehicle to experience the history in the chronological order. Suppose,
for example, the phase space is Γ = {0, 1} and its one possible history 𝜔 starting
from 𝜔(0) = 0: 001010011101001101 · · ·, where the leftmost number is interpreted
as the state we observe at present. Its time evolution is

𝜔 = 001010011101001101 · · · (22.10)

𝜎𝜔 = 010100111010011010 · · · (22.11)

𝜎2𝜔 = 101001111100110101 · · · . (22.12)

The currently observed state evolves step by step. The state 𝜔(𝑡 + 1) may not be
determined by the states up to time 𝑡: · · · , 𝜔(𝑡− 1), 𝜔(𝑡), so for the observer who is
observing the current and the (recorded) past states only the system behavior does
not look deterministic.

Instead of interpreting the shift as a vehicle to experience a history chronologically,
however, if we interpret 𝜔 as a whole history (chronicle), the shift maps one chronicle
to another: 𝜎𝜔 = 𝜔1, where 𝜔1 gives the chronicle one time unit ahead of 𝜔; indeed,
for all time 𝑡 ∈ 𝑇 𝜔1(𝑡) = 𝜔(𝑡 + 1). 𝜎 is understood as a map from 𝒟 into itself;
it defines a discrete dynamical system on the path space: (𝜎,𝒟). (22.10)-(22.12)
illustrated its time evolution. Here, we observe the history not around present, but
observe histories from God’s point of view. Notice that 𝜔 completely determines 𝜔1.
The dynamical system (𝜎,𝒟) is obviously deterministic.

22.7 Actual coin tossing
J. STRZALKO, J. GRABSKI, A. STEFANSKI, P. PERLIKOWSKI AND T.
KAPITANIAK, Understanding coin-tossing, Math Intel 32(4), 54 (2010) illus-
trates the basin of attraction of the actual coin.

Fig. 22.3 Basins of attraction indicating the face of the coin which is up after the n-th col-

lision: (a) n = 0, (b) n = 3, (c) n = 10, heads and tails are indicated in black and white,

respectively. The initial conditions are 𝑥0 = 𝑦0 = 0; �̇�0 = �̇�0 = �̇�0 = 0; 𝜙0 = 𝜓0 = 0; 𝜃0 = 7

deg, 𝜔𝜁0 = 0, 𝜔𝜂0 = 40.15 rad/s.

Right: 3-dimensional model of the coin and its orientation in space.
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Figure 22.3: [Fig. 1,3 of STRZALKO et al., Math Intel 32(4), 54 (2010)]

22.8 No true randomness without quantum mechanics?
As you have realized, the randomness in a deterministic systems is totally in
the initial conditions. Therefore, whether we can sample the intial condition
‘totally randomly’ or not is a crucial question as to the (un)predictability of
chaos. Some people246 assert that without quantum mechanics (so, essentially,
the Born rule) there cannot be any true randomness.

Is this assertion meaningful?

22.9 Use of ‘symbolic dynamics’
As we will discuss later we study a dynamical system with the aid of a certain cod-
ing system for the system *(called a symbolic dynamics). {𝜎, {0, 1}} is the symbolic
dynamical expression (in this case very faithful: isomorphic) of {𝑇, [0, 1]}, where
𝑇𝑥 = {2𝑥}. Thus, we study symbol sequences, so the relevance of information coded
in the history is obvious. In our simple example, all the symbols are equally proba-
ble, so are all the words (finite sequences of symbols). However, this is not generally
the case, so we must consider ‘natural’ probabilities associated with words. Thus,
we are injecting a new ingredient in our study of nonlinear systems, measures.

22.10 Definition of chaos247

Let 𝑓 be a map from the phase space 𝑀 into itself (i.e., an endomorphism of Γ).248

246For example, T. Sagawa (of (quantum) information thermodynamics). When I heard this
assertion from him for the first time, I thought it is a deep idea. Is it really so?

247The following several units are taken from TNW Chapter 2.
248In this definition, maps are not understood measure-theoretically; they are pointwise transfor-
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Choose 𝑛 ∈ N and construct 𝑓𝑛 that applies 𝑓 𝑛-times,249 and restrict it to its
invariant set 𝐴 ⊂ 𝑀 (𝑓−𝑛(𝐴) = 𝐴). If it is isomorphic to the shift dynamical system
(𝜎, {0, 1}N), then we say the dynamical system (𝑓,𝑀) exhibits chaos (or the system
is chaotic). That is, if 𝜙 is a one to one map and the following diagram becomes
commutative,250 we say the dynamical system (𝑓,𝑀) exhibits chaos.

𝐴
𝑓𝑛

−→ 𝐴⎮⎮⌄𝜙

⎮⎮⌄𝜙

{0, 1}N 𝜎−→ {0, 1}N

In words, if an appropriate one-to-one coding scheme 𝜙 of points (i.e., states) in 𝐴
(we can decode uniquely the sequences) allows to transform the original dynamical
system (restricted to 𝐴) into the full shift on two symbols, we say the dynamical
system is chaotic.

Roughly speaking, if the behavior of a dynamical system (restricted on an invari-
ant set) is coded with symbols 0 and 1, and the result cannot be distinguished from
the totality of the outcomes of the coin-tossing process, we wish to say the system
is chaotic or is a chaotic dynamical system.

A continuous time dynamical system is chaotic, if a discrete dynamical system
constructed from the original system in a ‘natural’ fashion is chaotic in the above
sense.

The chaos defined here is sometimes called formal chaos, because there is no
guarantee of its observability 22.3. For chaos of one-dimensional map systems, the
observability of chaos and the existence of an absolutely continuous invariant mea-
sure seem to be equivalent.

22.11 How good is the definition of chaos given above?
It is not easy to find criteria for a definition to be good, but consistency with in-
tuition, close connection to fundamental concepts, equivalence to definitions based
on very different points of view, etc., may be counted among them. Our definition
relies on our intuition: as long as we assume that “(apparent) random behavior is
fundamentally important characteristic of chaos,” consistency with intuition is built
into the definition. Randomness must be a fundamental concept, so the definition

mations.
249𝑓𝑛(𝑥) = (𝑓 ∘ 𝑓 ∘ · · · ∘ 𝑓)(𝑥) = 𝑓(𝑓(𝑓 · · · (𝑓(𝑥)) · · ·)). 𝑛 𝑓 ’s show up in each expression.
250This means in the present context that the results obtained by following various combinations

of arrows never yield different results.
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has a close connection with a fundamental concept. This can be seen further from
the theorem we demonstrate later. It is also important to check the consistency and
relations with other definitions of chaos to confirm the naturalness of the definition.

22.12 Sensitive dependence on initial conditions
As can be seen from (22.8) and as emphasized by Ruelle, Guckenheimer251 and oth-
ers, magnification of small effects was regarded as a fundamental significance of chaos
(the “butterfly effect”). Intuitively, this is easy to understand in terms of (one-sided)
shifts, because, in contrast to the digits on the far right that describes minute differ-
ences in states, the digits near the left end correspond to global differences. Thus,
movement of the digits to the left by shift corresponds to magnification of small
structures. Two initial states whose codes are different only in digits on the far right
are very close in the phase space, and time evolution magnifies the difference.

Sensitive dependence on initial conditions, however, does not necessarily imply
that the dynamical system is chaotic. This must be obvious to those who know the
roulette; the ball jumps around awhile, but eventually it settles down to a fixed point
(the system is a multiply stable system). If several attractors coexist, the ultimate
fate of the system is determined by which basin its initial condition lies. Even if the
long-time (eventual) behavior of the system is not chaotic, if the boundaries between
basins are extremely complicated, then sensitive dependence on initial conditions can
exist.252 Obviously, roulettes, dice, and coins must be (at least approximately) such
systems. Sensitive dependence on initial conditions is not enough to characterize
chaotic dynamical behavior.253

22.13 Apparently different definitions of chaos
S.-H. Li proposed a revised version of scrambled set called 𝜔-scrambled set to
make the Li-Yorke chaos equivalent to our chaos.254

The most popular definition of chaos at present may be due to Devaney.255

If we take into account S.-H. Li’s result,256 this definition may be stated as

251J. Guckenheimer, “Sensitive dependence on initial conditions for one-dimensional maps,” Com-
mun. Math. Phys., 70, 133 (1979).

252See, for example, H. E. Nusse and J. A. Yorke, “Basin of attraction”, Science 271, 1376 (1996).
253However, if we require sensitivity to perturbation at most instants may characterize chaotic

systems.
254S.-H. Li, “𝜔-chaos and topological entropy,” Trans. Amer. Math. Soc. 339, 243 (1993).
255R. Devaney, An introduction to chaotic dynamical systems (Benjamin/Cummings, 1986).
256S.-H. Li, “Dynamical properties of the shift maps on the inverse limit space,” Ergodic Theor.

Dynam. Syst. 12, 95 (1992). See also J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, “On
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follows. Let (𝑓,𝑋) be a discrete time dynamical system, and 𝐷 (⊂ 𝑋) be a
closed invariant set (i.e., 𝑓−1(𝐷) ⊃ 𝐷). If the following two conditions hold,
the dynamical system exhibits chaos.
(D1) 𝑓 |𝐷 (the restriction of 𝑓 to 𝐷) is topologically transitive on 𝐷 (i.e, 𝑓 |𝐷 is
surjective on 𝐷 and has an orbit dense in 𝐷),
(D2) The totality of the periodic orbit of 𝑓 is dense in 𝐷.
𝐷 is called a chaos set. The set 𝐴 in 22.10 is a chaos set. S.-H. Li showed the
equivalence of this definition and our definition, if the phase space is a compact
metric space.

Already in 1968257 Alekseev defined quasirandom dynamical systems in terms
of a Markov chain with a positive Kolmogorov-Sinai entropy. It is an example
that Russian dynamical systems study was far ahead of the Western counter-
part (actually, the use of entropy to classify dynamical systems was the Russian
starting point of the ‘modern’ dynamical systems study). The term ‘chaos’ may
have been good for popularization of the concept, but the term ‘quasirandom’
summarizes the essence.

22.14 Period ̸= 2𝑛 implies chaos
Theorem258 Let 𝐼 be a finite interval and 𝐹 : 𝐼 → 𝐼 be a continuous endomorphism.
𝐹 exhibits chaos if and only if 𝐹 has a periodic orbit whose period is not equal to
the power of 2.

Remark We have already mentioned the Li-Yorke chaos 22.2, but the chaos in the
above theorem is distinct from the Li-Yorke chaos. The most important distinc-
tion is, as note below, with slight weakening of the ‘one-to-one’ correspondence with
𝐴 chaotic behaviors are observable; we can choose the set 𝐴 in 22.10 observable
(e.g., measure positive). That is, in contradistinction to Li-Yorke chaos whose ‘core
feature’ = the scrambled set is never observable, our chaos is closely tied to observ-
ability, when chaos is observable. We can show that if the system is chaotic in our

Devaney’s definition of chaos,” Am. Math. Month. 99, 332 (1992). In the latter 𝑋 need not be
bounded.

257[1968: Prague Spring, The Tet Offensive, Down to the Countryside Movement, Nuclear non-
proliferation treaty, Assassinations of Rev. M. L. King and Senator R. F. Kennedy.]

258Y. Oono, Period ̸= 2𝑛 implies chaos, Prot. Theor. Phys., 59, 1029 (1978). “In the present
Letter, we give another definition of chaos which is not directly related to the nonperiodicity of
the solution, and sketch the proof of the theorem asserting that period other than 2” implies chaos
(Theorem 1). The assertion also holds even if the definition of chaos by Li, Yorke and Nathanson
[J. Combinatorial Theor. (A) 22 61 (1977)] is adopted (Theorem 2).” However, the proof in this
letter is not very elegant.
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sense, the system is also Li-Yorke chaotic, BUT the converse is not generally true.
Furthermore, even when chaos is observable, it is not on the scrambled set.

We will show the following theorem:

22.15 General theorem for chaos of 𝐶0-endomorphisms of intervals
Theorem259 Let 𝐼 be a finite interval and 𝐹 : 𝐼 → 𝐼 be a continuous endomorphism.
Then, the following (1)-(4) are equivalent.260

(1) 𝐹 exhibits chaos.
(2) 𝐹 has a periodic orbit whose period is not equal to the power of 2.
(3) There is a positive integer 𝑚 such that 𝐹𝑚 has a mixing invariant measure.
(4) 𝐹 has an invariant measure whose Kolmogorov-Sinai entropy is positive.

An intuitive explanation of the theorem is given here.
“Invariant measure” is a steady distribution.
“Mixing” implies that the system relaxes toward some steady state.
“Kolmogorov-Sinai entropy” is the required extra information to predict the next

time step state as accurately as the current state. Its positivity implies that (since
more information is needed to determine the future state) the system behavior in
the future becomes increasingly difficult to predict as the future is further away.

Practically, the following Proposition equivalent to (1)-(4) in the theorem is use-
ful:
(5) There are two closed intervals 𝐽1 and 𝐽2 in 𝐼 that share at most one point such
that 𝑓𝑝(𝐽1) ∩ 𝑓 𝑞(𝐽2) ⊃ 𝐽1 ∪ 𝐽2 holds for some positive integers 𝑝 and 𝑞.

That Ito’s earthquake model in Section 2.1 exhibits chaos is immediately seen
from the ‘folded paper’ model (Fig. 18.12). We may draw a periodic orbit whose
period is not a power of 2, but to check (5) may be the easiest.

Is 𝐴 observable? The set 𝐴 constructed in the proof is not observable, since it is
measure zero and not attractive. However, if we ignore the 1 to 1 correspondence
on a measure zero set, we can make 𝐴 to be an interval (very often, especially when
chaos is observable).

22.16 (2) implies (5)

259M. Osikawa and Y. Oono, “Chaos in 𝐶0-diffeomorphism of interval,” Publ. RIMS 17, 165
(1981); Y. Oono and M. Osikawa, “Chaos in nonlinear difference equations. I,” Prog. Theor. Phys.
64, 54 (1980) (There is no part II, since the author was ‘expelled’ from Japan in 1979). Also see:
L. Block, “Mappings of the interval with finitely many periodic points have zero entropy,” Proc.
Amer. Math. Soc. 67, 357 (1978); “Homoclinic points of mappings of the interval,” ibid. 72, 576
(1978).

260(1) ⇒ (2), (3), (4) is trivial. (4) ⇒ (1) is also almost trivial.
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If 𝐹 has a periodic orbit whose period is not equal to the power of 2, then there
are two closed intervals 𝐼0 and 𝐼1 in 𝐼 that share at most one point such that
𝐹 𝑝(𝐼0) ∩ 𝐹 𝑞(𝐼1) ⊃ 𝐼0 ∪ 𝐼1 holds for some positive integers 𝑝 and 𝑞.

[Demo]261
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Figure 22.4: Illustrated proof of (2) ⇒ (5). (Due to possible folding, the open of kernels of the
images of the intervals may well contain 𝐼0 ∪ 𝐼1.)

𝐺 ≡ 𝐹 2𝑛 has a periodic orbit with odd periodicity 𝑝: 𝑂𝑝 = {𝑥0, 𝑥1, · · · , 𝑥𝑝−1},
where 𝑥0 < 𝑥1 < · · · < 𝑥𝑝−1 (Needless to say, the orbit is not necessarily
chronologically in this order).

Let 𝐼0 = [𝑥0, 𝑥1] and 𝐼1 = [𝑥1, 𝑥2]. There must be an integer 𝑛 (0 < 𝑛 < 𝑝)
such that 𝐺𝑛(𝑥1) = 𝑥0. For this 𝑛 𝐺𝑛(𝑥0) ̸= 𝑥1; otherwise, 𝐺2𝑛(𝑥1) = 𝑥1, that
is, 𝑝 = 2𝑛.262 Therefore, 𝐺𝑛(𝑥0) ≥ 𝑥2. That is, 𝐺𝑛(𝐼0) ⊃ 𝐼0 ∪ 𝐼1.

There must be an integer 𝑚 (0 < 𝑚 < 𝑝) such that 𝐺𝑚(𝑥2) = 𝑥0. For
this 𝑚 obviously 𝐺𝑚(𝑥1) ̸= 𝑥0 nor 𝐺𝑚(𝑥1) ̸= 𝑥1, so 𝐺𝑚(𝑥1) ≥ 𝑥2. That is,
𝐺𝑚(𝐼1) ⊃ 𝐼0 ∪ 𝐼1.

22.17 (5) implies (1)
If there are two closed intervals 𝐼0 and 𝐼1 in 𝐼 that share at most one point
such that 𝐹 𝑝(𝐼0) ∩ 𝐹 𝑞(𝐼1) ⊃ 𝐼0 ∪ 𝐼1 holds for some positive integers 𝑝 and 𝑞,
then 𝐹 exhibits chaos.
[Demo]
The key to this assertion consists of two parts:
(i) If there are two disjoint closed intervals 𝐼0 and 𝐼1 in 𝐼 such that 𝐹 𝑛(𝐼0) ∩
𝐹 𝑛(𝐼1) ⊃ 𝐼0 ∪ 𝐼1 for some positive integer 𝑛, then 𝐹 exhibits chaos.
(ii) (5) implies the existence of 𝐼0 and 𝐼1 required by (i).

Let us prove (i) first. Set 𝐺 = 𝐹 𝑛.

261Proof due to Hamachi.
262Note that 2𝑛 < 2𝑝, the smallest even number that is a multiple of 𝑝.



22. LECTURE 22. INTERVAL MAPS 271

First we note the following elementary fact: (ia) Let 𝐼0 be a closed interval,
and 𝐺(𝐼) ⊃ 𝐼0 for a continuous function 𝐺. There there is a closed interval
𝑄 ⊂ 𝐼 such that 𝐺(𝑄) = 𝐼0. It is essentially the intermediate value theorem.

Next, we note that (ib) if 𝐺(𝐼) ⊃ 𝐼0, 𝐼1, which are disjoint closed intervals,
then we can find 𝐺(𝑄𝑖) = 𝐼𝑖 (𝑖 = 1 or 2) such that 𝑄𝑖 ⊂ 𝐼 and 𝑄1 ∩ 𝑄2 = ∅.
The existence of 𝑄1 and 𝑄2 in 𝐼 follows from the preceding elementary fact. If
𝑄1 ∩𝑄2 were not empty and had 𝑥 in it, then 𝑓(𝑥) ∈ 𝐼0 ∩ 𝐼1, contradicting the
disjointness of 𝐼0 and 𝐼1

We can recursively construct a closed interval sequence {𝐼𝑎1𝑎2···𝑎𝑛}∞𝑛=1 where
𝑎𝑖 ∈ {0, 1} as

𝐺(𝐼𝑎1𝑎2···𝑎𝑛) = 𝐼𝑎2···𝑎𝑛 , (22.13)

where

𝐼𝑎1𝑎2···𝑎𝑛−1𝑎𝑛 ⊂ 𝐼𝑎1𝑎2···𝑎𝑛−1 (22.14)

with the aid of (ia).
If 𝑠 and 𝑠′ (̸= 𝑠) are the length 𝑛 01 sequences. Then (ib) tells us 𝐼𝑠∩𝐼𝑠′ = ∅.
Let 𝑏 ∈ [0, 1) and its binary expansion 𝑏 = 0.𝑎1𝑎2 · · · 𝑎𝑛 · · ·. We can define

𝐼𝑏 as

𝐼𝑏 = ∩∞
𝑛=1𝐼𝑎1𝑎2···𝑎𝑛 , (22.15)

which is closed nonempty set thanks to (22.14) and if 𝑏 ̸= 𝑏′, 𝐼𝑏 ∩ 𝐼𝑏′ = ∅.
Thanks to (22.13)

𝐺(𝐼𝑏) = 𝐼{2𝑏}, (22.16)

where {𝑥} is the fractional portion of a real 𝑥 (i.e., 2𝑏 = 𝑎1.𝑎2 · · · 𝑎𝑛 · · ·, so
{2𝑏} = 0.𝑎2𝑎2 · · · 𝑎𝑛 · · ·)

Define 𝐴 = ∪𝑏∈[0,1)𝐼𝑏. Introduce an equivalence relation ∼ on 𝐴 as 𝑥 ∼ 𝑥′ iff
𝑥, 𝑥′ ∈ 𝐼𝑏 for some 𝑏 ∈ [0, 1). Then, there is a standard surjection 𝜏 : 𝐴 → 𝐴/ ∼,
and if we define 𝐺* = 𝜏 ∘𝐺 ∘ 𝜏−1 : 𝐴/ ∼→ 𝐴/ ∼, it is isomorphic to the (one-
sided) Bernoulli shift on {0, 1} of the coin-tossing process.

We must prove (ii). Let us take an inelegant but the simplest path. If we
take 𝑚 = 𝑝𝑞, obviously

𝐹 𝑛(𝐼0) ∩ 𝐹 𝑛(𝐼1) ⊃ 𝐼0 ∪ 𝐼1. (22.17)

Let 𝐺 = 𝐹𝑚 and construct 𝐼𝑎1𝑎2 as in the proof of (i). They must be on 𝐼, so
we can always choose a pair 𝐼𝑎10 = 𝐽0 and 𝐼𝑎′11 = 𝐽1, where 𝑎1, 𝑎

′
1 ∈ {0, 1}m,

such that they are not adjacent. Then, if we choose 𝐺2 = 𝐹 2𝑚 (i.e, 𝑛 = 2𝑝𝑞)

𝐺2(𝐽0) ∩𝐺2(𝐽1) ⊃ 𝐽0 ∪ 𝐽1. (22.18)
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Remark Actually, we can prove the odd periodicity lemma:
If 𝐺 has a periodic orbit of odd periodicity, then there exists two disjoint closed
intervals 𝐼0 and 𝐼1 such that 𝐺2(𝐼0) ∩𝐺2(𝐽1) ⊃ 𝐼0 ∪ 𝐽1.

Therefore, if 𝐹 has a periodic orbit of period 2𝑛𝑝, 𝐹 2𝑛+1
has such intervals.

22.18 (1) (2) and (5) are equivalent
This is shown via (1) ⇒ (2). Then, 22.16 closes the demonstration with 22.17.

22.19 (1) and (3) are equivalent
There is an 𝐹𝑚 invariant mixing measure 𝜇 for some positive integer 𝑘:

lim
𝑛→𝑖𝑛𝑓𝑡𝑦

𝜇(𝐴 ∩ 𝐹−𝑛𝑚𝐵) = 𝜇(𝐴)𝜇(𝐵), (22.19)

if and only if 𝐹 is chaotic.263

22.20 (1) and (4) are equivalent
(4) ⇒ (1) is shown via (2). The converse is generally hard to prove (proved
with H Takahashi’s results with his help).

22.21 Time correlation function of chaos
Let 𝑥𝑛 be the state at time step 𝑛. The, the time correlation function is defined as
(here we assume the time average of 𝑥𝑛 vanishes or 𝑥𝑛 − ⟨𝑥𝑛⟩ is considered)

𝑐(𝑛) =
1

𝑁

𝑁−1∑︁
𝑘=0

𝑥𝑛+𝑘𝑥𝑘. (22.20)

We are interested in this quantity when the system allows a steady state.
If the map (or dynamics) allows an ergodic invariant measure 𝜇,264,

𝑐(𝑛) =

∫︁
𝑑𝜇(𝑥0)𝑥𝑛𝑥0

[︀
or =

∫︀
𝑑𝜇(𝜔)𝑥𝑛(𝜔)𝑥0(𝜔) is better

]︀
. (22.21)

𝑐(𝑛) ≤ 𝑐(0), because the average of (𝑥𝑛 − 𝑥0)
2 must be non-negative (use station-

ality). Therefore, we often normalize this with 𝑐(0):

𝐶(𝑛) =
⟨𝑥𝑛𝑥0⟩
⟨𝑥2

0⟩
. (22.22)

263This is a special assertion generally true for 𝐶0-endomorphism of an interval.
264We assume it is observable; thus, it is almost surely an absolutely continuous invariant measure.
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If 𝐶(𝑛) → 0 in the large 𝑛 limit, we say the system is mixing,265 where ⟨ ⟩ implies
time or invariant measure average.

We usually think that the faster the time correlation function decays, the more
irregular/disordered/chaotic is the dynamical system. However, the situation is not
that simple, because isomorphisms of dynamical systems can change the decay rate
(or even its algebraic nature), but the KS entropy stays the same.266

For the standard tent map its time correlation decays to zero at time 1 (!), but for
the logistic map, its decay is not that quick (though exponential). Both are mixing
and the KS entropy is log 2, the same.

22.22 Power spectrum
Experimentally (and practically), the time correlation function is computed via its
Fourier transform called the power spectrum:

𝜎(𝜈) =
∑︁
𝑛

𝐶(𝑛)𝑒−2𝜋𝑖𝑛𝜈 . (22.23)

This strategy is advantageous, because the Fourier transform �̂�(𝜈) of a signal can
be efficiently computed with the aid of the Fast Fourier Transform algorithm. The
square (average) of the |�̂�(𝜈)|2 is the power spectrum, and its inverse Fourier trans-
form is the time correlation function thanks to the Wiener-Khinchin theorem 22.23.

22.23 Wiener-Khinchine theorem267

Let 𝑥𝑛(𝜔) be a sampled trajectory with summable stationary time correlation
function 𝐶(𝑛) = ⟨𝑥𝑛𝑥0⟩ (we normalize the signal). Let us compute its power
spectrum 𝜎(𝜈).

We compute the Fourier transform of the signal as

�̂�(𝜈) =
∞∑︁
−∞

𝑥𝑛𝑒
−2𝜋𝑖𝑛𝜈 . (22.24)

Let us compute

⟨�̂�(𝜈)�̂�(𝜈 ′)⟩ =
∑︁
𝑛

∑︁
𝑚

𝐶(𝑛−𝑚)𝑒−2𝜋𝑖𝑛𝜈−2𝜋𝑖𝑚𝜈′ , (22.25)

265A more official definition of mixing will be given later, when we discuss ergodicity.
266The mixing property is isomorphism invariant, so the correlation is guaranteed to decay even-

tually to zero.
267The needed normalization is not carefully traced.
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=
∑︁
𝑚

∑︁
𝑝

𝐶(𝑝)𝑒−2𝜋𝑖(𝜈+𝜈′)𝑚−2𝜋𝑖𝜈𝑝, (22.26)

= 𝛿𝜈,𝜈′
∑︁
𝑝

𝐶(𝑝)𝑒−2𝜋𝑖𝜈𝑝 = 𝛿𝜈,𝜈′𝜎(𝜈). (22.27)

That is,

𝐶(𝑛) =
∑︁

𝜎(𝜈)𝑒2𝜋𝑖𝑛𝜈 . (22.28)

This is called Wiener-Khinchine’s theorem.
This is a practically very important theorem, because the equality (22.28)

is the most convenient method to compute the correlation function: the power
spectrum is easy to compute numerically from the original data thanks to the
fast Fourier transformation (FFT). If you have never heard of the FFT, study
the Cooly-Tukey algorithm.268 32B.12 of

https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.

pdf

explains the principle of FFT.

Note that the time correlation function is positive definite in the sense ap-
pearing in Bochner’s theorem 22.25). This implies that if the correlation func-
tion is continuous at the origin and if normalized as 𝐶(0) = 1, it is a charac-
teristic function of a certain probability distribution.

We know that this ‘certain function’ is the corresponding power spectrum.
Therefore, the power spectrum may be interpreted as a probability distribution
function (of a certain quantity). Then, the information minimization technique
may be used to infer or model the time correlation function.

22.24 Long correlation means sharp spectrum
As we have learned, the power spectrum is easy to observe,269 so it is advan-
tageous to have some ‘feeling’ about the relation between correlation functions
and power spectra.

A summary statement is:
“A signal that has a short time correlation has a broad band.”
This is intuitively obvious, because short time correlation means rapid changes
that must have high frequency components.

There may be several mathematical statements that are related to the above
assertion. Perhaps the most elementary is to look at

𝐶(𝑡) = 𝑒−𝛼|𝑡| ↔ 𝜎(𝜔) =
2𝛼

𝜔2 + 𝛼2
. (22.29)

268As usual, Gauss used this method long before Cooly and Tukey.
269Simply turn on a spectrum analyzer.

https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf
https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf
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That is, the half-width of the power spectrum is the reciprocal of the ‘life-time’
of the signal. (The power spectrum with the Cauchy distribution is often called
the Lorentzian spectrum)

The result can be understood intuitively with the aid of dimensional analysis
𝜏𝜔 ∼ 1.
Exercise 1. The Riemann-Lebesgue lemma tells us that lim|𝜔|→∞ 𝜎(𝜔) = 0
for time-continuous signals. Learn about this lemma. A related statement was
used in the demo of the KAM theorem.⊓⊔
Exercise 2. The Riemann-Lebesgue lemma also tells us that the decay rate
of the power spectrum for large |𝜔| gives information about the smoothness of
the signal.

Demonstrate that if the signal is 𝑚-times continuously differentiable with
respect to time, 𝜎(𝜔) = 𝑜(𝜔−2𝑚) for large 𝜔.

22.25 Bochner’s theorem.
A positive definite function 𝜙 on 𝑅𝑛 that is continuous at the origin and 𝜙(0) =
1 is a characteristic function of some probability measure on 𝑅𝑛.⊓⊔

Here, ‘positive definite’ means the following: for any 𝑛 ∈ N, for any 𝑎𝑖 ∈ C
(𝑖 = 1, · · · , 𝑛) and for any ‘time points’ 𝑡𝑖 ∈ R∑︁

𝑖,𝑗≤𝑛

𝑎𝑖𝑎𝑗𝜙(𝑡𝑖 − 𝑡𝑗) ≥ 0. (22.30)

22.26 Sarkovskii’s theorem270

Sharkovsky ordering of the set of natural numbers is given by the following or-
dering

3 ≺ 5 ≺ 7 ≺ 9 ≺ · · · ≺ 3 · 2 ≺ 5 · 2 ≺ 7 · 2 ≺ 9 · 2 ≺
· · · ≺ 3 · 22 ≺ 5 · 22 ≺ 7 · 22 ≺ 9 · 22 ≺ · · · ≺ 23 ≺ 22 ≺ 2 ≺ 1. (22.31)

Let 𝐼 be either the real line or an interval and 𝑓 : 𝐼 → 𝐼 be a continuous map. Let
us say 𝑎 ≺ 𝑏, if 𝑎 precedes 𝑏 in the Sharkovskii ordering. The three parts of the full
Sharkovsky Theorem are:

270A. N. Sarkovskii, “Coexistence of cycles of a continuous map of a line into itself,” Ukr. Mat.
Z. 16, 61-71 (1964) [See P. Stefan, “A theorem of Sarkovski on the existence of periodic orbits of
continuous endomorphisms of the real line,” Commun. Math. Phys. 54, 237 (1977) as well]. M.
Misiurevicz, “Remarks on Sharkovsky’s theorem,” Am. Math. Month. 104 864 (1997) is a good
summary. Here, the summary follows the third paper.
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Theorem 1. Let 𝑓 : 𝐼 → 𝐼 be a continuous map. If 𝑓 has a cycle of period 𝑛 and
if 𝑛 ≺ 𝑘, then 𝑓 has a cycle of period 𝑘.
Theorem 2. For every 𝑘 there exists a continuous map 𝑓 : 𝐼 → 𝐼 that has a cycle
of period 𝑘, but has no cycles of period 𝑛 for any 𝑛 ≺ 𝑘.
Theorem 3. There exists a continuous map 𝑓 : 𝐼 → 𝐼 that has a cycle of period
2𝑛 for every 𝑛 and has no cycles of any other periods (the existence of the critical
map). [This part is actually included in Theorem 2.]

Sharkovskii’s theorems are beautiful theorems, and tell us clearly the existence of
the critical map. Also they tell us that having a periodic orbit of odd period is the
essence of the complicated trajectories as Hamachi’s proof of the key lemma 22.16
exploits. However, the theorems tell us virtually nothing about chaos, so I will not
give a proof.
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