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21 Lecture 21. Strange attractors

21.1 Landau’s view of turbulence
Turbulence in fluid dynamics is a phenomenon in which all the space-time scales
of apparently random fluctuations simultaneously appear in the fluid motion. It
is believed that this is governed by the (incompressible) Navier-Stokes equation, a
deterministic system.209 Naturally, Landau considered the problem as the couplings
between numerous destabilized modes (Fourier components of the velocity vector).
Let 𝐴 be a complex mode. It obeys a time-dependent Landau-Ginzburg equation

𝑑𝐴

𝑑𝑡
= 𝛾𝐴− 𝑎𝐴|𝐴|2 + 𝑄, (21.1)

where 𝛾 changes its sign when the mode linearly destabilizes, 𝑎 is a positive constant
and 𝑄 denotes the mode coupling terms. Thus, Landau and many statistical physi-
cists thought the problem is closely related to critical phenomena, only the cascade
of the driving proceed in the opposite direction, from large (stirring scale) to small
(viscous dissipation scale).210 The resultant quasi periodic motion with numerous
modes of different frequencies is Landau’s interpretation of turbulence.

21.2 Ruelle and Takens point of view211

Ruelle and Takens pointed out that quasi periodic motion is not the usual ‘chaotic’
motion we observe in dissipative systems, so Landau’s picture must be wrong. They
pointed out that if the dimension of dynamics is too low, no complicated motion is
generically possible (quoting Peixoto’s theorem which will be discussed later). They
pointed out that in any neighborhood of a parallel flow on 𝑇 4 (i.e., 4 mode quasi
periodic motion) there is a flow with a ‘strange attractor.’212 An example may be

209We will not discuss this equation. Its derivation from particle mechanics is not mathematically
justifiable generally, and we do not know whether the equation is well-posed or not. Furthermore,
its mathematical nature is quite sensitive to seemingly benign modifications. For example, if the
viscosity is velocity gradient dependent (as physically natural), then the unique existence of the
solution of the modified Navier-Stokes equations may be proved almost trivially.

210It turned out that the energy flow in the opposite direction (causing intermittency) turned out
to be crucial as well.

211D Ruelle and F Takens, On the nature of turbulence, CMP 20 167 (1971). D. Ruelle, Chance
tells us that they could not publish the paper (by rejections), so he decided to publish it to the
journal for which he was on the editorial board.

212The original proposal is an attractor that is not a manifold, and its cross section is a Cantor
set.
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constructed as follows.
Make a diffeomorphism that maps a solid 2-torus (donut) into itself as illustrated

in Fig. 21.1.

endomorphism

Figure 21.1:

Then, we can suspend (recall Ambrose-Kakutani 17.2) this diffeomorphism as a flow
in 4-space. By a local surgery of the parallel flow on 𝑇 4, we can embed this sus-
pended flow into the flow on 𝑇 4 smoothly. Notice that this surgery can be as local as
one wishes (i.e., the donut in Fig. 21.1 can be indefinitely small). We may conclude
that in any neighborhood of 𝑇 4 quasi periodic flow is a flow with an attractor that
is neither a fixed point nor a periodic orbit.

21.3 3-flow is enough to have “strange attractors”213

If a surgery of 𝑇 3 parallel flow (3-mode quasi periodic flow) exists, then strange
attractors can exist in 3-space flows. Therefore, to show this, the key point is to
make a 2D ‘analogue’ of Fig. 21.1, say, from a disk into itself. Such a map had been
constructed by Plykin214 (Fig. 21.2215):

213S Newhouse, D Ruelle, and F Takens, Occurrence of strange axiom A attractors near quasi
periodic flows on 𝑇𝑚, 𝑚 ≥ 3, CMP 64 35 (1978).

214R V Plykin Source and sink of A-diffeomorphism of surfaces, Math Sbor 94 233 (1974).
215Newhouse et al., proposed different examples as well in their paper.
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Figure 21.2: Plykin’s map from a disk into itself [Fig. 1 of Plykin S Math Sbor 94 233 (1974) ]

21.4 Can we really find ‘chaos’ indefinitely close to 3 or 4 mode quasiperi-
odic systems?
After reading Ruelle-Takens, I numerically studied whether it is easy to find an ex-
ample, and did not see any positive result (before 1979). Later Grebogi, Ott and
Yorke did an extensive study:216

“The results reported here suggest that if arbitrarily small smooth perturbations
exist which destroy three-frequency quasiperiodicity, then they must have to be very
delicately chosen and are thus unlikely to occur in practice. In particular, we believe
that for a fixed typical.”

21.5 Strange attractors
Here, a definition by Palis and Takens217 is given.

For a diffeomorphism 𝜑 : 𝑀 → 𝑀 a positive orbit {𝜑𝑛(𝑥)}𝑛∈N (𝑥 ∈ 𝑀) is sensitive
or chaotic, if there is a positive constant 𝐶 (> 0) such that for any 𝑞 ∈ 𝜔(𝑥) and
for any 𝜀 > 0 ∃𝑛1, 𝑛2, 𝑛 ∈ N+ such that ‖𝜑𝑛1(𝑥) − 𝑞‖ < 𝜀, ‖𝜑𝑛2(𝑥) − 𝑞‖ < 𝜀 and
‖𝜑𝑛1+𝑛(𝑥) − 𝜑𝑛2+𝑛(𝑥)‖ > 𝐶.

A compact set 𝐴 ⊂ 𝑀 is a strange attractor, if there is an open set 𝑈 with a
measure zero subset 𝑁 ⊂ 𝑈 such that ∀𝑥 ∈ 𝑈 ∖ 𝑁 , 𝜔(𝑥) = 𝐴 and its positive orbit

216C Grebogi, E Ott and J A Yorke, Are Three-Frequency Quasiperiodic Orbits to Be Expected
in Typical Nonlinear Dynamical Systems?, PRL 51 339 (1983)

217J Palis and F Takens, Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations
(Cambridge studies in advanced mathematics 35, Cambridge UP, 1993) p8-9. A more general
discussion can be found in Section 7.2 of this book.
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is chaotic.218

Perhaps, however, Bunimovich’s definition may be easier to understand, although
he does not call it a strange attractor and his definition is measure-theoretic:
(1) An invariant set 𝐴 is an attractor, if there exists a neighborhood 𝑈0 of 𝐴 (⊂ 𝑈0)
such that 𝑈𝑡 = 𝑇𝑡𝑈0 ⊂ 𝑈0 for 𝑡 > 0 and ∩𝑡𝑈𝑡 = 𝐴.
(2) For any absolutely continuous measure 𝜇0 on 𝑈0, its time evolved version 𝜇𝑡

weakly converges to an invariant measure 𝜆 on 𝐴 that does not depend on 𝜇0, and
{𝑇𝑡, 𝜆, 𝐴} is mixing.

218That is, almost surely the points in 𝑈 are attracted to 𝐴, and their orbits are chaotic. The
exception set 𝑁 is required because even for hyperbolic attractors dense set of points are attracted
to periodic orbits.
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