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18 Lecture 18. Introductory examples of chaos

18.1 K. Ito’s model of great earthquakes
Island arcs such as the Japanese Archipelago consist of blocks spaced by faults. Each
block is being pulled down by a subducting ocean plate and accumulates strain en-
ergy (Fig. 18.1). When this energy reaches a threshold, the block breaks (a great

Block1

Block 2
Ocean Plate

Figure 18.1: The great earthquake model. The subducting ocean plate pulls two blocks down.
The blocks accumulate strain energy and at some point they break apart from the plate and
earthquakes occur. Then, the blocks return to the original positions.

periodic oscillation

Figure 18.2: If there is only one block, it is a simple model of the relaxation oscillator.

earthquake occurs) and the stored strain energy is quickly reset to its lowest value;
the model chooses this value as the energy origin.

If there is no interaction among blocks, earthquakes occur periodically (Fig. 18.2).
This is probably the simplest model of the relaxation oscillator. See a traditional
example https://www.youtube.com/watch?v=JU0mNSRtHMM&frags=pl%2Cwn.

If there are more than one blocks, the earthquake occurring in one block must
affect the surrounding blocks. Ito thought that the earthquake produces cracks in
the neighboring blocks that decelerate the accumulation rate of the strain energy.

The simplest nontrivial case is the two-block case. The following rules of time
evolution can model the idea depicted above. Let 𝑢𝑖 be the strain energy stored in
block 𝑖 (𝑖 = 1, 2).
(1) The rate of increase of the strain energy is initially 𝑏, which is assumed to be a
positive number.
(2) If 𝑢𝑖 reaches 1, an earthquake occurs in block 𝑖. Subsequently,

(2a) 𝑢𝑖 is reset to 0, and the rate of increase of strain energy is also reset to 𝑏.
(2b) The rate of increase of the strain energy in the other block without the oc-

currence of the earthquake becomes 𝑏−1; if the rate is already with this value, it is

https://www.youtube.com/watch?v=JU0mNSRtHMM&frags=pl%2Cwn
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maintained as 𝑏−1.
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Figure 18.3: A typical behavior of stored energies 𝑢1 and 𝑢2 in two coupled blocks 1 and 2,
respectively. This is the case of mutual hindrance 𝑏 > 1. The earthquake in one block decelerates
the energy increase in the other block. Vertical arrows denote hindering effects on strain energy
accumulation. (Except for the beginning stage of the system behavior, the rates of energy increase
of the blocks never coincide.)

A typical behavior under the above rule is in Fig. 18.3. If the rate of increase of the
strain energy 𝑏 > 1, we see apparently complicated behavior.

18.2 Trajectories on 𝑇 2

The time evolution of the two blocks can be illustrated as a trajectory on 𝑇 2 =
[0, 1]× [0, 1] (with periodic boundary conditions), if we plot 𝑢1 on the horizontal axis
and 𝑢2 at the same moment on the vertical axis (Fig. 18.4).
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Figure 18.4: The typical time dependence of the stored energy in the blocks may be depicted
as a trajectory on [0, 1]× [0, 1]. Horizontal jumps correspond to the earthquakes in block 1 and the
vertical jumps those in block 2.

The rule of the game may be illustrated as in Fig. 18.5. We can write the rules in
formulas, but no new insight is obtained by doing so. For example, a portion of the
trajectory with slope less than 1 on the square implies that the energy increase rate
in block 1 is larger than that for block 2.
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Figure 18.5: The rules for the motion: after a jump how the slope changes is specified. If the
point reaches L1 (the top edge; an earthquake in block 2), it jumps down to the point following
the broken line, and then start running with slope 𝑏2 (because 𝑢2 increases at rate 𝑏 and 𝑢1 at rate
𝑏−1); If the point reaches L2 (the right edge), it jumps to the left according to the broken line and
start running with slope 𝑏−2 (𝑏 > 1 assumed). If the opposite edges of the square are glued, we can
make a torus, and we obtain a continuous trajectory on the torus (as seen in Fig. 18.4).

18.3 Trajectories on universal covering space of 𝑇 2

Instead of gluing the opposite edges of the square to make the torus, we may tessel-
late many copies of the square to make the so-called universal covering space.173 In
this space (i.e., instead of returning to itself, moving on to next tiles) we can clearly
see what is going on (Fig. 18.6).

In Fig. 18.6 Right three trajectories starting from closely located initial points are
depicted.174 Earthquakes occur in block 1 (resp. block 2) when the trajectory crosses
the vertical (resp. horizontal) lines. If 𝑏 > 1, two initially close trajectories come
apart exponentially in time. The great earthquake model is with 𝑏 > 1, so according
to this model long time prediction of earthquakes is impossible.

18.4 As a vector field on two 𝑇 2

173To obtain elementary knowledge of topology I. M. Singer and J. A. Thorpe, Lecture Notes on
Elementary Topology and Geometry (Undergraduate Texts in Mathematics) (Springer 1976; original
1967) is the best.

174The distance between the two adjacent points increases as 𝑒𝑡𝜆 as a function of time on the
average, where 𝜆 is called the Lyapunov exponent (will be discussed in a later lecture). In the present
example, it can be computed as 𝜆′/𝜏 , where 𝜆′ is the exponent defined for the corresponding discrete
system in Fig. 18.11 and 𝜏 is the average sojourn time on a single tile. To estimate 𝜆′ may not be
easy, but it is obviously positive as can be trivially seen from the reduced map in Fig. 18.12.
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Figure 18.6: Left: A typical trajectory on the so-called universal covering space that is made by
tessellating the squares instead of forming a torus. The crossings with the vertical lines correspond
to earthquakes in block 1 and those with the horizontal lines to those in block 2. Right: Locally,
trajectories depart from each other exponentially in time. (Around the lattice points something
complicated may happen, but this is a global problem.) (To prove that the trajectories separate
from each other exponentially on the average, the easiest way is to use the one-dimensional map
shown Fig. 18.12.)

If Fig. 18.4 is understood as a description of a two-dimensional motion, we must
conclude that the trajectory follows the vector field 𝑣1 in Fig. 18.7 at one time, and
then 𝑣2 at another. The history up to the point determines on which flow (vector
field) the trajectory follows. A two-valued vector field dependent on the history is
not a very convenient object.
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Figure 18.7: In Fig. 18.4 at a particular point on the torus the trajectory runs in one of the
two directions depending on the history up to the point. That is, the trajectory runs on the torus
according to one of the two vector fields, 𝑣1 or 𝑣2, depending on the history.

To avoid this we prepare two tori, on one of which is 𝑣1 and on the other 𝑣2, and
then connect these two tori according to the connection rule consistent with Fig. 18.5
as shown in Fig. 18.8.
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Figure 18.8: The univalent vector field independent of the history on the connected two copies of
the original torus. The two vector fields prepared in Fig. 18.7 are connected according to the rules
consistent with the trajectory connection rules in Fig. 18.5(i). How to glue the tori is shown by
straight colored arrows with large arrowheads (the directions denote correct orientations to glue).

18.5 Why unpredictability?
As can be seen from Fig. 18.8, something special happens when a crossover between
two tori occurs. To understand what happens there, it is convenient to glue only the
edges connected by broken arrow curves in Fig. 18.8 as A to B in Fig. 18.9 instead of
completing the two tori. The trajectories coming into the connection edge from left
in Fig. 18.8 (along the short horizontal arrow) have smaller angles with the connec-
tion edge than the ones going out to right as clearly illustrated in Fig. 18.9C, so we
see the trajectories are spread and then are inserted into the trajectories on the right
cylinder. That is, the event happening at the connection is akin to card shuffling.
Thus, we understand intuitively why the system ‘produces randomness’ despite its
deterministic nature.

It is clear that the apparently random behavior observed in Fig. 18.3 is caused by
the intrinsic nature of this deterministic dynamical system (= a system whose behav-
ior is uniquely determined if its past is known) and that external noise has nothing
to do with it. If we knew the trajectory precisely without any error, we would not
lose any information even if there is an expansive tendency of the trajectory bundle.
However, we can never know very small scales. This unknowable is amplified by the
expansion of the trajectory bundle and then is fixed into the system behavior by
the insertion occurring at the connection to the other cylinder, as illustrated in Fig.
18.9C. Consequently, we feel the behavior of this system random;175 Recall the KS

175As can be seen from this example, nonlinearity is not needed to expand small scales. Nonlin-
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Figure 18.9: Let us pay attention to the connection from 𝑣1 to 𝑣2 only (the broken arrows in A,
which is almost a copy of Fig. 18.8). Gluing only one pair of edges in A, we obtain B. The ‘screw’
part of B corresponds to the inside of the squares in A, where the trajectories run parallelly. In
order to make easy to observe the crossover from the left to the right square (or torus), a cut is
introduced in the left cylinder that does not affect the parallel trajectories and the edge to be glued
is made straight. What happens at the connection between 𝑣1 and 𝑣2 is equivalent to spreading
out the trajectory spacings and then inserting trajectories into the right cylinder as illustrated in
C; it reminds us of shuffling cards.

entropy computation in the Sinai billiard in ??.

18.6 Another illustration of randomization
If we deform the system slightly further, we can map it to a system that must be
familiar to chaos aficionados. If we squish the cylinders in Fig. 18.9B on which the
motion is ‘spiral,’ we obtain Fig. 18.10.

The figure reminds us of the famous Lorenz model that will be discussed in the
two subsequent lectures.

18.7 Correspondence to discrete time system
A trajectory in the universal covering space is piecewise linear as we have seen in Fig.
18.6, so we must be able to record a trajectory only by recording its breaking points.
We have only to pay attention to the points where the trajectory crosses the lattice

earity is, however, usually needed to contain the system within a finite range despite local linear
expansion. Therefore, if the phase space is intrinsically compact, then we might be able to say
nonlinearity is not absolutely necessary for chaos. Actually, a typical chaotic system is given by
linear maps from a torus onto itself. The decisive paper on this topic is R. L. Adler and B. Weiss,
“Similarity of automorphisms of the torus,” Memoir. Am. Math. Soc. 98 (1970).
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Figure 18.10: Further topological acrobat. The portions where the cylinders are connected are
the same as Fig. 18.9B, but the ways to extend the trajectory ends are different. After running the
spiral portion, trajectories are inserted into the other spiral. If we dovetail these two sheets with
spiral trajectories, we obtain the rightmost figure. T1, and T2 correspond to the tori and R1 and R2

are connecting edges, where insertion and fixation of the expansion outcomes occur. The difference
from Fig. 18.9B is only that the spiral on the cylinders becomes that on the disks, so, similarly
as before, we can see how expanded microscopic details influence decisively the world around our
scale.

lines in the universal covering space, and convert the continuous time system to a
discrete time system (however, it is not a simple discretization such as observing a
system periodically with stroboscopic light). More explicitly, in Fig. 18.5(i) (copied
in Fig. 18.11) if we record the distance 𝑥 measured along the edges from the corner
C when the trajectory crosses L1 or L2, we can map a trajectory to a sequence {𝑥𝑖}.
This correspondence is one to one.176 That is, from {𝑥𝑖} we can reconstruct the
original continuous trajectory, because we know the speed of the point along the
trajectory.

If the sequence {𝑥𝑖} can be reconstructed by a certain recursive rule, the system
may be described more simply. Here, a ‘recursive rule’ means a rule that can give the
next time state in terms of the current state (corresponding to the equation of motion
in classical mechanics). Actually, this sequence {𝑥𝑖} is determined as a solution to
an initial value problem of a (nonlinear) difference equation

𝑥𝑛+1 = 𝜑(𝑥𝑛), (18.1)

where 𝜑 : [0, 2] → [0, 2] is given by the graph in Fig. 18.11
This discrete model can be, as explained in Fig. 18.12, folded into a unimodal

piecewise linear map from [0, 1] into itself.177 Folding implies identifying two points

176Here we ignore the ‘loose ends’ of the trajectories between the lattice crossings.
177Unimodal piecewise linear maps are thoroughly studied in the following papers: Sh. Ito, S.
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Figure 18.11: If the successive lattice crossing positions of a trajectory is described in terms
of the distance measured along the edges of the square from the top left corner C, we obtain a
one-dimensional map [0, 2] → [0, 2]: 𝑥𝑖+1 = 𝜑(𝑥𝑖).

in [0, 2]. Therefore, the original behavior cannot be reconstructed from the reduced
system. However, the correspondence is simple, so we can learn various things about
the original system from the simplified system.
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Figure 18.12: A reduced discrete map may be constructed by ‘folding’ the original map. Such
unimodal piecewise linear maps are mathematically thoroughly understood. On the left the way to
chase a discrete history is illustrated

Tanaka and H. Nakada, “On unimodal linear transformations and chaos I, II,” Tokyo J. Math. 2,
221, 241 (1979).
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