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19 Lecture 19. Lorenz system: Introduction

Warning
After switching the OS (to Mojave) perhaps security has become tighter, and I can-
not run many of the copied demos (due to ‘unsupported plug-in’).

Introductory video
The following video is an leisurely introduction to the Lorenz system (Chaos Chapter
7), giving a nice overview of what we should understand mathematically:

https://www.youtube.com/watch?v=aAJkLh76QnM&frags=pl%2Cwn

We look at the key portions of Lorenz’s historic paper, “Deterministic nonperiodic
flow” (1963); here the basic equation derived by Saltzman is outlined 19.2. Lorenz
numerically established his system is intrinsically nonperiodic. We watch various
behaviors of the Lorenz equation. Notice that to reduce the original system to a
simpler system (e.g., time discrete dynamical system) is crucial (Fig. 19.3). You
see very similar structures we already encountered in a simpler Ito’s system in the
preceding Lecture. Then, we see a similar system describing magnetic reversal of the
earth (the Rikitake model 19.7).

19.1 Lorenz’s motivation

Certain hydrodynamical systems exhibit steady-state flow patterns, while oth-
ers oscillate in a regular periodic fashion. Still others vary in an irregular,
seemingly haphazard manner, and, even when observed for long periods of
time, do not appear to repeat their previous history.

This is the first paragraph of Introduction to “Deterministic nonperiodic flow” by E
N Lorenz.186

The short-range weather forecaster, however, is forced willy-nilly to predict the
details of the large scale turbulent eddies—the cyclones and anticyclones which
continually arrange themselves into new patterns. Thus there are occasions
when more than the statistics of irregular flow are of very real concern.

186J Atmos Sci., 20, 130 (1963).

https://www.youtube.com/watch?v=aAJkLh76QnM&frags=pl%2Cwn
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As a system to study Lorenz chose a fluid layer heated from below (the Rayleigh-
Benard convection problem):

Rayleigh (1916) studied the flow occurring in a layer of fluid of uniform depth
𝐻, when the temperature difference between the upper and lower surfaces is
maintained at a constant value ∆𝑇 . Such a system possesses a steady-state
solution in which there is no motion, and the temperature varies linearly with
depth. If this solution is unstable, convection should develop: In the case where
all motions are parallel to the 𝑥𝑧-plane, and no variations in the direction of
the 𝑦-axis occur, the governing equations may be written (see Saltzman, 1962):

𝜕

𝜕𝑡
∇2𝜓 = −𝜕(𝜓,∇𝑠𝜓)

𝜕(𝑥, 𝑧)
+ 𝜈∇4𝜓 + 𝑔𝛼

𝜕𝜃

𝜕𝑥
. (19.1)

𝜕

𝜕𝑡
𝜃 = −𝜕(𝜓, 𝜃)

𝜕𝑥, 𝑧)
+

∆𝑇

𝐻

𝜕𝜓

𝜕𝑧
+ 𝜅∇2𝜓. (19.2)

Here 𝜓 is a stream function for the two-dimensional motion, 𝜃 is the departure of
temperature from that occurring in the state of no convection, and the constants
𝑔, 𝛼, 𝜈, and 𝜅 denote, respectively, the acceleration of gravity, the coefficient of
thermal expansion, the kinematic viscosity, and the thermal conductivity.

Here, let us try to understand Saltzman’s equation from basic physics.

19.2 Saltzman’s equation187

For the system considered in 19.1 the basic equations are the incompressible
Navier-Stokes equation

𝜕

𝜕𝑡
𝑣 + (𝑣 · ∇)𝑣 = −∇𝑃 + 𝑔𝛼𝑇𝑒𝑧 + 𝜈∇2𝑣 (19.3)

with ∇ · 𝑣 = 0 and the equation governing the thermal advection for 𝑇 (tem-
perature departure)

𝜕

𝜕𝑡
𝑇 + (𝑣 · ∇)𝑇 = 𝜅∇2𝑇. (19.4)

From (19.3) we can derive the vorticity equation (vorticity 𝜔 = curl𝑣) as

𝜕𝜔

𝜕𝑡
+ (𝑣 · ∇)𝜔 = (𝜔 · ∇)𝑣 + 𝑔𝛼

𝜕𝑇

𝜕𝑥
+ 𝜈∇2𝜔. (19.5)

187B. Saltzman, “Finite amplitude free convection as an initial value problem-I,” J. Atmos. Sci.,
19, 329 (1962). From the Acknowledgement of Lorenz’s paper, “The writer is indebted to Dr.
Barry Saltzman for bringing to his attention the existence of nonperiodic solutions of the convection
equations.”
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Here, we assume the flow is translationally symmetric along the 𝑦-axis, so
𝑣 = (𝑢,𝑤) is a 2-vector. The incompressibility means there is 𝜓 (streaming
function) such that curl𝜓 = (𝑢,𝑤)188

𝑢 = −𝜕𝜓
𝜕𝑧
, 𝑤 =

𝜕𝜓

𝜕𝑥
. (19.6)

The vortex equation (19.5) reads, since

𝜔 = (0, 𝜕𝑥𝑤−𝜕𝑧𝑢, 0) = (0,∇2𝜓, 0), 𝑣·∇(𝐴,𝐵) = −𝜕𝜓
𝜕𝑧

𝜕𝐴

𝜕𝑥
+
𝜕𝜓

𝜕𝑥

𝜕𝐵

𝜕𝑧
=
𝜕(𝐴,𝐵)

𝜕(𝑥, 𝑧)
,

(19.7)
𝜕

𝜕𝑡
∇2𝜓 − 𝜕(𝜓,∇2𝜓)

𝜕(𝑥, 𝑧)
= 𝑔𝛼

𝜕𝑇

𝜕𝑥
+ 𝜈∇4𝜓. (19.8)

Now, 𝑇 = 𝜃+ Δ𝑇
𝐻
𝑧 is introduced to (19.8) and (19.4), and we get the equations

in 19.1.

19.3 ‘Derivation’ of Lorenz equation
Saltzman derived a set of ODE by expanding 𝜓 and 𝜃 in Fourier series. Solving
the ODE (quoted from Lorenz, ibid.):

He then obtained time-dependent solutions by numerical integration. In
certain cases all except three of the dependent variables eventually tended
to zero, and these three variables underwent irregular, apparently nonpe-
riodic fluctuations.

Lorenz then thought that if only the three surviving coefficients are kept from
the start by ‘drastically’ truncating the expansion as

𝑎(1 + 𝑎2)−1𝜅−1𝜓 = 𝑋
√

2 sin(𝜋𝑎𝑥/𝐻) sin(𝜋𝑧/𝐻), (19.9)

𝜋𝑅−1
𝑐 ∆𝑇−1𝜃 = 𝑌

√
2 cos(𝜋𝑎𝑥/𝐻 sin(𝜋𝑧/𝐻) − 𝑍 sin(2𝜋𝑧/𝐻),

(19.10)

the same results should be obtained. The outcome is the Lorenz equation:

�̇� = −𝜎𝑋 + 𝜎𝑌, (19.11)

�̇� = 𝑟𝑋 − 𝑌 −𝑋𝑍, (19.12)

�̇� = 𝑋𝑌 − 𝑏𝑧, (19.13)

188Let 𝜔 = −𝑢𝑑𝑧 + 𝑤𝑑𝑥. Then, incompressibility means 𝑑𝜔 = 0, so the converse of Poincaré’s
lemma (= closedness means exactness) means there is 𝜓 such that 𝜔 = 𝑑𝜓.
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where 𝑟, 𝜎, 𝜏 are positive constants and ‘dot’ means the derivative wrt the di-
mensionless time 𝜏 .189

Remark: How ‘qualitatively’ good is (19.12) for understanding the original
system? This is not a very relevant question in the present conceptual study,
but if you can solve a PDE as a set of a small number of ODEs, it is numerically
still very advantageous. This question is related to various ‘finite dimensional
attractors’ of PDE systems. See (??) as a general approach.

19.4 What Lorenz established
The phase volume of the space spanned by (𝑋, 𝑌, 𝑍) shrinks (i.e., div 𝑣 < 0):

𝜕�̇�

𝜕𝑋
+
𝜕�̇�

𝜕𝑌
+
𝜕�̇�

𝜕𝑍
= −(𝜎 + 𝑏+ 1). (19.14)

The origin is a fixed point. If 𝑟 < 1 it is a sink. Note that 𝑟 = 1 means 𝑅𝑎 = 𝑅𝑐

where the advection starts. If 𝑟 > 1 it is a hyperbolic saddle with one unstable
direction.

For 𝑟 > 1 there are two more fixed points: 𝑋 = 𝑌 = ±
√︀
𝑏(𝑟 − 1), 𝑍 = 𝑟 − 1. If

𝜎 < 𝑏 + 1 they are still sinks (one stable direction + two more stable but spiraling
plane), corresponding to steady convections. If 𝜎 > 𝑏 + 1, then it has a plane of
instability (Fig. 19.1).

Fig. 19.1 What Lorenz observed numerically

Fig. 1. Numerical solution of the convection equations. Graph of 𝑌 as a function of time for the

first 1000 iterations (upper curve), second 1000 iterations (middle curve), and third 1000 iterations

(lower curve).

Fig. 2. Numerical solution of the convection equations. Projections on the 𝑋𝑌 -plane and the

𝑌 𝑍-plane in phase space of the segment of the trajectory extending from iteration 1400 to iteration

1900. Numerals “14,” “15,” etc., denote positions at iterations 1400, 1500, etc. States of steady

convection are denoted by 𝐶 and 𝐶 ′.

Fig. 3. Isopleths of X as a function of Y and Z (thin solid curves), and isopleths of the lower of

two values of X, where two values occur (dashed curves), for approximate surfaces formed by all

points on limiting trajectories. Heavy solid curve, and extensions as dotted curves, indicate natural

boundaries of surfaces.

Let us see the actual solution.
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.

189𝜏 = 𝜋2(1 + 𝑎2)𝜅𝑡/𝐻, 𝜎 = 𝜈/𝜅 (the Prandtl number), 𝑟 = 𝑅𝑎/𝑅𝑐 and 𝑏 = 4/(1 + 𝑎2). 𝑅𝑎 =
𝑔𝛼𝐻3Δ𝑇/𝜈𝜅 is the Rayleigh number, and 𝑅𝑐 = 𝜋4𝑎−2(1 + 𝑎2)2 is the critical Rayleigh number.

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
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Fig. 1

Fig. 2
Fig. 3

Figure 19.1: What Lorenz found numerically [Fig. 1-3 of Lorenz JAS 20 130 (1963).]

html

The initial demo uses the initial conditions in the paper. You can see the solutions
sensitively depend on the initial choices. After that you can choose the intial 𝑥 by
tapping the panel (Fig. 19.2).

As to the global feature about Fig. 3 in Fig. 19.1 Lorenz said:

Thus, within the limits of accuracy of the printed values, the trajectory is
confined to a pair of surfaces which appear to merge in the lower portion of
Fig. 3. The spiral about C lies in the upper surface, while the spiral about C’
lies in the lower surface. Thus it is possible for the trajectory to pass back and
forth from one spiral to the other without intersecting itself.

He observes further

Returning to Fig. 2, we find that the trajectory apparently leaves one spiral only
after exceeding some critical distance from the center. Moreover, the extent to
which this distance is exceeded appears to determine the point at which the
next spiral is entered; this in turn seems to determine the number of circuits
to be executed before changing spirals again.

Therefore, he collected successive local max values {𝑀𝑛} of 𝑍 and plotted 𝑀𝑛+1

against 𝑀𝑛 (Fig. 19.3).

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
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Figure 19.2:

Figure 19.3: Lorenz map [Fig. 4,5 of Lorenz JAS 20 130 (1963).]

Fig. 19.3 Lorenz map

Left: Corresponding values of relative maximum of 𝑍 (abscissa) and subsequent relative maximum

of 𝑍 (ordinate) occurring during the first 6000 iterations. The right figure (the tent map) is proposed

to understand the system conceptually.

Lorenz discussed the sensitive dependence of the system to disturbance with the aid
of the tent map.

In Conclusion of his paper Lorenz writes:

When our results concerning the instability of nonperiodic flow are applied
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to the atmosphere, which is ostensibly nonperiodic, they indicate that pre-
diction of the sufficiently distant future is impossible by any method, unless
the present conditions are known exactly. In view of the inevitable inaccuracy
and incompleteness of weather observations, precise very-longrange forecasting
would seem to be non-existent.

Let us watch a live Lorenz map. You must be a bit patient:
Lorenz map:

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzzmax.

html (Fig. 19.4).

Figure 19.4:

The 𝑟 dependence of the phase portrait discussed a bit above may be glimpsed
from the following panels:

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzpgrd.

html (Fig. 19.5).

19.5 Illustration of Lorenz system behaviors
Now, you can scan 𝑟 to watch what happens (see Fig. 19.6L):

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzphsp.

html

For wider range of 𝑟 (𝑋𝑍-view is popular):
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzr320.

html

You can slide the 𝑟 scale to choose its value, and then tap the panel. The intial

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzzmax.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzzmax.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzpgrd.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzpgrd.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzphsp.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzphsp.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzr320.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzr320.html
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Figure 19.5: “𝜔-limit set(s) may be guessed. You can choose the intial condition on the panel

position is where you tap the panel.

Figure 19.6: Right: wider range.

The following is an interactive visualization in which you can change 𝑟, 𝜎 and 𝑏:
http://www.malinc.se/m/Lorenz.php

You can watch basically all the behaviors in Fig. 19.5. To see how the system at-
tractors evolve you may have to be very patient.

A 3D trajectory is visualized with a stereoplot:
https://www.youtube.com/watch?v=-tpRZCnoih0

Fate of small change in the initial conditions:

http://www.malinc.se/m/Lorenz.php
https://www.youtube.com/watch?v=-tpRZCnoih0


230

https://www.youtube.com/watch?v=FYE4JKAXSfY 3 point animation (esp.
after 50 sec)

You can zoom in:
https://www.ibiblio.org/e-notes/webgl/lorenz_model.html

19.6 Physical model mimicking Lorenz
Watch Chaos Chapter 8 beyond about 6 min:

https://www.youtube.com/watch?v=SlwEt5QhAGY&frags=wn

A schematic model is here:
https://www.youtube.com/watch?v=M-94UxoZD2M&frags=pl%2Cwn

19.7 Earth dynamo reversal
The magnetic field of the earth reverses from time to time, and gave a decisive proof
of plate tectonics.

A simple model to explain this reversal is the Rikitake model:
Rikitake, T., Oscillations of a system of disk dynamos, Proc. Cambr. Phil. Soc.,

54 89 (1958).
Tsuneji Rikitake, Nonsteady Geomagnetic Dynamo Models, Geophys J Internat

35 277 (1973).

�̇� = −𝜈𝑥+ 𝑧𝑦, (19.15)

�̇� = −𝜈𝑦 + (𝑧 − 𝑎)𝑥, (19.16)

�̇� = 1 − 𝑥𝑦. (19.17)

This system exhibits just the Lorenz-like attractors.

http://demonstrations.wolfram.com/RikitakeModelOfGeomagneticReversal/

What is a lesson to learn as a researcher? Whatever a model or a system you study
is, study it throughly with conceptual questions.

https://www.youtube.com/watch?v=FYE4JKAXSfY
https://www.ibiblio.org/e-notes/webgl/lorenz_model.html
https://www.youtube.com/watch?v=SlwEt5QhAGY&frags=wn
https://www.youtube.com/watch?v=M-94UxoZD2M&frags=pl%2Cwn
http://demonstrations.wolfram.com/RikitakeModelOfGeomagneticReversal/
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Figure 19.7: magnetic reversals recorded near Iceland
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