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16 Lecture 16. General picture of Hamiltonian

systems

16.1 Completely integrable systems
We know the Liouville-Arnold theorem (11.6): if a system is completely integrable,
we have a canonical transformation converting it to a system described by the action-
angle variables that parameterize ‘orderly’ trajectories on 𝑇 𝑛.
Example: the Toda system: three point masses interacting with the Toda potential
(12.3)159,

𝐻 =
1

2
(𝑝2𝑥 + 𝑝2𝑦) +

1

24

[︁
exp(2𝑦 + 2

√
3𝑥) + exp(27 − 2

√
3𝑥) + exp(−4𝑦)

]︁
− 1

8
. (16.1)

We know how to convert this into the Lax pair representation All the trajectories
are periodic or almost periodic (see Fig. 16.1160).
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Figure 16.1: Left: A surface of section for the Toda Hamiltonian (16.1) at energy 𝐸 = 𝑙. The
scales on both axes are the same. The outermost oval crosses the positive 𝑝𝑦-axis at 1.3 and the
positive 𝑦-axis at 1.4; Right: At energy 𝐸 = 256. Here the scales on two axes are not the same.
The outermost oval crosses the positive 𝑦-axis at 𝑦 = 4 and the positive 𝑝𝑦-axis at 𝑝𝑦 = 22.6. All
the allowed phase space is surveyed in these figures, because outside the outermost curves 𝑝2𝑥 < 0.
[Fig. 1,2 of FORD et al., PTP 50 1547 (1973)]

159Its polynomial expansion truncated at the third order (the Henon system) is not integrable.
160Joseph FORD, Spotswood D. STODDARD and Jack S. Turner, “On the Integrability of the

Toda Lattice,” Prog Theor Phys 50 1547 (1973).
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16.2 Near integrable systems
The Henon system is obtained by expanding and truncating the Toda Hamiltonian
(16.1) as

𝐻 =
1

2
(𝑝2𝑥 + 𝑝2𝑦) +

1

2
(𝑥2 + 𝑦2) + 𝑥2𝑦 − 1

3
𝑦3. (16.2)

This describes a motion in the potential that is something like a symmetric monkey
saddle. A perturbative approach dissects 𝐻 into 𝐻0 and 𝐻1 as

𝐻0 =
1

2
(𝑝2𝑥 + 𝑝2𝑦) +

1

2
(𝑥2 + 𝑦2), (16.3)

𝜀𝐻1 = = 𝜀

(︂
𝑥2𝑦 − 1

3
𝑦3
)︂
. (16.4)

Comparison between the formal perturbation series (truncated at third order) and
numerical results is in Fig. 16.2.161

Figure 16.2: Perturbation fails even for small nonintegrable perturbation: [Figs originally from
Gustavson Ast J 71 670 (1966).]

The comparison tells us that perturbation series fail to converge.

161F. G. Gustavson “On Constructing Formal Integrals of a Hamiltonian System Near an Equi-
librium Point,” Astronom. J 71 670 (1966). Here, the figure is from A J Lichtenberg andL A
Lieberman, Regular and Stochastic motion (Springer, Applied Mathematical Science 38, 1983).
Fig. 1.13.
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16.3 What Poincaré realized when perturbation changes systems quali-
tatively
The picture Poincaré conceived may look like Fig. 16.3.

Figure 16.3: What Poincaré conceived (after Arnold) [Fig. 8.3.3 of ]

“On January 21, 1889, King Oscar II turned 60. On the same day, the king announced the

winner of the mathematics prize that had been established in his name. All treatises had

been submitted anonymously, supplied with a title and an envelope containing the author’s

name, The envelops were now opened with great ceremony. The winner was Henri Poincaré.”

(p377162)

“Poincaré’s treatise was a comprehensive attempt to answer the question: “Is te solar

system stable?” ”(p378) However, he discussed the restricted three-body problem. “Mittag-

Leffler had informed Hermite that he and Weierstrass thought Poincaré should be awarded

the prize... Hermite, who had received copies of the various submissions, agreed. But even

though they could immediately see and acknowledge the quality of Poincaré’s work, not

everything was equally easy to understand. Weierstrass had sought clarification on several

points, and Poincaré had sent several extensive addenda. Hermite remarked that, as usual,

it was difficult to understand Poincaré—that it was his style to spring over details and leave

the reader to fill in the gaps. · · · According to Hermite, Poincaré was a seer to whom the

truth revealed itself in a brilliant light.

Mittag-Leffler’s plan was to present the winning submissions in Acta163 in October 1889,

162A. Stubhaug,Gösta Mittag-Leffler, a man of conviction (translated by Tiina Nunnally, Springer
2010; Norwegian original 2007).

163Acts Mathematica
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and Phragmén, who acted as the editorial secretary, was handed the big job of editing the

treatise. When printing began in July, Phragmén discover several passages in Poincaré’s

work that seemed quite obscure. Mittag-Leffler immediately pointed this out in a letter to

Poincaré, who upon further study found that in another place in the treatise he had made

more serious errors. But Poincaré did not report this to Mittag-Leffler until December, and

by that time fifty copies of Acta had already been printed. These were sent out to subscribers

and booksellers, mostly in the Nordic countries, but also to England, France, and Germany.

Mittag-Leffler feared that the error would prove ruinous for the reputation of both Poincaré

and the journal, as well as Oscar II’s entire involvement. He immediately sent a letter to all

of these subscribers and booksellers, asking them to return the copies they had received. He

explained that certain corrections were necessary.” (p379)

Mittag-Leffler “asked Poincaré to pay for the already printed treatise. Poincaré agreed

without protest, and his total cost for the new printing was eventually calculated to be 3,500

kronor—1,000 kronor more than the prize money he had received.” (p380)

“Poincaré’s work totaled 270 pages—the note and addenda filled 93 pages. What was

new and brilliant about Poincaré’s work eventually overshadowed any talk of errors or cor-

rections.” (p380).

16.4 Resonance vs nonresonance
The following example is related to heating ions in confined plasmas (Fig. 16.4).164

A constant magnetic field and a perpendicularly propagating electrostatic wave with
frequency several times the ion cyclotron frequency are applied to charged particles.

Consider a single ion with mass 𝑚 and charge 𝑞 in the fields

𝐵 = 𝐵0𝑒𝑧, 𝐸 = 𝐸0𝑒𝑦 cos(𝑘𝑦 − 𝜔𝑡). (16.5)

These fields are given by the potentials

𝐴 = −𝐵0𝑦𝑒𝑥, 𝜑 = −(𝐸0/𝑘) sin(𝑘𝑦 − 𝜔𝑡); (16.6)

thus the Hamiltonian 𝐻 is given by

𝐻 =
1

2𝑚
[(𝑝𝑥 + 𝑞𝐵0𝑦)2 + 𝑝2𝑦] −

𝑞𝐸0

𝑘
sin(𝑘𝑦 − 𝜔𝑡). (16.7)

164Original: C F F Karney Princeton thesis: Stochastic Ion Heating By a Lower Hybrid Wave
(1978). See C F F Kerney and A Ber, Stochastic Ion Heating by a Perpendicularly Propagating
Electrostatic Wave, PRL 39, 550 (1977): “The motion of an ion in the presence of a constant
magnetic field and a perpendicularly propagating electrostatic wave with frequency several times
the ion cyclotron frequency is shown to become stochastic for fields satisfying ...”. The exposition
here follows C. F. F. Karey, “Stochastic ion heating by a lower hybrid wave” Phys. Fluid 21, 1584
(1978).
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Figure 16.4:

Scaling variables appropriately,165 the Hamiltonian reads

𝐻 =
1

2
[(𝑝𝑥 + 𝑦)2 + 𝑝2𝑦] − 𝛼 sin(𝑦 − 𝑣𝑡), (16.8)

where 𝑣 = 𝜔/Ω and 𝛼 = 𝑞𝑘𝐸0/𝑚Ω2 = (𝐸0/𝐵0)/(Ω/𝑘).
Next, we wish to remove the time dependence. The canonical transformation with

the following generator for (𝑥, 𝑝) → (𝑋,𝑃 )

𝐺 = (𝑃𝑥 − 𝑣𝑡)𝑥+ 𝑃𝑦(𝑦 − 𝑣𝑡+ 𝑃𝑥) (16.9)

would do this:

𝑋 = 𝑥+ 𝑝𝑦, 𝑃𝑥 = 𝑝𝑥 + 𝑣𝑡, 𝑌 = 𝑦 + 𝑝𝑥, 𝑃𝑦 = 𝑝𝑦, (16.10)

and the new Hamiltonian 𝐾 is given by

𝐾 = 𝐻 − 𝑣𝑋 +
1

2
(𝑌 2 + 𝑃 2

𝑦 ) − 𝑣𝑋 − 𝛼 sin(𝑌 − 𝑃𝑥). (16.11)

Note that 𝑌 − 𝑦 is a constant of motion 𝑝𝑥, since (16.8) does not depend on 𝑥. From
(16.8) �̇� = 𝑝𝑥 + 𝑦 and 𝑝𝑥 is invariant, so we may set �̇� = 𝑦.

Finally, we introduce the action-angle variables through the following generating
function

𝐹 =
1

2
𝑌 2 cot𝜑1 +𝑋𝜑2. (16.12)

Thus, (cf 11.9)

𝑃𝑥 =
𝜕𝐹

𝜕𝑋
, 𝑃𝑦 =

𝜕𝐹

𝜕𝑌
, 𝐼1 = − 𝜕𝐹

𝜕𝜑1

, 𝐼2 = − 𝜕𝐹

𝜕𝜑2

(16.13)

165𝑡→ Ω𝑡, 𝑥→ 𝑘𝑥, 𝑝→ 𝑝𝑘/𝑚Ω, where Ω = 𝑞𝐵0/𝑚.
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or

𝑃𝑥 = 𝜑2, 𝑃𝑦 = 𝑌 cot𝜑1, 𝐼1 = 𝑌 2/ sin2 𝜑1, 𝐼2 = −𝑋. (16.14)

Thus, we get

𝑃𝑥 = 𝜑2, 𝑋 = −𝐼2, 𝑃𝑦 = (2𝐼1)
1/2 cos𝜑1, 𝑌 = (2𝐼1)

1/2 sin𝜑1. (16.15)

The Hamiltonian reads

𝐾 = 𝐼1 + 𝑣𝐼2 − 𝛼 sin[(2𝐼1)
1/2 sin𝜑1 − 𝜑2]. (16.16)

Depending on the amplitude of the perturbation 𝛼, we see what can happen in
Fig. 16.5.

Figure 16.5: [Fig. 2.4, 2.5 of LL p83,4; originals from Karney’s thesis]

As can be seen from the figure, if there is no resonance or near resonance in the
system analytic results are reliable, but the analytically obtained invariant curves
are actually non-existence globally. This causes the ions to heat up.
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16.5 Hamiltonian systems and area preserving maps
The Poincaré map of a Hamiltonian system is area preserving. This is due to the
invariance of the integral of PdQ under a canonical transformation (see 13.11), esp.,
under dynamics. Therefore, it is highly interesting to study an area preserving map
from R2 into itself.

16.6 Twist map
If the system is integrable, the trajectories are on 𝑇 2, so the map reads

𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝛼(𝐽), (16.17)

where 𝐽 is the action variable specifying a torus (integral of motion). The map gen-
erally twists the cross section because of 𝛼(𝐽).

16.7 General observation about perturbation results
The twist map need not be in terms of 𝐽 and 𝜃. We can use the usual 𝑥𝑦-coordinates
as

𝑥𝑛+1 = 𝑥𝑛 cos𝜓 − 𝑦𝑛 sin𝜓, (16.18)

𝑦𝑛+1 = 𝑥𝑛 sin𝜓 + 𝑦𝑛 cos𝜓, (16.19)

where 𝜓 = 2𝜋𝛼, 𝛼 being the rotation number. If 𝛼 = 𝑟/𝑠, where 𝑟, 𝑠 ∈ N and 𝑟 and
𝑠 are mutually incongruent, then any point on the circle 𝛼(𝐽) = 𝑟/𝑠 is on a periodic
orbit with period 𝑠.

If 𝛼 is irrational, then the circle is filled with a dense orbit.
The KAM-type theorem tells us that the orbits with the rotation number ‘irra-

tional enough’ survive, but rational orbits are destroyed.

16.8 Poincaré-Birkhoff’s theorem
If, in 16.7, 𝛼 = 𝑟/𝑠, after perturbation, most point on the circle is no more periodic,
but there still remain even multiple of 𝑠 fixed points (that is, the 𝑠-periodic orbit
bifurcates into a period 2𝑛𝑠 for some 𝑛 ∈ N+) orbit (See Fig. 16.6).

[Demo] We assume the original unperturbed circle is bounded from inside and from
outside by KAM curves (surfaces). Between these two KAM curves lies the rational
circle for 𝛼 = 𝑟/𝑠. This curve is deformed by perturbation, but after 𝑠 iterations the
angular coordinate is unchanged, so it can deform in the radial direction. However,



16. LECTURE 16. GENERAL PICTURE OF HAMILTONIAN SYSTEMS 189

the map is area preserving (16.5), so the deformed curve must have even crossings
with the unperturbed circle.

Figure 16.6: For the case 𝑠 = 3 six (6) fixed points could exist after perturbation. [Fig. 3.3 of
LL p169]

16.9 Newly formed elliptic and hyperbolic fixed points
As can be seen from Fig. 16.6, a multiple of 𝑠 of new hyperbolic and elliptic fixed
points are formed.

We have 𝑛𝑠 chain of hyperbolic fixed points. If integrable, we have heteroclinic
orbits connecting them, and the remaining orbits are just ‘laminar.’ as we see for
harmonic oscillators.

However, generally, we cannot avoid heteroclinic crossing, causing horseshoes as
illustrated in Fig. 16.7.

An actual illustration is furnished by Henon’s quadratic twist map:

𝑥𝑛+1 = 𝑥𝑛 cos𝜓 − (𝑦𝑛 − 𝑥2𝑛) sin𝜓, (16.20)

𝑦𝑛+1 = 𝑥𝑛 sin𝜓 + (𝑦𝑛 − 𝑥2𝑛) cos𝜓. (16.21)
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Figure 16.7: Generally we cannot avoid heteroclinic orbits, leading to horseshoe dynamics. [Fig.
3.4a of LL p171 ]

In Fig. 16.8 𝜓 = 2𝜋𝛼 with 𝛼 = 0.2114. The first island or heteroclinic chain is
exhibited.

Figure 16.8: Henon quadratic twist map [Fig. 3.6 of LL ]

16.10 Standard map or Chirikov-Taylor map
If a completely integrable system is perturbed as

𝐻(𝐽, 𝜃) = 𝐻0(𝐽) + 𝜀𝐻1(𝐽, 𝜃). (16.22)

The Poincaré map corresponding to (16.17) must have the following form:

𝐽𝑛+1 = 𝐽𝑛 + 𝜀𝑓(𝐽𝑛, 𝜃𝑛), (16.23)
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𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝛼(𝐽𝑛) + 𝜀𝑔(𝐽𝑛, 𝜃𝑛). (16.24)

For many interesting cases 𝑓 does not depend of 𝐽 and 𝑔 may be ignored, if 𝐽𝑛 in 𝛼
is replaced by 𝐽𝑛+1:

𝐽𝑛+1 = 𝐽𝑛 + 𝜀𝑓(𝜃𝑛), (16.25)

𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝛼(𝐽𝑛+1). (16.26)

Introducing 2𝜋𝛼(𝐽) = 𝐼, assuming that the torus does not warp too much and then
expanding 2𝜋𝛼(𝐽𝑛 + 𝜀𝑓) around 𝜀 = 0, ignoring the 𝐽 dependence of the derivative,
we have a linearized equation:

𝐼𝑛+1 = 𝐼𝑛 +𝐾𝑓(𝜃𝑛), (16.27)

𝜃𝑛+1 = 𝜃𝑛 + 𝐼𝑛+1, (16.28)

where 𝐾 is called the stochastic parameter. If we assume further 𝑓(𝜃) = sin 𝜃, we
get the standard map (or the Chrikov-Taylor166 map)

𝐼𝑛+1 = 𝐼𝑛 +𝐾 sin 𝜃𝑛, (16.29)

𝜃𝑛+1 = 𝜃𝑛 + 𝐼𝑛+1, (16.30)

This may be interpreted as a simplified model of particle accelerator by a localized
oscillating electric field.167

𝐾 dependence overview:
https://www.youtube.com/watch?v=PgBzZ6CcyPY

16.11 Fermi acceleration problem
The problem of a ball bouncing between a fixed and an oscillating wall is called the
Fermi acceleration problem (Fog. 16.9L), because it was first examined by Fermi as
a possible mechanism of accelerating cosmic ray particles.

The original moving wall problem can be solved completely, but the problem can be
simplified without spoiling its essence by assuming that the wall does not move but

166Chirikov (see Phys. Rep. 50 263 (1979)) and Greene used this from to stud the transition to
chaos.

167𝐾 = (
√
5− 1)/2 gives the last KAM surface.

https://www.youtube.com/watch?v=PgBzZ6CcyPY
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Figure 16.9: Left: Fermi acceleration problem; Right: Phase space (𝜓, 𝑢) and velocity distribu-
tion 𝑃 (𝑢). 𝑀 = 10 in (16.32) with 7 typical initial conditions. The broken ellipse is the result of
secular perturbation theory. [Fig. 3.11a, 3.12 of LL]

somehow gives a kick to the ball. The successive normalized ball speed 𝑢𝑛 and the
wall phase 𝜓𝑛 (Sawtooth-like oscillation assumed) obey

𝑢𝑛+1 = |𝑢𝑛 + 𝜓𝑛 − 0.5|. (16.31)

𝜓𝑛+1 = 𝜓𝑛 +𝑀/𝑢𝑛 (mod 1). (16.32)

where 𝑀 = 𝑙/16𝑎 and 𝑢 = 𝑀𝑇𝑣/2𝑙, where 𝑙 is the wall space, 𝑎 the oscillation am-
plitude, 𝑇 the wall oscillation period in the original problem before simplification.
The absolute sign corresponds to the velocity reversal due to reflection. The phase
portrait is in Fig. 16.9R.168

Saw-tooth standard map:
http://demonstrations.wolfram.com/TheSawtoothStandardMap/

16.12 Fermi problem and standard map
If the wall moves sinusoidally, then (16.32) now becomes the following form (the
period of the wall is now scaled to 2𝜋)

𝑢𝑛+1 = |𝑢𝑛 + sin𝜓𝑛|, (16.33)

168MA Lieberman and A J Lichtenberg, Stochastic and adiabatic behavior of particles accelerated
by periodic forces, Phys Rev A 5 1872 (1978).

http://demonstrations.wolfram.com/TheSawtoothStandardMap/
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𝜓𝑛+1 = 𝜓𝑛 + 2𝜋𝑀/𝑢𝑛. (16.34)

Then, we linearize the above equation near the fixed point. Such a fixed point is
given by 2𝜋𝑀/𝑢1 being 2𝜋 times positive integers. Introduce ∆𝑢𝑛 = 𝑢𝑛 − 𝑢1. The
second equation of (16.34) becomes

𝜓𝑛+1 = 𝜓𝑛 +
2𝜋𝑀

𝑢1
− 2𝜋𝑀

𝑢21
∆𝑢𝑛. (16.35)

Here, 2𝜋𝑀/𝑢1 may be ignored. 𝜃𝑛 = 𝜓𝑛 − 𝜋 is used to rewrite the equations as

∆𝑢𝑛+1 = ∆𝑢𝑛 − sin 𝜃𝑛, (16.36)

𝜃𝑛+1 = 𝜃𝑛 −
2𝜋𝑀

𝑢21
∆𝑢𝑛. (16.37)

Then, introduce 𝐼𝑛 = −2𝜋𝑀∆𝑢𝑛/𝑢
2
1, and setting 𝐾 = 2𝜋𝑀/𝑢21, we have arrived at

the standard map:

𝐼𝑛+1 = 𝐼𝑛 +𝐾 sin 𝜃𝑛, (16.38)

𝜃𝑛+1 = 𝜃𝑛 + 𝐼𝑛. (16.39)

As can be seen from the derivation, the standard map with various 𝐾 can mimic
the original system around various fixed points as illustrated in Fig. 16.10:

16.13 Arnold diffusion
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Figure 16.10: Fermi model-standard map corresponodence [Fig. 4,1, 2 of LL ]



16. LECTURE 16. GENERAL PICTURE OF HAMILTONIAN SYSTEMS 195

Figure 16.11: Arnold diffusion can be seen away from the fixed point [Fig. 4.4 of LL]
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