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15 Lecture 15. Siegel and KAM

There is almost no hope to solve celestial 𝑛 (𝑛 > 2) body problem analytically in
closed forms, the only remaining analytic hope is perturbative. Perturbative ap-
proaches generally have a grave difficulty called the small divisor problem. If the
unperturbed periodic orbit is sufficiently ‘irrational’ (the Diophantine condition),
this difficulty may be overcome. How to do this systematically is the key issue and
is the core of its solution is proposed by Kolmogorov.

Here, (1) we consider perturbation around a center: when are the majority of
invariant periodic orbits survive? [Poincaré-Siegel problem], then go to (2) the
Kolmogorov-Arnold-Moser (KAM) theorem, asserting the survival of numerous in-
variant tori under perturbation. (1) is given with full demonstration details to taste
the strategy used in (2). (2) is complicated, so only an outline of the demonstration
is given.

15.1 Perturbative solution of motion
We know what we mean by solving the motion of a Hamiltonian system. It is to
devise a smooth canonical transformation that ‘linearizes the equation of motion (see
11.1). What happens if the system is not solvable in the sense we already discussed?
If the nonlinear part of the dynamics is small (only a perturbation), a natural idea
is to construct a transformation near identity to get rid of this nonlinearity. This is
the basic idea of perturbation. Especially because the results due to Poincare and
others (14.7, 14.8) that (almost) dashed the hope of solving celestial mechanics by
quadrature, we desperately need perturbative approaches.

If we try to implement this strategy, we almost immediately encounter a grave
difficulty called the problem of small divisors. Thus, first let us taste the difficulty
and how to overcome it with a ‘simple’153 complex map problem: Find 𝑥 → 𝑦 that
can linearize the original ODE in terms of 𝑥 that has small nonlinear term 𝑔 (that
is 𝑑𝑔/𝑑𝑥|𝑥=0 = 0):

�̇� = 𝐴𝑥 + 𝑔(𝑥) ⇒ 𝑦 = 𝐴𝑦, (15.1)

where 𝐴 is a diagonal matrix (for simplicity). This is the famous Poincaré-Siegel
linearization problem (answers are 15.8 and 15.12).

153The map problem is simple, but the solution is anything but simple as you will see.
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15.2 Formal linearization around singular point
Consider an ode (if needed let us complexify it 4.7)

�̇� = 𝑓(𝑥), (15.2)

where 𝑥 ∈ R𝑛 and 𝑓 is real analytic with 𝑓(0) = 0. The linear term is assumed to
be diagonalized as 𝐴𝑥, where 𝐴 = [𝛼1, · · · , 𝛼𝑛].

Let us consider the formal power series transformation

𝑥 = 𝑢(𝑦) = 𝑦 + 𝑢2(𝑦) + · · · + 𝑢𝑘(𝑦) + · · · , (15.3)

where 𝑢𝑘 is a degree 𝑘 homogeneous polynomial of 𝑦. (15.2) reads componentwisely
as

�̇�𝑗 = 𝛼𝑗𝑥𝑗 +
∑︁
|𝑘|≥2

𝑓𝑘
𝑗 𝑥

𝑘. (15.4)

We have used the Hadamard notation.154 (15.3) reads in this notation

𝑥𝑗 = 𝑦𝑗 +
∑︁
|𝑘|≥2

𝑢𝑘
𝑗𝑦

𝑘. (15.5)

15.3 Formal transformation to the second order
If we solve (15.3) of (15.5) for 𝑦 we obtain

𝑦𝑗 = 𝑥𝑗 −
∑︁
|𝑘|=2

𝑢𝑘
𝑗𝑥

𝑘 + · · · . (15.6)

Here the higher order terms are very complicated and are suppressed. The original
ODE in terms of 𝑦 can be obtained by differentiating this as155

�̇�𝑗
(15.6)
= �̇�𝑗 −

∑︁
|𝑘|=2

𝑢𝑘
𝑗 (𝑘 · 𝛼)𝑥𝑘 + · · · (15.7)

154⟨⟨Hadamard notation⟩⟩ For 𝑥 = (𝑥1, · · · , 𝑥𝑛) and 𝛼 = (𝛼1, · · · , 𝛼𝑛), 𝑥
𝛼 =

∏︀𝑛
𝑗=1 𝑥

𝛼𝑗

𝑗 . Also

we write for 𝑘 = (𝑘1, · · · , 𝑘𝑛) ∈ N𝑛, 𝑘! =
∏︀𝑛

𝑗=1 𝑘𝑗 !. Very often |𝑘| =
∑︀

𝑗 𝑘𝑗 . If 𝑓 : R𝑛 → R and
differentiable, the multivariate Taylor expansion reads

𝑓(𝑥+ 𝑦) =
∑︁
𝑘∈N𝑛

1

𝑘!
𝑦𝑘

𝑑𝑘

𝑑𝑥𝑘
𝑓(𝑥).

155𝑑𝑥𝑘 = 𝑑(
∑︀

𝑗 𝑥
𝑘𝑗

𝑗 ) =
∑︀

𝑗 𝑘𝑗𝑑𝑥𝑗(𝑥
𝑘𝑗−1
𝑗 ) =

∑︀
𝑗 𝛼𝑗𝑥𝑗𝑘𝑗(𝑥

𝑘𝑗−1
𝑗 )𝑑𝑡 =

∑︀
𝑗 𝛼𝑗𝑘𝑗(𝑥

𝑘𝑗

𝑗 )𝑑𝑡 = (𝑎 · 𝑘)𝑥𝑘𝑑𝑡.

More formally, 𝑑𝑥𝑘 = (𝑘 · 𝑑𝑥)𝑥𝑘−1 = (𝐴𝑘)𝑥𝑘.
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(15.4)
=

∑︁
𝑗

𝛼𝑗𝑥𝑗 +
∑︁
|𝑘|=2

𝑓𝑘
𝑗 𝑥

𝑘 −
∑︁
|𝑘|=2

𝑢𝑘
𝑗 (𝑘 · 𝛼)𝑥𝑘 + · · · (15.8)

(15.5)
=

∑︁
𝑗

𝛼𝑗

⎛⎝𝑦𝑗 +
∑︁
|𝑘|=2

𝑢𝑘
𝑗𝑦

𝑘

⎞⎠ +
∑︁
|𝑘|=2

𝑓𝑘
𝑗 𝑦

𝑘 −
∑︁
|𝑘|=2

𝑢𝑘
𝑗 (𝑘 · 𝛼)𝑦𝑘 + · · · (15.9)

=
∑︁
𝑗

𝛼𝑗𝑦𝑗 +
∑︁
|𝑘|=2

[︀
𝛼𝑗𝑢

𝑘
𝑗 + 𝑓𝑘

𝑗 − 𝑢𝑘
𝑗 (𝑘 · 𝛼)

]︀
𝑦𝑘 + · · · (15.10)

=
∑︁
𝑗

𝛼𝑗𝑦𝑗 +
∑︁
|𝑘|=2

{︀
𝑓𝑘
𝑗 + [𝛼𝑗 − (𝑘 · 𝛼)]𝑢𝑘

𝑗

}︀
𝑦𝑘 + · · · . (15.11)

Therefore, if we can set
𝑢𝑘
𝑗 = 𝑓𝑘

𝑗 /(𝑘 · 𝛼− 𝛼𝑗), (15.12)

the second order terms have been eliminated. For this to be possible we need a
non-resonance condition for |𝑘| = 2

𝛼𝑗 − 𝑘 · 𝛼 ̸= 0. (15.13)

15.4 Non-resonance condition
As we will see the non-resonance condition is crucial, so let us state the condition
clearly:

For 𝛼 ∈ C𝑛 If the following set Γ(𝛼) = ∅, we say 𝛼 is non-resonant:

Γ(𝛼) = {𝑗 ∈ {1, 2, · · · , 𝑛}, 𝑘 ∈ N𝑛 |𝛼𝑗 − 𝑘 · 𝛼 = 0}. (15.14)

15.5 Formal transformation to order 𝑘
Replacing ‘2’ with 𝐾 in (15.5) as

𝑥𝑗 = 𝑦𝑗 +
∑︁
|𝑘|=𝐾

𝑢𝑘
𝑗𝑦

𝑘 + · · · , (15.15)

we can repeat the computation in 15.3 to get the following instead of (15.11)

�̇�𝑗 =
∑︁
𝑗

𝛼𝑗𝑦𝑗 +
∑︁

2≤|𝑘|<𝐾

𝑓𝑘
𝑗 𝑦

𝑘
𝑗 +

∑︁
|𝑘|=𝐾

[︀
𝑓𝑘
𝑗 + (𝛼𝑗 − (𝑘 · 𝛼))𝑢𝑘

𝑗

]︀
𝑦𝑘 + · · · (15.16)
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Therefore, under the non-resonance condition (15.13), we can eliminate the order 𝐾
terms.

Notice that in (15.15) · · · terms are not needed. Thus we can get the following
obvious theorem:

15.6 Finite order elimination of nonlinear terms
For any 𝑀 ∈ N+ we can make a polynomial transformation of order 𝑀

𝑥 = 𝑢(𝑦) = 𝑦 + 𝑢2(𝑦) + · · · + 𝑢𝑀(𝑦) (15.17)

such that the original ODE (15.2) with the non-resonance condition 15.4 can be
transformed into the following form:

�̇�𝑗 = 𝛼𝑗𝑦𝑗 +
∑︁
|𝑘|>𝑀

𝑔𝑘𝑗 𝑦
𝑘. (15.18)

15.7 What happens if |𝑘| is very large?
If |𝑘| is very large, then 𝛼𝑗 − 𝑘 · 𝛼 can be very close to zero (imagine a lattice and
then try to draw a line not hitting any lattice point).

Figure 15.1: Suppose 𝛼1 > 0 and 𝛼2 < 0. 𝛼1𝑘1 + 𝛼2𝑘2 = 0 (red line) can be very close to a
positive integer lattice points for large |𝑘| even if 𝛼1/𝛼2 ̸∈ Q. In this case Poincaré’s condition is
trivially violated.

Thus, non-resonance alone cannot guarantee that 𝑢𝑗
𝑘 is of manageable size. Poincaré

proved that if the convex hull of {𝛼1, · · · , 𝛼𝑛} does not contain the origin on the
complex plane, and if 𝛼 satisfies the non-resonance condition, then we can iterate
the procedure in 15.6 indefinitely. That is,

15.8 Poincaré’s lemma
For an ODE with the linear portion diagonalized and the nonlinear part denoted as
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𝑔:
�̇� = 𝐴𝑥 + 𝑔(𝑥), (15.19)

if the convex hull of the eigenvalues do not contain the origin, and the non-resonance
condition is satisfied, then there is an analytic transformation 𝑥 = 𝑦 + 𝑢(𝑦) with
𝑑𝑢/𝑑𝑦|𝑦=0 = 0 such that

�̇� = 𝐴𝑦. (15.20)

Its proof is through an ‘honest’ construction of the majorizing series that is con-
vergent (tedious but straightforward).

15.9 Significance of the convex hull condition
Let 𝛼1, · · · , 𝛼𝑛 ∈ C and its convex hull [𝛼1, · · · , 𝛼𝑛] does not contain the origin. Then,
for any 𝛼 in this convex hull there is 𝛿 > 0 such that |𝑘 · 𝛼| ≥ 𝛿|𝑘| for any 𝑘 ∈ N𝑛.
Thus, what we worried in 15.7 never happens.

This is easy to see. Consider a unit vector 𝑘/|𝑘|. Then |𝑘 · 𝛼|/|𝑘| is the length
of the projection of the vector (𝛼1, · · · , 𝛼𝑛) onto 𝑘/|𝑘|. Thus, this cannot be smaller
than the distance between [𝛼1, · · · , 𝛼𝑛] and the origin.

15.10 What happens if Poincare condition fails?
Siegel demonstrated the following theorem:
Theorem [Siegel] For

�̇� = 𝐴𝑥 + 𝑓(𝑥), (15.21)

where (as above) 𝐴 = [𝛼1, · · · , 𝛼𝑛] is diagonal and 𝑓 is analytic and 𝑓 ′(0) = 0. If
there is 𝛾 > 0 such that for any 𝑘 ∈ Z𝑛 (|𝑘| ≠ 0)

|𝑘 · 𝛼| > 𝛾|𝑘|−𝑛, (15.22)

then (15.21) is analytically transformed to 𝑦 = 𝐴𝑦.
Notice (see 15.11) that {𝛼1, · · · , 𝑎𝑛} satisfying (15.22) is with full measure (ex-

ception is measure zero) wrt the usual Lebesgue measure 𝑚 on R2𝑛 when we identify
C𝑛 with R2𝑛.

15.11 Diophantine approximation
Lemma. For almost all 𝛼 ∈ C𝑛156 we can take a positive number 𝛾 such that for all

156This means: regarding 𝛼 as a 2𝑛-real vector, it is almost sure with respect to the Lebesgue
measure 𝑚 on R2𝑛.
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𝑘 ∈ Z𝑛 (|𝑘| ≠ 0)
|𝑘 · 𝛼| > 𝛾/|𝑘|𝑛. (15.23)

[Demo]
Choose an arbitrary 𝑅 > 0. Consider the totality Σ𝛾 of 𝛼 for which (15.23) does not
hold (i.e., (15.23) is untrue for any choice of 𝛾 > 0) and |𝛼𝑖| < 𝑅 for 𝑖 ∈ {1, · · · , 𝑛}.
To estimate 𝑚(Σ𝛾) we consider the condition for 𝛼:

|𝑘 · 𝛼| ≤ 𝛾/|𝑘|𝑛 (15.24)

for each shell of 𝑘: 𝐾 ≤ |𝑘| < 𝐾 + 1; it is an 𝑛 − 1-sphere of radius 𝐾 with shell
thickness 1. There are ∼ (2𝐾)𝑛−1 vectors. For each such 𝑘, the projection of 𝛼
must be smaller than ∼ 1/𝐾𝑛+1 according to (15.24), so the 𝛼 must be in the slab
of thickness ∼ 2𝛾/𝐾𝑛+1 perpendicular to 𝑘 and the remaining 𝑛− 1 dimensions are
with span 2𝑅. Thus, the total number of 𝛼 satisfying (15.24) for |𝑘| ∼ 𝐾 is bounded
by

∼ (𝐾)𝑛−1 × 2𝛾/𝐾𝑛+1 × (2𝑅)𝑛−1 = 𝐶(𝑅)𝛾/𝐾2, (15.25)

where 𝐶(𝑅) is an 𝑅 dependent constant. Thus, we have an upper bound

𝑚(Σ𝛾) ≤ 𝐶(𝑅)𝛾
∑︁
𝐾

𝐾−2. (15.26)

Therefore, the infimum of this wrt 𝛾 is zero. Since 𝑅 is arbitrary, we have shown the
lemma.

k

R

K2γ/ 
n+1

K

k

Figure 15.2: (15.25) illustrated

15.12 Siegel’s stability theorem for conformal maps
We should continue to study the ODE considered by Poincaré, but here, we go to a
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simpler problem with the same difficulty.157

Let 𝑆 : C → C be defined as 𝑧 → 𝑓(𝑧):

𝑓(𝑧) = 𝜆𝑧 + 𝑔(𝑧), (15.27)

where 𝜆 ̸= 0, 𝑔(0) = 0 which is holomorphic in 𝑧 < 𝑟
We say the origin is stable for the system 𝑆, if and only if for any neighborhood

of the origin 𝑈 , there is a neighborhood of the origin 𝑉 ⊂ 𝑈 such that 𝑆𝑛𝑉 ⊂ 𝑈 for
all 𝑛 ∈ Z.

Siegel proved:
Theorem: If |𝜆| = 1 and |𝜆𝑞 − 1|−1 < 𝐶0𝑞

2 for 𝐶0 > 0 and for any 𝑞 ∈ N+ (the
Diophantine condition), then 𝑆 is stable.

15.13 Strategy to demonstrate Siegel’s theorem
The strategy of the proof here (due to Moser) following Kolmogorov’s idea is as fol-
lows:
First we show
Lemma: 𝑆 is stable iff
(1) |𝜆| = 1,
(2) There is a holomorphy 𝑢 in a neighborhood of the origin such that lim|𝑧|→0 𝑢(𝑧)/𝑧 →
1 (asymptotically an identity) and

𝑢(𝜆𝜁) = 𝑓(𝑢(𝜁)). (15.28)

That is, the variable change due to 𝑧 = 𝑢(𝜁) converts the original into 𝜆𝜁:

𝑧 𝑓(𝑧)

𝜁 𝜆𝜁.

𝑆

𝑢 𝑢 (15.29)

Thus, the theorem requires to solve (15.28). Instead of solving this, that is,

𝑢(𝜆𝜁) = 𝜆𝑢(𝜁) + 𝑔(𝑢(𝜁)) (15.30)

at once, we solve a partially linearized version:

𝑢1(𝜆𝜁) = 𝜆𝑢1(𝜁) + 𝑔(𝜁). (15.31)

157Polya said: if you cannot understand a problem, there must be a simpler problem you cannot
understand. Find it.
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This 𝑢1 cannot render the original equation to 𝜆𝜁1 even if 𝑧 = 𝑢1(𝜁1); actually,

𝑢1(𝜆𝜁1 + Φ(1)(𝜁1)) = 𝑓(𝜆𝑢1(𝜁1)). (15.32)

That is,

𝑧 𝑓(𝑧)

𝜁1 𝜆𝜁1 + Φ(1)(𝜁1).

𝑆

𝑢1 𝑢1 (15.33)

Rewrite the original equation in terms of the new variable 𝜁1 = 𝑢1(𝑧). The nonlinear
term is reduced. That is, if 𝑔 < 𝜀, then, roughly speaking, |Φ(1)| < 𝜀2. Repeating
this procedure rapidly decreases the size of the nonlinear term.

𝑧 𝑓(𝑧)

𝜁1 𝜆𝜁1 + Φ(1)(𝜁1)

𝜁2 𝜆𝜁2 + Φ(2)(𝜁2)

... ....

𝑆

𝑢1

𝑆1

𝑢1

𝑢2

𝑆2

𝑢2

𝑢3 𝑢3

(15.34)

Thus, 𝑢 = · · · ∘ 𝑢𝑛 ∘ 𝑢𝑛−1 ∘ · · · ∘ 𝑢2 ∘ 𝑢1.

15.14 Preparatory lemma
𝑆 : C → C is stable iff for ∀𝑈 neighborhood of 𝑧 = 0 there is a simply connected
neighborhood 𝑉 (⊂ 𝑈) of origin such that 𝑆𝑉 = 𝑉 .

[Demo] ⇐ Trivial.
⇒ According to the definition of stability ∃𝑊 −∈𝑆𝑛𝑊 ⊂ 𝑈 for ∀𝑛 ∈ Z. Define

𝑉 = ∪𝑛∈Z𝑆
𝑛𝑊. (15.35)

Take a connected component 𝑉 of 𝑉 containing 𝑧 = 0. Then, any curve 𝐶
connecting any point in 𝑉 and the origin inside 𝑉 satisfies 𝑆𝑛𝐶 ⊂ 𝑉 (i.e.,
different connected components do not map between them by 𝑆). Therefore,
𝑆𝑉 = 𝑉 .

If 𝑉 is not simply connected, repeat the above procedure all over starting
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from a smaller 𝑈 . Suppose the resultant 𝑉 is not simply connected even if 𝑈
is very small. This, however, contradicts the assumption that 𝑆 is holomorphic
around 𝑧 = 0, because there must be a neighborhood on which 𝑆 looks very
close to a rigid rotation (= linearized version). Thus, we can get the desired
𝑉 .

15.15 Poof of Lemma in 15.13
Our key lemma already mentioned in 15.13 is:
Lemma: 𝑆 is stable iff
(1) |𝜆| = 1
(2) There is a holomorphy 𝑢 in a neighborhood of the origin such that lim|𝑧|→0 𝑢(𝑧)/𝑧 →
1 (asymptotically an identity) and

𝑢(𝜆𝜁) = 𝑓(𝑢(𝜁)). (15.36)

[Demo]
⇐ is obvious. Take a small disk 𝐷 and 𝑢(𝐷) = 𝑉 .
⇒ According to the preparatory lemma 15.14, stability implies the existence
of 𝑉 −∈𝑆𝑉 = 𝑉 ∋ 0, where 𝑉 is simply connected (i.e., topologically equivalent
to a disk). Then the Riemann mapping theorem guarantees the existence of a
conformal map 𝑢 from 𝑉 to a disk 𝐷 of radius 𝜌 such that 𝑢(0) = 0 and

𝑢(𝜁) = 𝜁 + 𝑏2𝜁
2 + · · · . (15.37)

𝑢−1 ∘ 𝑆 ∘ 𝑢 : 𝐷 → 𝐷 must be a rigid rotation of 𝐷, so there is 𝜇 (|𝜇| = 1) and

𝑢−1 ∘ 𝑆 ∘ 𝑢(𝜁) = 𝜇𝜁. (15.38)

𝜇 = 𝜆, so |𝜆| = 1.
Now, we can start the strategy outlined in 15.13.

15.16 If 𝑔 is small, 𝑢1(𝑧) − 𝑧 must be small
If 𝑔, which satisfies 𝑔(0) = 𝑔′(0) = 0, in (15.27) is small in a neighborhood of
the origin, 𝑢1 constructed as an approximation to 𝑢 should not be very far from
the identity. This is shown in the Lemma below.

More precisely,
Lemma: Let 𝑔 be holomorphic on a disk |𝜁| < 𝑟 and |𝑔| < 𝜀 with 𝑔(0) =
𝑔′(0) = 0. Define 𝑢1 as the solution to

𝑢1(𝜆𝜁) = 𝜆𝑢(𝜁) + 𝑔(𝑢1(𝜁)). (15.39)

Then, 𝑢1 is holomorphic in |𝜁| < 𝑟 and on |𝜁| < 𝑟(1 − 𝜃) (𝜃 ∈ (0, 1))

|𝑢1(𝜁) − 𝜁| < 2𝐶0𝜀/𝜃
3, (15.40)
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where 𝐶0 is a positive constant.

Technically, to show that 𝑢𝑛 are all close to identity, we must show Φ(𝑛) are all small.

It is more convenient to show that 𝑢1 solving (15.39) should not be very far from the

identity, if 𝑔′, instead of 𝑔, is small. This is given as a corollary 15.17.

[Demo of Lemma]
Since 𝑔 is holomorphic in |𝜁| < 𝑟, we can expand it as

𝑔(𝜁) =
∑︁
𝑘≥2

𝑔𝑘𝜁
𝑘 (15.41)

with |𝑔𝑘| < 𝜀/𝑟𝑘 (the Cauchy bound). Let us formally expand 𝑢1 as

𝑢1 = 𝜁 +
∑︁
𝑘≥2

𝑢𝑘𝜁
𝑘. (15.42)

Putting this into (15.39), we obtain∑︁
𝑘≥2

𝑢𝑘[(𝜆𝜁)𝑘 − 𝜆𝜁𝑘] =
∑︁
𝑘≥2

𝑔𝑘𝜁
𝑘. (15.43)

Thus, we must solve
[𝜆𝑘 − 𝜆]𝑢𝑘 = 𝑔𝑘. (15.44)

That is (notice that we potentially have a small denominator difficulty, which
is overcome by the Diophantine condition),

𝑢𝑘 = 𝑔𝑘/[𝜆𝑘 − 𝜆]. (15.45)

We can show that 𝑢1 is well defined and its deviation from the identity is
bounded by 𝜀 by an explicit calculation as follows.

|𝑢1(𝜁) − 𝜁| =

⃒⃒⃒⃒
⃒∑︁
𝑘≥2

[𝜆𝑘 − 𝜆]−1𝑔𝑘𝜁
𝑘

⃒⃒⃒⃒
⃒ ≤ ∑︁

𝑘≥2

|𝜆𝑘−1 − 1|−1|𝑔𝑘||𝜁|𝑘 (15.46)

≤
∑︁
𝑘≥2

𝐶0(𝑘 − 1)2𝜀𝑟−𝑘|𝜁|𝑘 <
∑︁
𝑘≥2

𝐶0(𝑘 − 1)2𝜀(1 − 𝜃)𝑘,(15.47)

where we have used the Cauchy bound for 𝑔𝑘 and the Diophantine condition.
Notice that∑︁

𝑘≥2

(𝑘 − 1)2𝑥2 ∼ 𝑑2

𝑑𝑥2

∑︁
𝑥𝑘 ∼ 𝑑2

𝑑𝑥2

1

1 − 𝑥
∼ (1 − 𝑥)−3, (15.48)
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so (set 𝑥 = 1 − 𝜃 to use this identity)

|𝑢1(𝜁) − 𝜁| < 𝜀𝛼𝐶0/𝜃
3, (15.49)

where 𝛼 is a positive constant (which can be chosen as 2 with a bit more de-
tailed calculation).

15.17 If 𝑔′ is small, 𝑢1(𝑧) − 𝑧 must be small
If 𝑔, which satisfies 𝑔(0) = 𝑔′(0) = 0, in (15.27) and if its derivative 𝑔′ is small in
a neighborhood of the origin, 𝑢1 constructed as an approximation to 𝑢 should
not be very far from the identity.

More precisely,
Lemma: Let 𝑔 be holomorphic on a disk |𝜁| < 𝑟 and |𝑔′| < 𝜀 with 𝑔(0) =
𝑔′(0) = 0. Define 𝑢1 as the solution to

𝑢1(𝜆𝜁) = 𝜆𝑢(𝜁) + 𝑔(𝑢1(𝜁)). (15.50)

Then, 𝑢1 is holomorphic in |𝜁| < 𝑟 and in |𝜁| < 𝑟(1 − 𝜃) (𝜃 ∈ (0, 1))

|𝑢1(𝜁) − 𝜁| < 2𝐶0𝜀𝑟/𝜃
3, (15.51)

where 𝐶0 is a positive constant.
[Demo]
This should not be hard to guess, since |𝑔| must be of order 𝑟 × |𝑔′| < 𝑟𝜀. A
formal demonstration may be as follows. From (15.50) we get

𝜆𝑢′
1(𝜆𝜁) = 𝜆𝑢′

1(𝜁) + 𝑔′(𝜁). (15.52)

Let 𝑣 = 𝜁𝑢′
1(𝜁). We have

𝜆𝑣(𝜆𝜁) = 𝜆𝑣(𝜁) + 𝜁𝑔′(𝜁). (15.53)

Since |𝜁𝑔′(𝜁)| < 𝜀|𝜁| in |𝜁| < 𝑟, the lemma in 15.16 tells us that in |𝜁| < 𝑟(1−𝜃)

|𝑣(𝜁) − 𝜁| < 2𝐶0|𝜁|/𝜃3. (15.54)

That is,
|𝑢′

1 − 1| < 2𝐶0𝜀/𝜃
3. (15.55)

Thus,

|𝑢1 − 𝜁| =

⃒⃒⃒⃒∫︁ 𝜁

0

(𝑢′
1 − 1)𝑑𝜁

⃒⃒⃒⃒
< 2𝐶0𝑟𝜀/𝜃

3. (15.56)
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15.18 (15.34) is a commutative diagram
To construct 𝑢 we must be able to show that all the ‘squares’ in (15.34)
must commute. That is, for example, 𝑢1 and 𝑢−1

1 must be well defined in a
neighborhood of the origin. We have already shown that 𝑢1 is well defined in
|𝜁| < 𝑟(1 − 𝜃).

To demonstrate 𝑢−1
1 is well-defined, we show that 𝑢1(𝜁) is topologically the

same as 𝜁. To show this we use Rouche’s theorem:158

Lemma. Choose 𝜀 small enough to satisfy for 𝜃 ∈ (0, 1/4)

2𝐶0𝜀 < 𝜃4. (15.57)

Then, 𝑢−1
1 is well defined in |𝑧| < 𝑟(1 − 2𝜃) and

𝑢−1
1 ({𝑧 | |𝑧| < 𝑟(1 − 2𝜃)}) ⊂ {𝜁 | |𝜁| < 𝑟(1 − 𝜃)}. (15.58)

[Demo]
(15.57) and (15.56) tells us that for 𝑣(𝜁) = 𝑢1(𝜁) − 𝜁

|𝑣(𝜁)| ≤ 𝑟𝜃. (15.59)

If |𝑧| < 𝑟(1 − 2𝜃) and |𝜁| < 𝑟(1 − 𝜃), then this implies that

|𝑣(𝜁)| ≤ |𝜁| − |𝑧| ≤ |𝜁 − 𝑧|. (15.60)

Since |𝜆| = 1, this implies that the equations 𝜆𝜁 + 𝑣(𝜁) = 𝑢1(𝜁) = 𝑧 and 𝜁 = 𝑧
have the same zeros. Thus, 𝑢−1

1 is well defined in |𝑧| < 𝑟(1 − 2𝜃) and its image
is in |𝜁| < 𝑟(1 − 𝜃).

15.19 𝑆1 is well defined close to the origin
We can show
Lemma: 𝑆1(𝜁) = 𝑢−1

1 ∘ 𝑓 ∘ 𝑢1 = 𝜆𝜁 + Φ(1)(𝜁) in (15.34) is well defined in
|𝜁| < 𝑟(1 − 4𝜃) if 𝜀 < 𝜃.

[Demo]
Since |𝑓 | ≤ |𝜁| + |𝑔| and |𝑔| < 𝑟𝜀, if |𝑔′| < 𝜀

|𝑓 | ≤ |𝜁| + |𝑔| ≤ |𝜁| + 𝑟𝜀 ≤ |𝜁| + 𝑟𝜃, (15.61)

because we assume 𝜀 < 𝜃.
The image of 𝑓 must be in the domain of 𝑢−1

1 , i.e., |𝑧| < 𝑟(1−2𝜃). Therefore,

158⟨⟨Rouche’s theorem⟩⟩ Let 𝐷 be a simply connected open set. Suppose 𝑓 and 𝑔 are non-
constant holomorphic functions on [𝐷] (closure), and |𝑓 | > |𝑔| on 𝜕𝐷. Then, the number of zeros
of 𝑓 and 𝑓 + 𝑔 agree in 𝐷.
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the domain of 𝑓 must be restricted to |𝑧| < 𝑟(1 − 3𝜃). Then, (15.58) implies
that the domain of 𝑢1 must be restricted to |𝜁| < 𝑟(1 − 4𝜃).

15.20 Φ(1) is small and we can iterate the above argument indefi-
nitely
If we can show that Φ(1) is sufficiently small, we can repeat the above argument
for 𝑢2, and ad infinitum. We can show (we wish to use an analogue of 15.17
to show that 𝑢2 is close to identity)

Lemma: |Φ(1)′(𝜁)| < 𝐶1𝜀
2/𝜃4, where 𝐶1 < 3𝐶0 in |𝜁| > 𝑟(1 − 5𝜃) with

0 < 𝜀 < 𝜃 < 1/5.

[Demo]
𝑢1(𝜆𝜁 + Φ(1)) = 𝑓(𝑢1) = 𝜆𝑢1(𝜁) + 𝑔(𝑢1), (15.62)

so (recall 𝑣 = 𝑢1 − 𝜁 and 𝑣(𝜆𝜁) = 𝜆𝑣(𝜁) + 𝑔(𝜆𝜁))

𝜆𝜁 + Φ(1) + 𝑣(𝜆𝜁 + Φ(1)) = 𝜆𝜁 + 𝜆𝑣(𝜁) + 𝑔(𝜆𝜁 + 𝑣(𝜁)). (15.63)

Therefore,
Φ(1) = 𝜆𝑣(𝜁) − 𝑣(𝜆𝜁 + Φ(1)) + 𝑔(𝜆𝜁 + 𝑣(𝜁)), (15.64)

but 𝜆𝑣(𝜁) = 𝑣(𝜆𝜁) − 𝑔(𝜆𝜁) gives

Φ(1) = 𝑣(𝜆𝜁) − 𝑣(𝜆𝜁 + Φ(1)) + 𝑔(𝜆𝜁 + 𝑣(𝜁)) − 𝑔(𝜆𝜁). (15.65)

Using the mean value theorem

|𝑣(𝜆𝜁)−𝑣(𝜆𝜁+Φ(1))| ≤ sup |𝑣′| sup |Φ(1)| ≤ 2𝜀𝐶0

𝜃3
sup |Φ(1)| < 𝜃 sup |Φ(1)| < 1

5
sup |Φ(1))|.

(15.66)
From this and (15.65)

|Φ(1)| ≤ 1

5
sup |Φ(1)| + |𝑔(𝜆𝜁 + 𝑣(𝜁)) − 𝑔(𝜆𝜁)| (15.67)

or
4

5
sup |Φ(1)| ≤ sup |𝑔(𝜆𝜁 + 𝑣(𝜁)) − 𝑔(𝜆𝜁)|. (15.68)

Again we use the mean-value theorem

4

5
sup |Φ(1)| ≤ sup |𝑔′| sup |𝑣(𝜁)| < 𝜀

2𝐶0𝜀

𝜃3
𝑟. (15.69)

Thus we get for |𝜁| < 𝑟(1 − 4𝜃)

sup |Φ(1)| < 5𝐶0𝜀
2

2𝜃3
𝑟. (15.70)
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Its derivative may be estimated following Cauchy in a somewhat smaller domain
|𝜁| < 𝑟(1 − 5𝜃) as

|Φ(1)′(𝜁)| < 𝐶1𝜀
2/𝜃4. (15.71)

15.21 Summary of a recursion step
Thus we have completely constructed the single step for the recursion scheme
((15.33) realized) [Please ignore strange arrowheads at the ends of the formulas]

𝑧 𝜆𝑧 + 𝑔(𝑧) |𝑔′(𝑧)| < 𝜀 in |𝑧| < 𝑟

𝜁1 𝜆𝜁1 + Φ(1)(𝜁1) |Φ(1)(𝜁)| < 𝐶1𝜀
2/𝜃4 in |𝜁| < 𝑟(1 − 5𝜃).

𝑆

𝑢1

𝑆1

𝑢1

(15.72)
or more generally

𝜁𝑛 𝜆𝜁𝑛 +Φ(𝑛)(𝜁𝑛) |Φ(𝑛)′(𝜁𝑛)| < 𝜀𝑛 in |𝜁𝑛| < 𝑟𝑛

𝜁1 𝜆𝜁𝑛+1 +Φ(𝑛+1)(𝜁𝑛+1) |Φ(𝑛+1)(𝜁𝑛+1)| < 𝐶1𝜀
2
𝑛/𝜃

4
𝑛 = 𝜀𝑛+1 in |𝜁𝑛+1| < 𝑟𝑛(1− 5𝜃𝑛) = 𝑟𝑛+1.

𝑆𝑛

𝑢𝑛+1

𝑆𝑛+1

𝑢𝑛+1

(15.73)

15.22 Convergence of the recursive transformations
For the recursive transformations to converge we must at least demand 𝜀𝑛 → 0
and 𝑟𝑛 → 𝑟∞ > 0. Thus,

∑︀
𝜃𝑛 must be convergent. Moreover,

𝑈𝑛 = 𝑢𝑛 ∘ 𝑢𝑛−1 ∘ · · · ∘ 𝑢1 (15.74)

must be uniformly convergent in |𝜁| < 𝑟∞. Or equivalently

𝑈 ′
𝑛 = 𝑢′

𝑛𝑢
′
𝑛−1 · · ·𝑢′

1 (15.75)

must be uniformly convergent. Since

|𝑈 ′
𝑛| ≤

𝑛∏︁
𝑘=1

(1 + |Φ(𝑛)′|), (15.76)

if ∑︁
|Φ(𝑛)′| ≤

∑︁
𝜀𝑛 (15.77)
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converges, we are done!
Thus the requirements are ∑︁

𝜀𝑛 < ∞, (15.78)∑︁
𝜃𝑛 < ∞ (15.79)

with 0 < 𝜀𝑛 < 𝜃𝑛 < 1/5. This is satisfied if we choose 𝜃𝑛 = (1/5)𝑐−𝑛 for 𝑐 > 1.
Indeed,

𝜀𝑛+1 =
𝐶1

𝜃4𝑛
𝜀2𝑛 =

𝐶1

5
𝑐4𝑛𝜀2𝑛 < 𝐶𝑛+1

2 𝜀2𝑛 (15.80)

Define 𝜀𝑛 = 𝐶𝑛+2𝜀𝑛. Then 𝜀′𝑛+1 < (𝜀′𝑛)2, so choose 𝜀′0 ≤ 1 and all the require-
ments for 𝜃𝑛 are met.

15.23 Setup of the simplest version of KAM theorem
Let 𝐻(𝜃, 𝐼, 𝜀) be a near integrable Hamiltonian; for 𝜀 = 0

𝐻0(𝐼) = 𝐻(𝜃, 𝐼, 0). (15.81)

That is, 𝐼 is invariant, and determines an invariant 𝑇 𝑛 as asserted by the Liouville-
Arnold theorem. We wish to see whether the invariant 𝑇 𝑛 with 𝐼 = 𝐼0 survives the
perturbation. Since we may add any constant to 𝐼, we choose 𝐼0 = 0. We consider
𝐼 close to 𝐼0 = 0: 𝐵 = {𝐼 | |𝐼| < 𝑏} for some small 𝑏 > 0. We assume 𝐻(𝜃, 𝐼, 𝜀) is
holomorphic on ℳ× (−𝜀0, 𝜀0). We write the zeroth and the first order terms as

𝐻(𝜃, 𝐼, 0) = 𝐸 + 𝜔 · 𝐼 + 𝑄(𝐼), (15.82)

where 𝑄 = 𝑂[𝐼2] in the 𝐼 → 0 limit.
We assume

(1) 𝜔 satisfies a Diophantine condition 15.11

|𝑘 · 𝜔| ≥ 𝛼

|𝑘|𝜏
(15.83)

with 𝜏 > 𝑛− 1.
(2) 𝐻(𝜃, 𝐼, 0) is non-degenerate in the sense that det(𝜕2𝑄/𝜕𝐼𝑖𝜕𝐼𝑗) ̸= 0.

15.24 KAM theorem
With the setup 15.23 there is a holomorphic canonical transformation 𝜑 : 𝑇 𝑛 ×
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𝐵* × (−𝜀*, 𝜀*) → ℳ, where 𝐵* ⊂ 𝐵 and 0 < 𝜀* < 𝜀0, such that the canonical
transformation (𝜃, 𝐼) → (𝜃′, 𝐼 ′) transforms 𝐻(𝜃, 𝐼, 𝜀) as

𝐾(𝜃′, 𝐼 ′.𝜀) = 𝐸*(𝜀) + 𝜔 · 𝐼 ′ + 𝑄*(𝜃
′, 𝐼 ′, 𝜀), (15.84)

where 𝑄* = 𝑂[𝐼 ′2] in the 𝐼 ′ → 0 limit. Here, 𝜑 is an identity for 𝜀 = 0.

This implies that the canonical equation of motion reads

𝑑𝜃′

𝑑𝑡
=

𝜕𝐾

𝜕𝐼 ′
= 𝜔 +

𝜕𝑄*

𝜕𝐼 ′
, (15.85)

𝑑𝐼 ′

𝑑𝑡
= −𝜕𝐾

𝜕𝜃′
= −𝜕𝑄*

𝜕𝜃′
. (15.86)

Notice that the derivatives of 𝑄* for 𝐼 ′ = 0 vanish because 𝑄* = 𝑂[𝐼 ′2]. This means
that the ‘holomorphically deformed’ 𝐼 = 0 torus survives and the motion on it is just
the original (almost) periodic flows. This torus is called a KAM torus.

15.25 Strategy of proof of KAM
The idea is just as explained for Siegel’s theorem. Let the perturbed Hamiltonian
reads

𝐻 = 𝐻0 + 𝜀𝑃 − 0, (15.87)

where 𝐻0 = 𝐸0 + 𝜔𝐼 + 𝑄(𝐼) with 𝑄 = 𝑂[𝐼2].
We construct a canonical transformation 𝜑1 : (𝜃, 𝐼) → (𝜃′, 𝐼 ′) such that

𝐻1 = 𝐻 ∘ 𝜑1 = 𝐾1 + 𝜀2𝑃1, (15.88)

where

𝐾1 = 𝐸1(𝜀) + 𝜔𝐼 ′ + 𝑄1(𝜃
′, 𝐼 ′, 𝜀), (15.89)

with 𝑄1 = 𝑂[𝐼 ′2].
This is accomplished by removing the 𝜃-dependent constant portion and the first

order in 𝐼 of 𝑃0 of order 𝜀 choosing 𝜑1.
If we repeat the same strategy, we get

𝐻2 = 𝐻1 ∘ 𝜑2 = 𝐾2 + 𝜀4𝑃2. (15.90)

Of course we must show that 𝜑𝑛 ∘ · · · ∘ 𝜑2 ∘ 𝜑1 converges.
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15.26 Canonical transformation that can remove 𝑂[𝜀] terms
We introduce (𝜃, 𝐼) → (𝜃′, 𝐼 ′) with the generator 𝐺(𝜃, 𝐼 ′)

𝑑𝐺 = 𝐼𝑑𝜃 + 𝜃′𝑑𝐼 ′ + (𝐾 −𝐻)𝑑𝑡, (15.91)

but 𝐺(𝜃, 𝐼 ′) is time independent, so 𝐾 = 𝐻(𝐼(𝜃′, 𝐼 ′), 𝜃(𝜃′, 𝐼 ′)).
We wish to remove 𝐼 ′-independent 𝜃′ dependence (to keep 𝐼 ′ invariant) and the

𝑂[𝐼 ′] terms that cannot be written as 𝜔 ·𝐼 ′ to order 𝜀. We assume the following form:

𝐼 =
𝜕𝐺

𝜕𝜃
= 𝐼 ′ + 𝜀𝛽(𝜃, 𝐼 ′), (15.92)

𝜃′ =
𝜕𝐺

𝜕𝐼 ′
= 𝜃 + 𝜀𝑎(𝜃). (15.93)

If 𝜀 is sufficiently small, we can invert the second equation as

𝜃 = 𝜙(𝜃′, 𝜀). (15.94)

Thus we may set (𝑏 is a constant vector)

𝐺 = 𝜃 · 𝐼 ′ + 𝜀[𝜃 · 𝑏 + 𝑠(𝜃) + 𝑎(𝜃) · 𝐼 ′] (15.95)

We see that

𝛽(𝜃, 𝐼 ′) = 𝑏 +
𝜕

𝜕𝜃
𝑠(𝜃) +

𝜕𝑎

𝜕𝜃
𝐼 ′. (15.96)

Notice that we can choose 𝑠 and 𝑎 integration over 𝑇 𝑛 to vanish (by subtracting
appropriate constants tat we can ignore from 𝐺).

15.27 Transformation of Hamiltonian
Let us write

𝐻(𝜃, 𝐼, 𝜀) = 𝐻(𝜃, 𝐼, 0) + 𝜀𝑃 (𝜃, 𝐼, 𝜀) = 𝐸 + 𝜔 · 𝐼 + 𝑄(𝐼) + 𝜀𝑃 (𝜃, 𝐼, 𝜀). (15.97)

First, we change 𝐼 → 𝐼 ′:

𝐻(𝜃, 𝐼, 𝜀) = 𝐻(𝜃, 𝐼 ′ + 𝜀𝛽(𝜃, 𝐼 ′), 𝜀) (15.98)

= 𝐸 + 𝜔 · 𝐼 ′ + 𝑄(𝜃, 𝐼 ′) + 𝜀

[︂
𝜔 · 𝛽 +

𝜕𝑄

𝜕𝐼 ′
𝛽 + 𝑃 (𝜃, 𝐼 ′, 0)

]︂
+ 𝜀2𝑃 ′(𝜃, 𝐼 ′, 𝜀),

(15.99)
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where 𝑃 ′ denotes all the remaining terms.
Since we do not care for 𝑂[𝐼 ′2], but we wish to rewrite the rest of 𝑂[𝜀] as constant.

Let us expand 𝑂[𝜀] in powers of 𝐼 ′:

𝜔 · 𝛽 +
𝜕𝑄

𝜕𝐼 ′
𝛽 + 𝑃 (𝜃, 𝐼 ′, 0) = 𝜔 ·

(︂
𝑏 +

𝜕𝑠

𝜕𝜃
+

𝜕𝑎

𝜕𝜃
𝐼 ′
)︂

+
𝜕𝑄

𝜕𝐼 ′

(︂
𝑏 +

𝜕𝑠

𝜕𝜃
+

𝜕𝑎

𝜕𝜃
𝐼 ′
)︂

+ 𝑃 (𝜃, 𝐼 ′, 0)

(15.100)

= 𝜔 · (𝑏 +
𝜕𝑠

𝜕𝜃
) + 𝑃 (𝜃, 0, 0) (15.101)

+

[︂
𝜔 · 𝜕𝑎

𝜕𝜃
+ (𝑏 +

𝜕𝑠

𝜕𝜃
)
𝜕2𝑄

𝜕𝐼 ′𝐼 ′
+

𝜕𝑃

𝜕𝐼 ′

]︂
𝐼 ′ + 𝑂[𝐼 ′2] (15.102)

15.28 Removing 𝜃-dependence from energy
The 𝐼 ′ independent term in (15.102) is

𝜔 · 𝑏 + 𝐷𝜔𝑠(𝜃) + 𝑃 (𝜃, 0, 0), (15.103)

where

𝐷𝜔 = 𝜔 · 𝜕

𝜕𝜃
. (15.104)

Therefore, to remove the 𝜃 dependence, we must choose 𝑠 so that

𝜔 · 𝑏 + 𝐷𝜔𝑠(𝜃) + 𝑃 (𝜃, 0, 0) = 𝜔 · 𝑏 + 𝑃0 (15.105)

where 𝑃0 is the average value of 𝑃 (𝜃, 0, 0). Thus, we must solve

𝐷𝜔𝑠(𝜃) = −(𝑃 (𝜃, 0, 0) − 𝑃0), (15.106)

or we must show the well-definedness of 𝐷−1
𝜔 . Here, we encounter the small devisor

problem.
As shown below 15.31-15.33, since the average of 𝑃 (𝜃, 0, 0)−𝑃0 over 𝑇 𝑛 vanishes,

𝑠 is well-defined.

15.29 Removing the 𝑂[𝐼 ′] term
We wish to eliminate

𝐷𝜔𝑎 + (𝑏 +
𝜕𝑠

𝜕𝜃
)
𝜕2𝑄

𝜕𝐼 ′𝐼 ′
+

𝜕𝑃

𝜕𝐼 ′
. (15.107)
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Since we wish to determine 𝑎 the average of the terms other than 𝐷 + 𝑤𝛼 over 𝑇 𝑛

must vanish. First, we choose 𝑏 to satisfy this condition. This is possible due to the
non-degeneracy condition (Hess ̸= 0). Then, 𝑎 can be computed just as 𝑠.

15.30 Full transformation
The remaining task is to replace 𝜃 in 𝐻(𝜃, 𝐼 ′ + 𝜀𝛽(𝜃, 𝐼 ′), 𝜀) with 𝜃′ (see (15.94)).

15.31 Well-definedness of 𝐷−1
𝜔 : formal solution

We wish to solve

𝐷𝜔𝑢 = 𝜔 · 𝜕𝑢
𝜕𝜃

= 𝑓. (15.108)

To solve this formally, 𝑢 and 𝑓 are Fourier expanded as

𝑢(𝜃) =
∑︁
𝑘∈R𝑛

𝑢𝑘𝑒
𝑖𝑘𝜃, 𝑓(𝜃) =

∑︁
𝑘∈R𝑛

𝑓𝑘𝑒
𝑖𝑘𝜃, (15.109)

where

𝑢𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑢(𝜃)𝑒−𝑖𝑘𝜃, 𝑓𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑓(𝜃)𝑒−𝑖𝑘𝜃. (15.110)

Therefore, (15.108) gives
𝑖𝑘𝜔𝑢𝑘 = 𝑓𝑘 (15.111)

For this to be solvable 𝑓0 = 0 (i.e., 𝑓 averaged over 𝑇 𝑛 is zero. Therefore, the
general solution to (15.108) is given be

𝑢(𝜃) = 𝑢0 +
∑︁

𝑘∈R𝑛∖{𝑜}

𝑓𝑘
𝑖𝜔𝑘

𝑒𝑖𝑘𝜃. (15.112)

Thus, if the average of 𝑢 over 𝑇 𝑛 vanishes (i.e., 𝑢0 = 0), the solution to (15.108)
is formally unique.

15.32 Well-definedness of 𝐷−1
𝜔 : convergence of formal solution

We assume that the real analytic function on 𝑇 𝑛 is analytic in a ‘strip’ 𝑇 𝑛
𝜉

containing the real axis:

𝑇 𝑛
𝜉 = {𝜃 ∈ C𝑛 | |Im𝜃𝑗| < 𝜉}/(2𝜋Z)𝑛 (15.113)

If 𝑓 is analytic on 𝑇 𝑛
𝜉 , then

|𝑓𝑘| ≤ ‖𝑓‖𝑒−|𝑘𝜉, (15.114)
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where ‖𝑓‖ is the max of |𝑓 on 𝑇 𝑛
𝜉 . Its demonstration is in 15.33.

Now, we assume the Diophantine condition

|𝑘𝜔| ≥ 𝛼|𝑘|𝜏 . (15.115)

Then,

|𝑢𝑘| =

⃒⃒⃒⃒
𝑓𝑘
𝑖𝜔𝑘

⃒⃒⃒⃒
≤ 𝛼−1‖𝑓‖𝑒−|𝑘|𝜉|𝑘|𝜏 . (15.116)

Using this estimate the maximal convergence of 𝑢 is shown.

15.33 Cauchy estimate of |𝑓𝑘|

𝑓𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑓(𝜃)𝑒−𝑖𝑘𝜃 (15.117)

The integration path may be shifted to the imaginary direction so that 𝑗th
component is shifted by 𝑖𝜉sgn(𝑘𝑗) (𝜃𝑗 → 𝜃𝑗 +𝑖𝜉sgn(𝑘𝑗)). Then, 𝑖𝑘𝜃 → 𝑖𝑘𝜃−𝜉|𝑘|
(we stick to the Hadamard notation).

𝑓𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑓(𝜃)𝑒−𝑖𝑘𝜃 (15.118)

=
1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒
−𝑖𝑘𝑗(𝜃𝑗+𝑖𝜉sgn(𝑘𝑗)) (15.119)

=
1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒
−𝑖𝑘𝜃−𝜉|𝑘|. (15.120)

Therefore,

|𝑓𝑘| = 𝑒−𝜉|𝑘|
⃒⃒⃒⃒

1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒
−𝑖𝑘𝜃

⃒⃒⃒⃒
(15.121)

≤ 𝑒−𝜉|𝑘| 1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃
⃒⃒
𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒

−𝑖𝑘𝜃
⃒⃒

(15.122)

≤ 𝑒−𝜉|𝑘| 1

(2𝜋)𝑛

∫︁
𝑇𝑛

𝑑𝜃 ‖𝑓‖ = ‖𝑓‖𝑒−|𝑘|𝜉. (15.123)
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