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20 Lecture 20. Lorenz system: Advanced top-

ics

20.1 Knotted orbits190,191

Periodic orbits need not be without any knot. The Lorenz model exhibits tons of
such orbits.192

Figure 20.1: Schematic representation of coexisting knotted orbits [Fig. 1.1 of BIRMAN and
WILLIAMS, Topology 22 47 (1983)]

Theorem [Franks and Williams]193A smooth flow on 𝑆3 with positive topological
entropy194 must possess periodic closed orbits in infinitely many different knot type
equivalence classes.

Actually, Ghrist195 proved that there is a structurally stable flow on 𝑆3 that con-

190⟨⟨Knot⟩⟩ A knot is am embedding of 𝑆1 into R3. It is knotted if the image is not homotopic
to 𝑆1.

191Incidentally, if a protein is stretched by pulling both the ends in th opposite direction, generally,
the resultant polypeptide chain should be knotted. It is known that actually, knotted proteins are
very rare.

192JOAN S. BIRMAN and R. F. WILLIAMS, KNOTTED PERIODIC ORBITS IN DYNAMI-
CAL SYSTEMS I: LORENZ’S EQUATIONS, Topology 22 47 (1983).

193J. Franks and R. F. Williams, Entropy and knots, TAMS 291 241 (1985).
194Topological entropy is, practically, the largest KS entropy allowed to the system.
195R. Ghrist, Branched two-manifolds supporting all links, Topology 36 423 (1997).
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tains all knot types as periodic orbits.

If the Lorenz system is periodically perturbed, we can even have links of periodic
orbits.196

20.2 Geometrical Lorenz model197

A very fruitful approach was undertaken, independently, by V. Afraimovich, V.
Bykov, L. Shirnikov [2], and by J. Guckenheimer and R. Williams [3, 4]. Based
on the behavior observed in the previous Lecture (Fig. 20.2 Leftmost198), they ex-
hibited a list of geometric properties such that any flow satisfying these properties
must contain a “strange attractor,”199 with orbits converging to it being sensitive
to initial conditions. Most important for the general theory, they proved that such
flows do exist in any manifold with dimension 3. These examples came to be known
as geometric Lorenz models.

P

foliation

Figure 20.2: Geometric Lorenz model. The return map 𝑃 maps Σ ∖ Γ to Σ. 𝐼 is the bottom
segment (the green segment) of Σ. [Fig. 6, 8 of Viana Math Intel. 22(3) 7 (2000)]

In the above figure 𝛾± (and {𝑂} (fixed point)) combined is the unstable manifold.
The vertical direction is the (strong) stable direction. The weak stable direction is

196Y. Aizawa and T. Uezu, Topological aspects in chaos and in 2𝑘-period doubling cascade, Prog.
Theor. Phys. 67 982 (1982).

197M Viana, “What’s new on Lorenz strange attractors?” Math Intel. 22(3) 7 (2000).
198From https://ubisafe.org/explore/attractor-clipart-lorenz-attractor/.
199Here, the word is merely used to indicate an attracting set containing non-periodic orbits.

https://ubisafe.org/explore/attractor-clipart-lorenz-attractor/


234

orthogonal to these manifolds. The stable manifold is spanned by these stable direc-
tions close to 𝑂.

The cross section is in the right of Fig. 20.2. We can define a return map 𝑃 which
is strongly contracting because of (19.14).

For the geometrical model, also the following foliation is assumed for 𝑃 : Σ is fo-
liated roughly transversally to 𝐼 such that 𝑃 is compatible with the foliation. That
is, if 𝑧 and 𝑧′ (̸= 𝑧) are on the same leaf, so are 𝑃 (𝑧) and 𝑃 (𝑧′). Furthermore, the
distance between 𝑃 𝑘(𝑧) and 𝑃 𝑘(𝑧′) shrinks to zero as 𝑘 → ∞. This means a leaf 𝛾1
is mapped inside some leaf 𝛾2. Since we can specify a leaf by its ‘𝑥’ coordinate of the
crossing point with 𝐼, 𝑃 defines a map 𝑓 from 𝐼 into itself: 𝑓 : 𝐼 → 𝐼. We assume

|𝑓(𝑥) − 𝑓(𝑥′)| ≥ 𝜏 |𝑥− 𝑥′| (20.1)

with 𝜏 > 1. The graph of 𝑓 looks like Fig. 20.3 (cf. Fig. 18.11).

Figure 20.3: Interval maps related to the geometrical Lorenz model. Recall Fig. 18.11. [Fig. 10
of Viana Math Intel. 22(3) 7 (2000)]

The existence of a strange attractor containing 𝑂 was proved for the geometric
model. It has a topologically transitive orbit (if 𝜏 >

√
2).

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shil’nikov. On the appearance and structure of the

Lorenz attractor. Dokl. Acad. Sci. USSR, 234 336 (1977).

[2] J. Guckenheimer and R. F. Williams. Structural stability of Lorenz attractors. Publ. Math.

IHES, 50 59-72 (1979).

[3] R.F. Williams. The structure of the Lorenz attractor. Publ Math. IHES, 50 73 (1979).

20.3 Lorentz attractor exists200

Theorem [Tucker 1998] For the classical parameters, the Lorenz equations (19.12)

200W. Tucker, The Lorenz attractor exists. PhD thesis, Univ. Uppsala, 1998. Text and program
codes available at www.math.uu.se/~warwic/.; W. Tucker, The Lorenz attractor exists. C. R.
Acad. Sci. Paris, 328, Serie I, Mathematique: 1197-1202 (1999).

www.math.uu.se/~warwic/


20. LECTURE 20. LORENZ SYSTEM: ADVANCED TOPICS 235

support a robust strange attractor.

Tucker’s computer-assisted proof is a combination of two main ingredients:201

(I) He uses rigorous numerics to find a cross-section Σ and a region 𝑁 in Σ such
that orbits starting in 𝑁 always return to it in the future. After choosing reasonable
candidates, Tucker covers 𝑁 with small rectangles, as in Figure 20.4, and estimates
the forward trajectories of these rectangles numerically, until they return to Σ. His
computer program also provides rigorous bounds for the integration errors, good
enough so that he can safely conclude that all of these rectangles return inside 𝑁 .
This proves that the equations do have some sort of attractor.

Figure 20.4: Attractor construction by Tucker [Fig. 4 of of Viana Math Intel. 22(3) 7 (2000)]

(II) Normal form theory comes in to avoid the accumulation of integration errors
when trajectories are close to the equilibrium sitting at the origin.

20.4 Pseudo-orbit tracing property202

Here we consider a map 𝑇 : 𝑀 → 𝑀 , where 𝑀 is a metric space. {𝑥𝑛} is a 𝛿-pseudo-
orbit if

‖𝑇𝑥𝑛 − 𝑥𝑛+1‖ < 𝛿. (20.2)

We say the orbit {𝑇 𝑛𝑥} 𝜀-traces the pseudo-orbit {𝑛𝑛}, if

‖𝑇𝑛𝑦 − 𝑥𝑛‖ < 𝜀. (20.3)

We say 𝑇 has a pseudo-orbit tracing property (POTP), if for any 𝜀 (> 0) we can
find 𝛿 (> 0) such that 𝛿-pseudo-orbit can be 𝜀-traced by an orbit {𝑇 𝑛𝑦}.

201M Viana, “What’s new on Lorenz strange attractors?” Math Intel. 22(3) 7 (2000).
202There is a general theorem that only the B systems can have POTP. That is, only if the system

is very chaotic, POTP holds. [A necessary and sufficient condition for a system to have POTP is
that it is isomorphic to a Markov subshift (Kubo Th 3.16). A Markov subshift is isomorphic to a
Bernoulli shift (essentially the Ornstein theorem to be discussed later).]
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δ-pseudo orbit

ε-tracing orbit

δ

ε

Figure 20.5: A pseudo orbit with a tracing property

This property is practically important. Pseudo-orbit tracing property implies that
for a numerically obtained orbit with error 𝛿 there is a true orbit close to it for all
time. If a system lacks POTP, then it is questionable that numerical simulation can
always tell something correct about the system.

POTP for continuous dynamical system can be defined similarly (actually, the
illustration in Fig. 20.5 is for this case).

We know chaotic billiards have POTP. Thus, if you make a reasonable numerical
simulation, there is a true orbit starting somewhere. However, POTP never guaran-
tees that pseudo orbits correctly sample the true orbits, so if you are interested in
the statistical behavior of chaotic systems, you must not rely on POTP.

20.5 Lorenz system is not 𝜀-traceable
The precise statement is that the geometrical Lorenz model lacks POTP. This is
proved by showing the map 𝑓 : 𝐼 → 𝐼 defined in 20.2 lacks POTP. 𝑓 satisfies (see
Fig. 20.3)

𝑓(𝑐 + 0) = 0, 𝑓(𝑐− 0) = 1, (20.4)

𝑓 ′ > 𝜆 ≥ 1, (20.5)

𝑓(0) < 𝑐 < 𝑓(1), (20.6)

lim
𝑥→𝑐

𝑓 ′(𝑥) → ∞. (20.7)

Theorem [Komuro]203 𝑓 : 𝐼 → 𝐼 has the POTP if and only if 𝑓(0) = 0 and 𝑓(1) = 1.

The above theorem means that

203M. Komuro, Lorenz attractor do not have the pseudo-orbit tracing property, J Math Soc Jpn
37 489 (1985).
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Theorem. Let 𝑀 be a 3-dimensional compact manifold. Then the set of vector
fields with the strong204 POTP is not dense in 𝒳 2(𝑀).

It is worth noting the following empirical fact. Usually, if a system exhibits ‘chaotic
behavior’ in a certain parameter range, increasing the numerical accuracy in simu-
lating the system shrinks the chaotic parameter range. The Lorenz system is known
to be the opposite (at least in certain parameter ranges).205

20.6 Lorenz template
A template is the union of strips, and each strip is a copy of the standard 2-flow box
[0, 1]× [0, 1] with flow parallel to the 𝑧 edge. Where the strips meet, along branches,
the vectors coincide so that a unique semi-flow is determined. The copying home-
omorphism stretches the 𝑥 = 1 end so that the resulting flow, where defined, is
expanding. Two or more of these strips are assembled into a template, so that the
resulting flow is well defined in the positive direction(, but at the branches it is not
well defined for the negative time direction).206

An example is the Lorenz template (Fig, 20.6). We can understand the periodic
orbits of the Lorenz system.

Figure 20.6: Lorenz template [Fig. 2 of Williams BAMS 35 145 (1998)]

In figure 20.6, the template consists of two strips, 𝑥 and 𝑦, so that the flow on the
left side passes around to the left and back down to the branch. Similarly, the flow
on the right passes around to the right behind the strip 𝑥 and back down to the
branch. There is a middle portion at each branch, called a gap, at which the orbits
leave the template. Orbits which leave are no longer of interest to us. Note that the
periodic orbits never leave. The dark horizontal line is a branch; above it two planar

204For time continuous systems monotone time variable change is also allowed for the definition
of POTP. If this time ‘dilation is restricted to the scale range between 1 ± 𝜀 globally, we say it is
the strong POTP. Thus, numerically, we need strong POTP.

205M. Komuro, private communication (1979).
206 R. F. Williams, The universal template of Ghrist, Bull AMS 35 145 (1998).
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pieces come together where they are tangent to each other. Thus each point on a
branch lies in two smooth disks which coincide below the branch, but are disjoint
above. Each branch in a template is homeomorphic to the unit interval [0,1] and
called a branch line.

As can be seen from Fig. 18.10, if there is no gap, the Lorenz template is exactly
the spiral figure in this figure. For example, there is a one-to-one correspondence
between periodic orbits of the two templates.

20.7 Shimada’s Ising representation of Lorenz attractor207

The Lorenz attractor has two wings, so one rotation in one wing is assigned +1 spin
and the other −1 to code the sequence. Since the orbits are deterministic, this coding
may be interpreted as the coding of the initial position:

𝑥 → 𝑠1𝑠2 · · · , 𝑠𝑛 · · · , where 𝑠𝑖 ∈ {−1, 1}. (20.8)

This map can also be understood as a map from 𝑥 to 𝑏 ∈ [0, 1], if we regard (−1 as
0 and +1 as 1 and read the sequence as the binary expansion of a number in [0, 1])

𝑏 =
∞∑︁
𝑘=1

(︂
𝑠𝑘 + 1

2

)︂
2−𝑘. (20.9)

This is illustrated in Fig. 20.7
The spin configuration converges to a stationary distribution (Fig. 20.8 Left) which

exhibits a self-similar structure due to the translational symmetry (time-stationarity)
of the original system and the coding scheme. We can construct a 1D Ising Hamil-
tonian to reproduce this distribution as

𝐻 = −
∑︁
𝑖,𝑗

𝐽(|𝑖− 𝑗|)𝑠𝑖𝑠𝑗. (20.10)

The coupling constant decays exponentially as in Fig.20.8Right.

The entropy per spin mus t be the KS entropy of the Poincarémap . The lat-
ter may be estimated from the expansion rate of the nearby orbits (= Lyapunov
characteristic number; we will discuss later). Numerically, Shimada confirmed the
agreement.

207I Shimada, Gibbsian distribution on the Lorenz attractor,” Prog Theor Phys 62 61 (1979).
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Figure 20.7: Correspondence 𝑥 → 𝑏 [Fig. 1 of Shimada PTP 62 61 (1979)]

Figure 20.8: Left 9 spin stationary configuration distribution; spin configurations are described
as 𝑏. Right: The coupling constant corresponding to the configurations (𝛾 is our 𝑟) [Fig. 2 of
Shimada PTP 62 61 (1979)]
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20.8 Galerkin method
Reduction of PDE to a finite number of coupled ODEs may be very useful numerically
as well as summarizing the system behavior in a finite dimensional space. A popular
strategy is to use an appropriate orthogonal function set.

Consider a functional equation in a ‘spatial domain’ 𝐷:

𝑑

𝑑𝑡
𝑢 = 𝑁 [𝑢], (20.11)

where 𝑁 is a general nonlinear operator that can contain spatial derivatives. Take
an appropriate orthonormal basis ℬ = {𝜑𝑛(𝑥)} (assumed as a real function set) for
the set of functions on 𝐷 (considered as a Hilbert space). Expand 𝑢 as

𝑢(𝑡, 𝑥) =
∑︁
𝑗

𝑐𝑗(𝑡)𝜑𝑗(𝑥), (20.12)

and introduce it into (20.11)

∑︁
𝑗

𝜕𝑐𝑗
𝜕𝑡

𝜑𝑗(𝑥) = 𝑁

[︃∑︁
𝑗

𝑐𝑗(𝑡)𝜑𝑗(𝑥)

]︃
. (20.13)

Then, project this onto 𝜑𝑘:

𝜕𝑐𝑘
𝜕𝑡

=

∫︁
𝐷

𝑑𝑥 𝜑𝑘(𝑥)𝑁

[︃∑︁
𝑗

𝑐𝑗(𝑡)𝜑𝑗(𝑥)

]︃
. (20.14)

To make this system manageable, we choose a finite subset ℬ′ of ℬ. The resultant
set of (generally nonlinear) ODEs defines a Galerkin approximation to (20.11).208

One practical approach is to Fourier expand physically convenient ON function set
{𝜑𝑘} and use the result to compute (20.14). For example, Yahata used this method
to reduce the Taylor flow problem to 32 dimensions.209

208This is related to the principal component analysis.
209H. Yahata, Temporal Development of the Taylor Vortices in a Rotating Fluid, PTP Supp 64

176 (1978); he chose the number of functions to reproduce experimental results (say, bifurcations
given by Harry Swinney). Some people try to choose ℬ′ (or ℬ) to minimize the errors, but they
actually use heavy numerical solutions. However, you might have to do this optimization for only
one state (or a parameter set) of the system and could use the result for ‘neighbor’ states, so
one-time heavy investment may pay.
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20.9 Use of inertial manifold in conjunction with Galerkin method210

To be added (maybe).

210C. FOIAS, M. S. JOLLY, I. G. KEVREKIDIS, G. R. SELL and E. S. TITI, ON THE COM-
PUTATION OF INERTIAL MANIFOLDS PL A131 433 (1988).
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