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17 Lecture 17. Billiards

N. Chernov and R. Markarian, Chaotic Billiards (Mathematical Surveys and Mono-
graph 127, AMS, 2006).

17.1 Billiard
Let 𝑄 be a compact subset of 𝐸𝑑 (𝑑-Euclidean space)169 with piecewise smooth
boundary. The time evolution 𝑇 𝑡 of a particle traveling according to the following
rules is called a billiard in 𝑄:
(1) A single particle moves with speed 1 along the geodesic (= straight line) if it is
away from 𝜕𝑄.
(2) When the particle hits the boundary, the specular reflection is assumed.
Technically, we assume that at almost all points in 𝑄 the particle hits 𝜕𝑄 within a
finite time except for zero measure direction subsets of 𝑆𝑑−1.170

The phase space of the system is 𝑀 = {(𝑞, 𝑣) | 𝑞 ∈ 𝑄, 𝑣 ∈ 𝑆𝑑−1}. The ordinary
𝑑-Lebesgue measure × the Riemann volume of 𝑆𝑑−1 is an invariant measure (= phase
volume) of the billiard.

You could imagine 𝑄 as a room whose wall(s) 𝜕𝑄 is made of mirrors. The dy-
namics we wish to study is the geometrical optics i the room.
cf. Illumination problem:

https://www.youtube.com/watch?v=xhj5er1k6GQ&frags=wn

17.2 Ambrose-Kakutani representation
Since the particle of a billiard travels at speed 1 between collisions with 𝜕𝑄, we can
describe the dynamics of the particle with the initial condition 𝑥 = (𝑞, 𝑛) (𝑞 ∈ 𝜕𝑄
and 𝑛 ∈ 𝑆𝑑−1) as a sequence of collisions with 𝜕𝑄. Thus we can describe the dy-
namics by a map 𝑇 from 𝜕𝑀 (= 𝜕𝑄× 𝑆𝑑−1) into itself and the needed time for the
travel between successive collisions: 𝜏(𝑥). Here, 𝑇 is defined by 𝑥𝑘+1 = 𝑇𝑥𝑘, where
𝑥𝑘 = (𝑞𝑘, 𝑛𝑘) (𝑞𝑘 ∈ 𝜕𝑄, 𝑛𝑘 ∈ 𝑆𝑑−1) is the position and the velocity immediately after

169A mathematically more general definition uses 𝑑-Riemannian manifold, instead.
170𝜕𝑄 can contain non-differentiable subsets (called the singular components of the boundary),

but we ignore them. We will not define dynamics if the particle hits these subsets.

https://www.youtube.com/watch?v=xhj5er1k6GQ&frags=wn
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the 𝑘-th collision (see Fig. 17.1).
Notice that this representation corresponds to the suspension of the Poincaré map.

q

n

τ(x
)

x = (q,n)

T(x)
just after the next collision

just after collision

τ(x)

x = (q,n)xT(x) T (x)2

Figure 17.1: Ambrose-Kakutani representation

17.3 Polygonal or polyhedral billiards
If 𝑄 is a polygon, then we can consider a map 𝜎 : 𝑆1 → 𝑆1, the directional portion of
the Ambrose-Kakutani representation of the billiard. We can define a reflection at the
𝑖-th boundary component (edge or surface hyperplane) as a map 𝜎𝑖 : 𝑆𝑑−1 → 𝑆𝑑−1.
𝑛 collisions may be expressed as a map 𝜎𝑖𝑛𝜎𝑖𝑛−1 · · ·𝜎𝑖2𝜎𝑖1 . The totality of such chains
define a subgroup 𝐺𝑄 of the isometry of 𝑆𝑑−1. If this is a finite group, the system
is not ergodic. For example, if 𝑄 is a triangle and all the angles are commensurate,
then 𝐺𝑄 is finite.171 If 𝐺𝑄 is finite, the billiard is not ergodic (because 𝑆𝑑−1 will
never be densely traversed).

17.4 Billiards in polyhedra cannot be chaotic
If 𝑄 is a polyhedron, there cannot be any exponential spreading of the trajectories,
so it cannot be chaotic (its Kolmogorov-Sinai entropy is zero as we will see later).

For an arbitrary polyhedron (or even polygon) the ergodicity of billiards is not
generally understood.
Periodic orbits?: https://www.youtube.com/watch?v=AGX0cLbHaog

17.5 Square billiard
Suppose 𝑄 is a square (or a flat 𝑇 2). Then, we can visualize the motion with a line

171An analogous assertion holds for any polygon.

https://www.youtube.com/watch?v=AGX0cLbHaog
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on the universal covering space (Fig. 17.2)

Figure 17.2: A trajectory of a square billiard on the universal covering space

Thus, if the slope is rational, the trajectory is periodic, but if irrational, the trajec-
tory densely cover 𝑄 (Weyl’s theorem), BUT it is not ergodic, since the velocities
make a finite point set.

17.6 Billiards with smooth 𝜕𝑄
If 𝑄 is a 2-disk (thus, 𝜕𝑄 = 𝑆1), then all the successive reflection points are equally
spaced and the angle of reflection is constant. There is a caustic (Fig. 17.3): a caus-
tics is a smooth closed curve 𝛾 such that if one segment of the trajectory is tangent
to 𝛾 all other segments of the same trajectory are also tangent to 𝛾.

Figure 17.3: A caustic of a circular billiard

Lazutkin showed that if 𝜕𝑄 is convex and smooth enough (say, 𝐶5), then the to-
tality of caustics is with positive measure (and obviously the system is not ergodic).

Remark If there is a caustics, then there is Dirichlet eigenvalues for ∆𝜓 = 𝜆𝜓
that are localized near the caustic (e.g., whisper modes). Shnirelman proved that 𝜓
spreads all over 𝑄 in the 𝜆→ ∞ limit, if the billiard is ergodic.172

Fun video: Elliptic pool table https://www.youtube.com/watch?v=3WHBlPvK3Ek&

172Bunimovich p156.

https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
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frags=wn

In general anything seems to happen:
cardioid billiard: https://www.youtube.com/watch?v=eQfh0gaU4NE

17.7 Dispersing or Sinai billiards173

If the boundary 𝜕𝑄 is inwardly convex at its regular points, the billiard is called a
dispersing (or Sinai) billiard.
How dispersive can be seen from:

https://www.youtube.com/watch?v=C1iuNH_99v8 .

Its comparison with a circular billiard is interesting: https://www.youtube.com/

watch?v=dI4WuafBF-w&index=4&list=PL2wfI-9_pR8AvNGxOwpfEO7fyS-giW2Ob&frags=wn

The simplest example is 𝑄 = 𝑇 2∖ 2-disk (Fig. 17.4)

Figure 17.4: Sinai billiard table

Unfortunately, there is no good video for the simplest billiard.

Theorem. Sinai billiards are ergodic and K.

What is K? Roughly,....
There is a finite partition of its phase space {𝐴𝑖} such that almost all the points in
𝑀 and their coding 𝑥→ {𝑥𝑘} according to the rule 𝑇 𝑛(𝑥) ∈ 𝐴𝑖𝑎𝑠𝑥𝑛 = 𝑖 is one-to-one
correspondent, the system is called a K-system.

17.8 Why Sinai billiards are chaotic
Here, we use the word ‘chaotic’ intuitively to mean that the spread of the velocity
vectors increases exponentially in time on the average. At each reflection with 𝜕𝑄

173B. A. Friedman, The Billiard Problem (UIUC Physics Thesis, 1985) contains a friendly intro-
duction to the topic.

https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
https://www.youtube.com/watch?v=eQfh0gaU4NE
https://www.youtube.com/watch?v=C1iuNH_99v8
https://www.youtube.com/watch?v=dI4WuafBF-w&index=4&list=PL2wfI-9_pR8AvNGxOwpfEO7fyS-giW2Ob&frags=wn
https://www.youtube.com/watch?v=dI4WuafBF-w&index=4&list=PL2wfI-9_pR8AvNGxOwpfEO7fyS-giW2Ob&frags=wn


200

spread the directions, and, generically speaking, the number of collisions increases
linearly with time, so we can expect exponential spreading of the propagation direc-
tions on the average in time. Thus, we can expect the system is chaotic.

We can be more quantitative.

17.9 Local time evolution of velocity curvature by propagation
Take a smooth curve passing through 𝑥0 ∈ 𝑄 and assume it is the curve per-
pendicular to the trajectories. The curvature 𝜅(𝑥0) = 𝑑𝜙/𝑑𝑟 describes how
spread the velocities are (notice that 1/𝜅 is the curvature radius).

t

1/κ
1/κ

0

t

Figure 17.5: A propagation front and the velocities; here 𝛾 is a curve in 𝑀 (not in 𝑄) consisting
of a curve 𝛾 in 𝑄 + the unit velocities in ther normal directions

If there is no collision between time 0 and 𝑡,

1

𝜅(𝑥𝑡)
= 𝑡+

1

𝜅(𝑥0)
, (17.1)

so

𝜅(𝑥𝑡) =
𝜅(𝑥0)

1 + 𝑡𝜅(𝑥0)
. (17.2)

The expansion rate of the base curve 𝛾 is 1 + 𝑡𝜅(0).

17.10 Local time evolution of velocity curvature by collision
If there is a collision at time 𝜏 , this curvature changes discontinuously between
𝜏 − 0 and 𝜏 + 0:

𝜅(𝑥𝜏+0) = 𝜅(𝑥𝜏−0) +
2𝑘

cos𝜙𝜏
, (17.3)

where 𝑘 is the curvature of the colliding surface and 𝜙𝜏 is the incidence angle.
This may be derived as explained below, but it is basically the well-known
lens formula 1/𝑓 = 1/𝑑o + 1/𝑑i. For the near optical axis rays, 𝜙 = 0 and
𝑓 = −2(1/𝑘) (the twice radius of the mirror; − because the mirror is convex);
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1/𝑑o = 𝜅(𝑥𝜏−0) (real object) and 1/𝑑i = −𝜅(𝑥𝜏+0) (virtual image).

td
α

Figure 17.6: A propagation front and the velocities

In Fig. 17.6 the relation between 𝑑𝛽 and 𝑑𝛼 is

1

𝑘
𝑑𝛽 = 𝑑𝑟 =

𝑡(−𝑑𝛼)

cos𝜙𝜏
, (17.4)

where 𝛼 is measured clockwisely while 𝛽 counterclockwisely, so we need the
minus sign. We see

𝑑𝜙 = 2𝑑𝛽 − 𝑑𝛼, (17.5)

because (i) if 𝑑𝛼 = 0, then changing the mirror direction by 𝑑𝛽 changes the
reflection angle by 2𝑑𝛽, (ii) if 𝑑𝛽 = 0, changing the incidence angle by 𝑑𝛼 the
reflection angle changes by −𝑑𝛼. Therefore,

𝑑𝜙 = 2
𝑘𝑡(−𝑑𝛼)

cos𝜙
− 𝑑𝛼. (17.6)

We know

𝜅(𝑥𝜏−0) = 1/𝑡 =
−1

cos𝜙

𝑑𝛼

𝑑𝑟
, 𝜅(𝑥𝜏+0) =

1

cos𝜙

𝑑𝜙

𝑑𝑟
, 𝑘 =

𝑑𝛽

𝑑𝑟
. (17.7)

Thus, (17.6) reads
𝑑𝜙 = 2𝑘𝑑𝑟 − 𝑑𝛼, . (17.8)

so we finally obtain (17.3).
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17.11 Expansion between successive collisions
The expansion rate of the curve 𝛾 is, as already seen in 17.9, 1 + 𝜏(𝑥𝑛)𝑘(𝑥𝑛),
where 𝜏(𝑥𝑛) is time between 𝑛th and 𝑛 + 1th collisions, and 𝑘(𝑥𝑛) is the cur-
vature just after the 𝑛th collision. Notice that from (17.3),

17.12 Relation to geodesics on negative curvature surfaces
The geodesic trajectories near the saddle spread, as is illustrated in

https://www.youtube.com/watch?v=3u2SJKxJhh8&frags=wn after about 11:20
Thus, the geodesic trajectories in the negative curvature Riemannian manifold are
exponentially spreading.

Sinai billiards are without any curvature, but what happens at the collision points
is just what happens at saddles as illustrated in Fig. 17.7

a

A B

C

Figure 17.7: ‘Saddle’ dynamics near 𝜕𝑄; here the illustration uses the ‘standard’ Sinai billiard.
A is the torus with a disk scatterer. You can imagine that the particle goes to the ‘backside’ of
the torus upon collision. At the next collision the particle reappears to this side of the world. B:
Then, take out the second surface, and connect them to make a ‘coupled’ 𝑇 2. The particles moves
‘straight’ until it hits the connection ring R; if the ring is ‘mollified a bit, it is just a saddle.

17.13 Billiards with focusing elements
Bunimovich proved that billiards on 𝑄 ⊂ R2 are K, if
(1) 𝜕𝑄 consists of line segments and parts of circles.
(2) There is no pair of focusing components that are a part of the same circle.
(3) For each circular segment, its completed circle must be in 𝑄.

For example, 𝑄s illustrated in Fig. 17.8 satisfy the above conditions:”

The most famous example is the Bunimovich stadium:

https://www.youtube.com/watch?v=3u2SJKxJhh8&frags=wn
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Figure 17.8: Examples of chaotic focusing billiard tables

https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/.

Remark: the eigenfunction of ∆𝜓 on 𝑄 are illustrated as
Quantum: https://www.dhushara.com/DarkHeart/QStad/QStad.htm
Bunimovich mitosis http://community.wolfram.com/groups/-/m/t/977013

First 500 eigenmodes: https://youtu.be/3voKV4az0Sk

17.14 Invariant measure of billiards
Since billiards were motivated by Krylov to understand the foundation of statistical
mechanics, their probabilistic properties have been of their main interest. There are
many different invariant measures (the probability law preserved by dynamics), but
the most interesting one is the ones absolutely continuous wrt the Lebesgue measures
on the phase space.

Here, I do not discuss what the measure is: it is roughly something like volume.
‘Absolute continuity’ of a measure 𝜈 wrt 𝜇 means 𝜈(𝐴) = 0 whenever 𝜇(𝐴) = 0 for
any (measurable) set.

From now on we discuss only billiards on 2-dimensional tables 𝑄. The phase space
is Γ = 𝑄× 𝑆1, where 𝑄 ⊂ R2. Let us introduce the position coordinates (𝑞1, 𝑞2) on
𝑄 and the angle variable 𝜙 to specify the particle velocity during its free time. It
should be clear that

𝑑𝜇 =
1

2𝜋|𝑄|
𝑑𝑞1𝑑𝑞2𝑑𝜙 (17.9)

is invariant; this is simply a classical particle system with a constant speed.

17.15 Invariant measure for Ambrose-Kakutani representation
We could introduce an invariant measure on the space shaded in Fig. 17.1 Right. The
coordinates we use are 𝑞, 𝑛 and 𝜎, where 𝜎 is the vertical coordinate (expressing the

https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/
https://www.dhushara.com/DarkHeart/QStad/QStad.htm
http://community.wolfram.com/groups/-/m/t/977013
https://youtu.be/3voKV4az0Sk
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travel distance between successive collisions). Here 𝑞 may be the coordinate along
𝜕𝑄 and 𝑛 may be represented by an angle 𝜙 wrt the outward normal on 𝜕𝑄. The
case of the single disk Sinai billiard on 𝑇 2 is illustrated in Fig. 17.9.
Here the small box represents 𝑑𝑞1𝑑𝑞2. From Fig. 17.9 we see

d
r

d
σ

φ

d
r

tangent

inward
 norm

altr
aj

ec
to

ry

φ

Figure 17.9: The coordinates of the Ambrose-Kakutani representation of ‘the’ Sinai billiard;
notice that 𝜙 ∈ [−𝜋/2, 𝜋/2].

𝑑𝑞1𝑑𝑞2 = 𝑑𝜎𝑑𝑟 cos𝜙. (17.10)

Therefore,

𝑑𝜇 ∝ cos𝜙𝑑𝜙𝑑𝜎𝑑𝑟. (17.11)

We must compute the normalization constant, if 𝜇 is a probability measure. For the
standard Sinai billiard, the phase volume is 2𝜋|𝑄| (|𝑄| = 1 − 𝜋𝑟2, if the torus area
is 1 and the disc radius is 𝑟), so this is the normalization constant.

17.16 Mean free time
The average of 𝜏(𝑥) for 𝑥 ∈ Γ is the mean free time. Notice that integral of 𝑑𝜎
between successive collisions is the free time 𝜏(𝑞, 𝑛). Therefore, for the standard
Sinai billiard

2𝜋|𝑄| =

∫︁ |𝜕𝑄|

0

𝑑𝑟

∫︁ 𝜋/2

−𝜋/2
cos𝜙𝑑𝜙

∫︁ 𝜏(𝑟,𝜙)

0

𝑑𝜎 =

∫︁ |𝜕𝑄|

0

𝑑𝑟

∫︁ 𝜋/2

−𝜋/2
cos𝜙 𝜏(𝑟, 𝜙)𝑑𝜙 (17.12)
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The mean free time is174

⟨𝜏⟩ =

∫︀ |𝜕𝑄|
0

𝑑𝑟
∫︀ 𝜋/2
−𝜋/2 | cos𝜙|𝜏(𝑟, 𝜙)𝑑𝜙∫︀ |𝜕𝑄|

0
𝑑𝑟
∫︀ 𝜋/2
−𝜋/2 | cos𝜙|𝑑𝜙

(17.13)

The denominator is 2𝜕𝑄. Therefore, we have arrived at

⟨𝜏⟩ = 2𝜋|𝑄|/2|𝜕𝑄| = (1 − 𝜋𝑟2)/2𝑟. (17.14)

17.17 Abramov formula for the loss of information The Kolmogorov-Sinai
entropy (information loss rate per time) ℎ of a billiard may be expressed as

ℎ = 𝐻/⟨𝜏⟩, (17.15)

where 𝐻 is the entropy change per collision, and ⟨𝜏⟩ is the mean free time. The
formula is called the Abramov formula. That is, a mean field idea works.

It is not hard to see why (17.15) holds. Notice that between collisions there is
no loss of information; information is lost only at collisions. Let 𝐻𝑗 be the loss of
information at the 𝑗th collision. Then, its average is 𝐻. Let 𝜏𝑗 be the free time
before the 𝑗th collision. Then, 𝑇 =

∑︀
𝜏𝑗 is needed for the information loss of

∑︀
𝐻𝑗,

so

ℎ =

∑︀
𝐻𝑗∑︀
𝜏𝑗

=
𝐻

⟨𝜏⟩
. (17.16)

17.18 Loss rate of information of billiards
Take a small square as in Fig. 17.10 Left. Suppose the length of its edge is the
minimum length that we can discern. Thus we can tell whether a point is in it or
not: this answer can be obtained by a single yes-no question. Thus, we get one bit
of information.

After a single application of the map 𝑇 (in our context 𝑇 ) the square is stretched
in the unstable manifold direction and compressed in the stable manifold direction.

If we know that the system is in the square now, after applying 𝑇 we know the
system point is near the unstable manifold; more precisely, we know the system is

174Here, we assume that the particle can go any where on the table = ergodicity; this needs a
proof.
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Figure 17.10: Local loss of information due to expansion

in one box which cover the stretched square as in Fig. 17.10 Right. To locate the
system as accurately as one time step before, we should choose one box out of 8
boxes. We need 3 bits of information. That is, 𝑇 dissipated 3 bits of information;
our knowledge about the system is lost by 3 bits per one mapping step.

Thus, the log (or log2) of the expansion rate of the unstable manifold must be
the information loss rate, whose ‘ensemble average’175 is called the Kolmogorov-Sinai
(KS) entropy ℎ𝑇 , as we will see later.

17.19 Kolmogorov-Sinai entropy of Sinai billiard: introduction
Let 𝑟 = 𝜓(𝜙) be the unstable manifold. This is mapped by 𝑇 : (𝑟, 𝜙) → (𝑟1, 𝜙1) to
𝜙1 = 𝜓1(𝑟1). Then, the expansion rate 𝑚 can be computed as

𝑚 =
‖(𝑑𝑟1, 𝑑𝜙1)‖
‖(𝑑𝑟, 𝑑𝜙)‖

=

⃒⃒⃒⃒
𝜕𝑟1
𝜕𝑟

⃒⃒⃒⃒
‖(1, 𝜕𝜙1/𝜕𝑟1)‖
‖(1, 𝜕𝜙/𝜕𝑟)‖

. (17.17)

Let us write 𝜇 as the normalized phase volume (invariant measure) (??) in 17.14.
Then,

ℎ𝑇 =

∫︁
𝑑𝜇 log𝑚 (17.18)

=

∫︁
𝑑𝜇 log

⃒⃒⃒⃒
𝑑𝑟1
𝑑𝑟

⃒⃒⃒⃒
+

∫︁
𝑑𝜇 log ‖(1, 𝜕𝜙1/𝜕𝑟1)‖ −

∫︁
𝑑𝜇 log ‖(1, 𝜕𝜙/𝜕𝑟)‖

(17.19)

175average over the invariant probability measure.
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=

∫︁
𝑑𝜇 log

⃒⃒⃒⃒
𝑑𝑟1
𝑑𝑟

⃒⃒⃒⃒
. (17.20)

We must calculate the derivative: note, however, 𝑑𝑟1/𝑑𝑟 is the derivative along
the unstable manifold (i.e., 𝜙 also changes, when 𝑟 is changed according to 𝑑𝜙 =
(𝑑𝜓/𝑑𝑟)𝑑𝑟.

To calculate ℎ𝑇 , we need much more details of the Sinai billiard.

17.20 Domain of 𝑇
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Figure 17.11: The ‘Poincaré’ map 𝑇 for the Sinai billiard.

Fig. 17.11 The ‘Poincaré’ map 𝑇 for the Sinai billiard.

Right: The rectangle shows the boundary 𝜕𝑀 of the phase space (i.e., 𝜕𝑄 and the velocity vectors

(just after collisions into 𝑄 direction) there in 𝑆1. The pink band is the domain for 𝑇 hitting ‘2’

(from ‘1’, ‘1’ and ‘2’ may be the same disk (different sides) shown Left; the colored dots correspond

to the starting sites on ‘1’.

The purple strip is the domain of 𝑇−1 coming back to ‘1’ from ‘2’.

The green strip is the domain of 𝑇−1 from ‘1’, which is definable by the pink strip with the mirroring

its velocities with respect to the normal directions (time reversal transformation).

The green arrow 𝑥 denotes point in 𝜕𝑀 indicated by the green dot (∈ 𝜕𝑄) and the direction de-

noted by the green arrow on Left.

The invariant curve going through 𝑥 in Fig. 17.11
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17.21 How 𝑇 transforms curves in 𝜕𝑄
Consider a curve 𝜙 = 𝜓(𝑟) in 𝜕𝑀 to understand how 𝑇 maps this. After 𝑇 let us
write this curve becomes 𝜙1 = 𝜓1(𝑟1). We can write

𝜙1(𝑟, 𝜙) = 𝜓1(𝑟1(𝑟, 𝜙)), (17.21)

Its derivatives are obtained easily with the chain rule and the results summarized
in 17.25 must lie in the strips. One in the pink strip must be the unstable mani-
fold of 𝑇 through 𝑥 (i.e., 𝑊+(𝑥)) and that in the green strip the stable manifold of 𝑥.

17.22 Unstable manifold of 𝑇
In contrast to the smooth dynamical systems, billiards are riddled with breaking due
to collisions.176 There is a transversal stable manifold that looks similar.

Figure 17.12: Unstable manifold of a Sinai billiard; the left figure explains why there are break
points. [Fig. 7, 8 of DS II Bunimovich]

17.23 Change of the next collision by position change
Let us calculate one step 𝑥→ 𝑥1 in detail.

First, let us study the changes in 𝑟1 and 𝜙1 when 𝑟 is changed by 𝑑𝑟 (Fig. 17.13).
If we keep 𝜙 and change the first collision position slightly by 𝑑𝑟, due to the

change of the normal directions of the reflecting surface, the direction of the reflected
trajectory changes its angle by 𝑘𝑑𝑟 (the purple angle). It takes 𝜏 fo the particle to
reach the next collision point from the last collision, so

𝑘𝑑𝑟𝜏, (17.22)

176Actually, it is usually made of many continuous components. Here, only one such component
is illustrated.
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dr

φ φ1

dr1

Figure 17.13: A propagation front and the velocities: change due to 𝑟

where 𝑘 is the curvature of the boundary at the first collision point, is the displace-
ment of the collision point perpendicular to the incidence direction. However, this
direction makes angle 𝜙1 with the tangent direction of the new colliding surface.
Thus, we need the length of te orange segment, which is

𝑘𝑑𝑟𝜏/ cos𝜙1. (17.23)

𝑑𝑟1 has the green portion due to ther simple parallel displacement of the trajectory
due to 𝑑𝑟. The displacement distance is 𝑑𝑟 cos𝜙. Thus, when this is projected on
the second surface the displacement must be

𝑑𝑟
cos𝜙

cos𝜙1

. (17.24)

Thus the answer for 𝑑𝑟1 is the green and orange segments added, but we must worry
about the sign. If 𝑑𝑟 is in the counterclockwise direction, 𝑑𝑟1 must be clockwise, so
they should have opposite signs:

𝑑𝑟1 = −𝑑𝑟
(︂

cos𝜙

cos𝜙1

+
𝜏𝑘

cos𝜙1

)︂
. (17.25)

The change of the incidence angle to the second body consists of two parts: the
blue angle due to the change of the normal direction due to displacement 𝑑𝑟1 and
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the purple angle due to the change of the direction of the incidence ray (due to 𝑑𝑟 on
the first body). The former is 𝑘1𝑑𝑟1, where 𝑘1 is the curvature at the new collision
point. The purple portion is obviously 𝑘𝑑𝑟, which reduces 𝜙1. Therefore,

𝑑𝜙1 = −𝑘1𝑑𝑟
(︂

cos𝜙

cos𝜙1

+
𝜏𝑘

cos𝜙1

)︂
− 𝑘𝑑𝑟. (17.26)

We also should consider the change in 𝜏 . This is clearly

𝑑𝜏 = 𝑑𝑟1 sin𝜙1 − 𝑑𝑟 sin𝜙. (17.27)

17.24 Change of the next collision by angle change
Next, let us study the changes in 𝑟1 and 𝜙1 when 𝜙 is changed by 𝑑𝜙 (Fig. 17.14).

If we keep 𝑟 and change the first collision incidence angle slightly by 𝑑𝜙, the
direction of the reflected trajectory changes with the same amount but in the opposite
direction. It takes 𝜏 fo the particle to reach the next collision point from the last
collision, so the particle to reach the next collision point from the last collision, so 𝑑𝜙𝜏
is the displacement of the collision point perpendicular to the incidence direction.
However, this direction makes angle 𝜙1 with the tangent direction of the new colliding
surface. Thus, the green length = 𝑑𝑟1 is

𝑑𝑟1 = −𝜏𝑑𝜙/ cos𝜙1. (17.28)

The incidence angle to the new boundary changes by the red angle due to the
change of the direction of the trajectory, but the collision point is displaced by 𝑑𝑟1,
so the normal direction changes by the orange angle: 𝑘1𝑑𝑟1. Both contribute in the
same direction, so

𝑑𝜙1 =
𝑘1𝜏

cos𝜙1

𝑑𝜙− 𝑑𝜙 = −𝑑𝜙
(︂

1 +
𝑘1𝜏

cos𝜙1

)︂
. (17.29)

We also have
𝑑𝜏 = tan𝜙1𝑑𝜙. (17.30)
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d

φ

φ1
dr

φ

dφ1

Figure 17.14: A propagation front and the velocities: change due to 𝑟

17.25 Summary of derivatives
We may summarize the results of 17.23 and 17.24 as follows:(︃

𝜕𝑟1
𝜕𝑟

𝜕𝑟1
𝜕𝜙

𝜕𝜙1

𝜕𝑟
𝜕𝜙1

𝜕𝜙

)︃
=

⎛⎝ −
[︁
1 + 𝜏𝑘

cos𝜙

]︁
cos𝜙
cos𝜙1

− 𝜏
cos𝜙1

−𝑘1
[︁
1 + 𝜏𝑘

cos𝜙

]︁
cos𝜙
cos𝜙1

+ 𝑘 −
[︁
1 + 𝜏𝑘1

cos𝜙1

]︁ ⎞⎠ . (17.31)

17.26 Kolmogorov-Sinai entropy of Sinai billiard: calculation
To compute ℎ𝑇 we need 𝜕𝑟1/𝜕𝑟. We differentiate 𝑟1 = 𝑟1(𝑟, 𝜓(𝑟)) (recall the remark
at the end of 17.26. Since 𝑟1 = 𝑟1(𝑟, 𝜓(𝑟)):

𝑑𝑟1
𝑑𝑟

=
𝜕𝑟1
𝜕𝑟

+
𝜕𝑟1
𝜕𝜙

𝑑𝜓

𝑑𝑟
. (17.32)

Also, since
𝜙1(𝑟, 𝜓(𝑟)) = 𝜓1(𝑟1(𝑟, 𝜓(𝑟))), (17.33)

𝜕𝜙1

𝜕𝑟
+
𝜕𝜙1

𝜕𝜓

𝑑𝜓

𝑑𝑟
=
𝑑𝜓1

𝑑𝑟1

(︂
𝜕𝑟1
𝜕𝑟

+
𝜕𝑟1
𝜕𝜓

𝑑𝜓

𝑑𝑟

)︂
. (17.34)
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Therefore, we can solve

𝑑𝜓1

𝑑𝑟1
=

𝜕𝜙1

𝜕𝑟
+ 𝜕𝜙1

𝜕𝜙
𝑑𝜓
𝑑𝑟

𝜕𝑟1
𝜕𝑟

+ 𝜕𝑟1
𝜕𝜙

𝑑𝜓
𝑑𝑟

. (17.35)

(17.32) reads with (17.25) and (17.28)

𝑑𝑟1
𝑑𝑟

= −
(︂

cos𝜙

cos𝜙1

+
𝜏𝑘

cos𝜙1

)︂
+

𝜏

cos𝜙1

𝑑𝜓

𝑑𝑟
(17.36)

= − cos𝜙

cos𝜙1

(︂
1 +

𝜏

cos𝜙

(︂
𝑘 +

𝑑𝜓

𝑑𝑟

)︂)︂
. (17.37)

We must compute 𝑑𝜓/𝑑𝑟.

𝑑𝜓1

𝑑𝑟1
=

−𝑘1
(︁

cos𝜙
cos𝜙1

+ 𝜏𝑘
cos𝜙1

)︁
− 𝑘 −

(︁
1 + 𝑘1𝜏

cos𝜙1

)︁
𝑑𝜓
𝑑𝑟

−
(︁

cos𝜙
cos𝜙1

+ 𝜏𝑘
cos𝜙1

)︁
− 𝜏

cos𝜙1

𝑑𝜓
𝑑𝑟

(17.38)

= 𝑘1 +
𝑘 + 𝑑𝜓

𝑑𝑟(︁
cos𝜙
cos𝜙1

+ 𝜏𝑘
cos𝜙1

)︁
+ 𝜏

cos𝜙1

𝑑𝜓
𝑑𝑟

(17.39)

= 𝑘1 +
𝑘 + 𝑑𝜓

𝑑𝑟
cos𝜙
cos𝜙1

+ 𝜏
cos𝜙1

(︀
𝑘 + 𝑑𝜓

𝑑𝑟

)︀ (17.40)

= 𝑘1 +
cos𝜙1

cos𝜙

𝑘 + 𝑑𝜓
𝑑𝑟

1 + 𝜏
cos𝜙

(︀
𝑘 + 𝑑𝜓

𝑑𝑟

)︀ (17.41)

= 𝑘1 +
cos𝜙1

cos𝜙

1
𝜏

cos𝜙
+ 1

𝑘+ 𝑑𝜓
𝑑𝑟

. (17.42)

Notice that this is a recurrence relation:

𝑑𝜓𝑛
𝑑𝑟𝑛

= 𝑘𝑛 +
cos𝜓𝑛

cos𝜓𝑛−1

1
𝜏𝑛−1

cos𝜓𝑛−1
+ 1

𝑘𝑛−1+
𝑑𝜓𝑛−1
𝑑𝑟𝑛−1

. (17.43)

The result of this recursion gives a continued fraction expression of 𝑑𝜓/𝑑𝑟 required
in (17.32). We can fairly accurately evaluate this numerically.

17.27 𝐻 in the small 𝑅 limit
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Friedman et al.177 actually evaluated and conjectured −𝐻/ log𝑅 → 2 in the small
𝑅 limit. Actually, they proved this value to be in (1.5, 2] and numerically obtained
the upper limit value 2.178

17.28 Billiards with scatters with finite potentials or soft billiards
Baldwin179 considered an ‘optical’ system or the muffin-tin potential system with
potential 𝑈 (measured in kinetic energy):

R

U
R

U

0.5

1

0
ergodic

ergodic

NOT

ergodic

Figure 17.15: The table with 𝑈 and the phase diagram; the non-ergodicity of the colored region
is proved, but ergodicity of the remaining regions is a conjecture based on simulations. The lower
bondary curve of the colored region is 𝑈 = 1− 1/(1− 2𝑅)2.

In the nonergodic region we see elliptic fixed points.

177B. A. Friedman, Y. Oono and I. Kubo, PRL 52 709 (1984). See B. A. Friedman, UIUC Physics
thesis 1985.

178 𝑑(𝑑− 1) is the general formula: N Chernov, Entropy Values and Entropy Bounds (2006) is a
good review): people.cas.uab.edu/~mosya/papers/hb.pdf.

179P. R. Baldwin, Soft billiard system, Physica D 29, 321 (1988). See P. R. Baldwin, UIUC
Physics thesis 1987.

people.cas.uab.edu/~mosya/papers/hb.pdf
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