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13 Lecture 13. Canonical transformation

We have already used canonical transformations, but here important facts are col-
lected (point transformation, infinitesimal canonical transformation, Lagrange’s bracket,
various invariants, Liouville’s theorem).

It is important to recognize that time evolution is a canonical transformation.
Classical canonical transformations do not usually correspond to quantum unitary

transformations.

13.1 Canonical transformation with generators (review)
The transformation 𝑇 : (𝑞, 𝑝) → (𝑄,𝑃 ) that preserves the form of the canonical
equation of motion (10.14) is called a canonical transformation. As discussed in
11.3, we discuss only the canonical transformations with generators 𝐹

𝑑𝐹 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 −
∑︁
𝑖

𝑃𝑖𝑑𝑄𝑖 + (𝐾 −𝐻)𝑑𝑡. (13.1)

(13.1) gives
𝜕𝐹

𝜕𝑞
= 𝑝,

𝜕𝐹

𝜕𝑄
= −𝑃,

𝜕𝐹

𝜕𝑡
= 𝐾 −𝐻. (13.2)

Solving these equations, we can construct the canonical transformation 𝑇 . In par-
ticular, if 𝐹 is time-independent, then 𝐾 = 𝐻 is obtained by replacing 𝑞 and 𝑝 in 𝐻
in terms of 𝑄 and 𝑃 .

Applying a sort of Legendre transformation to generators, we can construct dif-
ferent (perhaps more convenient) transformations:

𝑑(𝐹 + 𝑃𝑄) = 𝑝𝑑𝑞 + 𝑄𝑑𝑃 + (𝐾 −𝐻)𝑑𝑡. (13.3)

Thus, replacing 𝐹 with 𝐺 = 𝐹 +
∑︀

𝑖 𝑃𝑖𝑄𝑖, we obtain

𝑑𝐺 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 +
∑︁
𝑖

𝑄𝑖𝑑𝑃𝑖 + (𝐾 −𝐻)𝑑𝑡. (13.4)

13.2 Canonical transformations make a group
Let us write the generator of the canonical transformation 𝑇𝑖 as 𝐹𝑖. The gener-
ator of

∏︀
𝑖 𝑇𝑖 is given by

∑︀
𝑖 𝐹𝑖, so the totality of the canonical transformation for
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a given system makes a(n abelian) group (called the canonical transformation group).

13.3 Point transformations
Through a general canonical transformation position and momentum coordinates
are usually mixed up. When we use the spatial coordinate change (say, from the
Cartesian to the spherical), no mix-up occurs. Thus, 𝑞 → 𝑄, 𝑝 → 𝑃 can be described
by a subset (subgroup) of canonical transformations called point transformations.

Perhaps, the most convenient generator is the original 𝐺 = 𝐹 + 𝑃𝑄:

𝑑𝐺 = 𝑝𝑖𝑑𝑞𝑖 + 𝑃𝑖𝑑𝑄𝑖, (13.5)

because usually we know 𝑞 and 𝑄(𝑞, 𝑡). Since 𝑑𝐺 is exact, to obtain 𝐺 we may use
a convenient path: 𝑞 is constant. Therefore,

𝐺 = 𝑝𝑖𝑞𝑖. (13.6)

If we write 𝑞 in terms of 𝑄,

𝑃 =
𝜕𝐺

𝜕𝑄
(13.7)

gives the canonical momentum in the new coordinate system in terms of the old
momentum variables. This may be the most mechanical way to get the momentum
in the new coordinate system.

Examples:
(1) CM coordinates: (𝑞1, 𝑞2) → 𝑄1 = (𝑞1 +𝑞2)/2, 𝑄2 = 𝑞1−𝑞2. Since 𝑞1 = 𝑄1 +𝑄2/2,
𝑞2 = 𝑄1 −𝑄2/2, so (13.6) reads

𝐺 = 𝑝1(𝑄1 + 𝑄2/2) + 𝑝2(𝑄1 −𝑄2/2). (13.8)

Therefore,

𝑃1 =
𝜕𝐺

𝜕𝑄1

= 𝑝1 + 𝑝2, 𝑃2 =
𝜕𝐺

𝜕𝑄2

=
1

2
(𝑝1 − 𝑝2). (13.9)

(2) (𝑥, 𝑦, 𝑧) → (𝑟, 𝜃, 𝜙): 𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = 𝑟 cos 𝜃. The generator
reads

𝐺 = 𝑝𝑥𝑟 sin 𝜃 cos𝜙 + 𝑝𝑦𝑟 sin 𝜃 sin𝜙 + 𝑝𝑧𝑟 cos 𝜃. (13.10)

Its inverse may be generated by

𝐺 = 𝑝𝑟‖𝑥‖ + 𝑝𝜃Tan−1

√︀
𝑥2 + 𝑦2

𝑧
+ 𝑝𝜙Tan−1 𝑦

𝑥
. (13.11)
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(3) Rotation. We can use an orthogonal transformation to describe it as 𝑥′𝑖 = 𝑎𝑖𝑗𝑥
𝑗

(with the summation convention). The generator is 𝐺 = 𝑎𝑖𝑗𝑝𝑖𝑥
𝑗 = 𝑝𝑖𝑥

′𝑖.

(4) Translation: 𝑥′𝑘 = 𝑥𝑘 + ∆𝑥𝑘. Its generator is 𝐺 = 𝑃 (𝑥+ ∆𝑥). This gives 𝑃 = 𝑝,
of course.
(5) Mirror image wrt 𝑥1: 𝑥′1 = −𝑥1, 𝑥′2 = 𝑥2, · · ·. Its generator is 𝐺 = −𝑥1𝑃1 +
𝑥2𝑃2 + · · · ..

13.4 Infinitesimal canonical transformation
A canonical transformation (𝑞, 𝑝) → (𝑄,𝑃 ) is said to be an infinitesimal canonical
transformation, if 𝑄− 𝑞 and 𝑃 − 𝑝 are infinitesimal.

Let 𝐺 be its generator:
𝑑𝐺 = 𝑝𝑑𝑞 + 𝑄𝑑𝑃 (13.12)

Notice that
𝑑(𝐺− 𝑞𝑃 ) = (𝑝− 𝑃 )𝑑𝑞 + (𝑄− 𝑞)𝑑𝑃, (13.13)

so 𝐺 − 𝑞𝑃 may be written as 𝜀𝑆, where 𝜀 is an infinitesimal parameter. Therefore,
any infinitesimal canonical transformation has the following generator

𝐺(𝑞, 𝑃 ) = 𝑞𝑃 + 𝜀𝑆(𝑞, 𝑝), (13.14)

where 𝑃 in 𝑆 has been replaced by 𝑝 because of 𝜀 in front of it. 𝑆 is called the
generator of the infinitesimal canonical transformation. We have

𝑝 =
𝜕𝐺

𝜕𝑞
= 𝑃 + 𝜀

𝜕𝑆

𝜕𝑞
, (13.15)

𝑄 =
𝜕𝐺

𝜕𝑃
= 𝑞 + 𝜀

𝜕𝑆

𝜕𝑝
. (13.16)

That is,

𝑄 = 𝑞 + 𝜀
𝜕𝑆

𝜕𝑝
, 𝑃 = 𝑝− 𝜀

𝜕𝑆

𝜕𝑞
. (13.17)

13.5 Infinitesimal canonical transformation of mechanical variables
A mechanical variable 𝐹 = 𝐹 (𝑞, 𝑝) changes, according to the infinitesimal canonical
transformation with generator 𝑆, as

𝐹 (𝑄,𝑃 ) − 𝐹 (𝑞, 𝑝) = 𝜀

(︂
𝜕𝐹

𝜕𝑞

𝜕𝑆

𝜕𝑝
− 𝜕𝐹

𝜕𝑝

𝜕𝑆

𝜕𝑞

)︂
= 𝜀[𝐹, 𝑆]𝑃𝐵. (13.18)
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13.6 Time evolution is canonical transformation
We know the time evolution of a mechanical variable according to the natural motion
of the system obeys

𝑑𝐹

𝑑𝑡
= [𝐹,𝐻]𝑃𝐵. (13.19)

𝜀 → 𝛿𝑡 and 𝑆 → 𝐻 in (13.18) just gives this equation. Thus we may conclude that
time evolution is a canonical transformation.

13.7 One form of Noether’s theorem
Suppose the Hamiltonian is invariant under the infinitesimal canonical transforma-
tion with the generator 𝑊 that changes a mechanical variable 𝑓 → 𝑓 + 𝑑𝑓 . Then
(13.18) implies

𝑑𝐻 = 𝑑𝑓 [𝐻,𝑊 ] = 0. (13.20)

That is, 𝑊 is an invariant of motion.

13.8 What is the relation between classical canonical and quantum uni-
tary transformations?
As point transformations tell us, any coordinate transformation is canonical classi-
cally. However, it is well known that the canonical quantization using the correspon-
dence between the commutator and the Poisson bracket must choose (basically) the
Cartesian coordinates; if the formalism is naively applied to the system described
with the aid of the spherical coordinates, the resultant quantum mechanics are not at
all equivalent. Thus, it is clear that the usual canonical quantization and canonical
transformations are usually not compatible.

If a transformation gives an equivalent quantum mechanical system, and if there is
a corresponding classical system, there is a corresponding canonical transformation.
However, the converse is not usually true.

13.9 Lagrange bracket
Let 𝑓 and 𝑔 be differentiable mechanical quantities. The Lagrange bracket between
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them is defined as

(𝑓, 𝑔) =
𝜕𝑞

𝜕𝑓

𝜕𝑝

𝜕𝑔
− 𝜕𝑞

𝜕𝑔

𝜕𝑝

𝜕𝑓
. (13.21)

13.10 Poisson vs Lagrange brackets
Let 2𝑛 canonical variables be denoted as {𝑢𝑗}2𝑛𝑗=1. Then∑︁

𝑘

[𝑢𝑘, 𝑢𝑖]𝑃𝐵(𝑢𝑘, 𝑢𝑗) = 𝛿𝑖𝑗. (13.22)

This is shown by explicit calculation:136∑︁
𝑘

(︂
𝜕𝑢𝑘

𝜕𝑞

𝜕𝑢𝑖

𝜕𝑝
− 𝜕𝑢𝑘

𝜕𝑝

𝜕𝑢𝑖

𝜕𝑞

)︂(︂
𝜕𝑞

𝜕𝑢𝑘

𝜕𝑝

𝜕𝑢𝑗

− 𝜕𝑝

𝜕𝑢𝑘

𝜕𝑞

𝜕𝑢𝑗

)︂
=

𝜕𝑢𝑖

𝜕𝑝

𝜕𝑝

𝜕𝑢𝑗

+
𝜕𝑢𝑖

𝜕𝑞

𝜕𝑞

𝜕𝑢𝑗

=
𝜕𝑢𝑖

𝜕𝑢𝑗

.

(13.23)

13.11 Integral invariant
Take a smooth closed curve 𝐶 in the phase space (𝑞, 𝑝). If a canonical transformation
(𝑞, 𝑝) → (𝑄,𝑃 ) is applied to this curve, we get a closed curve 𝐶 ′ in the phase space

136If you do not like the following shorthand, do explicit calculation with summation convention.
For example, one cross term reads

𝜕𝑢𝑘

𝜕𝑝𝑓

𝜕𝑢𝑖

𝜕𝑞𝑓

𝜕𝑞𝑔
𝜕𝑢𝑘

𝜕𝑝𝑔
𝜕𝑢𝑗

=
𝜕𝑞𝑞
𝜕𝑝𝑓

𝜕𝑢𝑖

𝜕𝑞𝑓

𝜕𝑝𝑔
𝜕𝑢𝑗

= 0

The surviving terms read

𝜕𝑢𝑘

𝜕𝑞𝑓

𝜕𝑢𝑖

𝜕𝑝𝑓

𝜕𝑞𝑔
𝜕𝑢𝑘

𝜕𝑝𝑔
𝜕𝑢𝑗

+
𝜕𝑢𝑘

𝜕𝑝𝑓

𝜕𝑢𝑖

𝜕𝑞𝑓

𝜕𝑝𝑔
𝜕𝑢𝑘

𝜕𝑞𝑔
𝜕𝑢𝑗

=
𝜕𝑞𝑔
𝜕𝑞𝑓

𝜕𝑢𝑖

𝜕𝑝𝑓

𝜕𝑝𝑔
𝜕𝑢𝑗

+
𝜕𝑝𝑔
𝜕𝑝𝑓

𝜕𝑢𝑖

𝜕𝑞𝑓

𝜕𝑞𝑔
𝜕𝑢𝑗

= 𝛿𝑓𝑔

(︂
𝜕𝑢𝑖

𝜕𝑝𝑓

𝜕𝑝𝑔
𝜕𝑢𝑗

+
𝜕𝑢𝑖

𝜕𝑞𝑓

𝜕𝑞𝑔
𝜕𝑢𝑗

)︂
That is, ∑︁

𝑓

(︂
𝜕𝑢𝑖

𝜕𝑝𝑓

𝜕𝑝𝑓
𝜕𝑢𝑗

+
𝜕𝑢𝑖

𝜕𝑞𝑓

𝜕𝑞𝑓
𝜕𝑢𝑗

)︂
=

𝜕𝑢𝑖

𝜕𝑢𝑗
.

which is the sum over all the independent variables (recall 𝑢 are understood as a function of (𝑞, 𝑝);

just as 𝜕𝐹 (𝐺𝑖(𝑥))
𝜕𝑥 = 𝜕𝐹

𝜕𝐺𝑖

𝜕𝐺𝑖

𝜕𝑥 )
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spanned by (𝑄,𝑃 ). Since 𝑝𝑑𝑄− 𝑃𝑑𝑄 = 𝑑𝐹 ,137∮︁
𝐶

𝑝𝑑𝑞 −
∮︁
𝐶′
𝑃𝑑𝑄 = 0. (13.24)

This is called a relative integral invariant. Applying the Stokes’ theorem, we get∫︁
𝐴

𝑑𝑞𝑑𝑝 =

∫︁ ′

𝐴

𝑑𝑄𝑑𝑃 (13.25)

where 𝜕𝐴 = 𝐶 and 𝜕𝐴′ = 𝐶 ′. This is called the absolute integral invariant. This is
true for any area 𝐴 floating in the phase space.

Suppose 𝐴 has a coordinate system (𝑢, 𝑣). Then, on 𝐴 𝑞 and 𝑝 are functions of
(𝑢, 𝑣). After the canonical transformation 𝑄 and 𝑃 depend on (𝑢, 𝑣) through the
original variable, so (13.26) reads (with the summation convention)∫︁

𝐴

𝜕(𝑞𝑟, 𝑝𝑟)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 =

∫︁ ′

𝐴

𝜕(𝑄𝑟, 𝑃 𝑟)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 (13.26)

This is true for any 𝐴, so we must conclude that

𝜕(𝑞𝑟, 𝑝𝑟)

𝜕(𝑢, 𝑣)
(13.27)

is invariant (do not forget the summation convention).

13.12 Lagrange brackets are invariant of canonical transformation
The invariance of (13.27) implies

𝜕(𝑞𝑟, 𝑝𝑟)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 = 𝑑𝑞𝑟𝑑′𝑝𝑟 − 𝑑′𝑞𝑟𝑑𝑝𝑟 (13.28)

is invariant. Here, 𝑑 and 𝑑′ are independent infinitesimal changes. Therefore, La-
grange brackets are invariant.

As we will see soon the converse is true: if a transformation keeps Lagrange brack-
ets invariant, it is a canonical transformation.

137𝑝𝑑𝑄 is a shorthand notation of
∑︀

𝑟 𝑝𝑟𝑑𝑄𝑟 as usual.
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13.13 Poisson brackets are invariant of canonical transformation
(13.22) implies that if Lagrange bracket is invariant, then so is Poison bracket. Thus,
a necessary and sufficient condition for (𝑞, 𝑝) → (𝑄,𝑃 ) is canonical is that

[𝑃, 𝑃 ]𝑃𝐵 = [𝑄,𝑄]𝑃𝐵 = 0, [𝑄,𝑃 ]𝑃𝐵 = 1. (13.29)

13.14 Invariance of Lagrange bracket implies canonical nature of the
transformation
Looking at 13.11, we see we have only to show that 𝑝𝑑𝑞 − 𝑃𝑑𝑄 is exact. That is,
there is a function 𝑊 such that

𝑑𝑊 = 𝑝𝑑𝑞 − 𝑃𝑑𝑄. (13.30)

If there is such 𝑊 , it must satisfy, as a function of 𝑃 and 𝑄

𝜕𝑊

𝜕𝑃
= 𝑝

𝜕𝑞

𝜕𝑃
,
𝜕𝑊

𝜕𝑄
= 𝑝

𝜕𝑞

𝜕𝑃
− 𝑃. (13.31)

Also we need 𝜕2𝑊/𝜕𝑃𝜕𝑄 = 𝜕2𝑊/𝜕𝑄𝜕𝑃 : we have

𝜕2𝑊

𝜕𝑄𝜕𝑃
=

𝜕𝑝

𝜕𝑄

𝜕𝑞

𝜕𝑃
+ 𝑝

𝜕2𝑞

𝜕𝑄𝜕𝑃
, (13.32)

𝜕2𝑊

𝜕𝑃𝜕𝑄
=

𝜕𝑝

𝜕𝑃

𝜕𝑞

𝜕𝑄
+ 𝑝

𝜕2𝑞

𝜕𝑃𝜕𝑄
− 1. (13.33)

Equating these formulas, we get

(𝑄,𝑃 ) = 1. (13.34)

That is,138 if we have the invariance of Lagrange’s brackets, then (𝑞, 𝑝) → (𝑄,𝑃 ) is
canonical.

13.15 Liouville’s theorem
The phase volume is invariant under canonical transformations. That is∫︁

𝑉

𝑑𝑛𝑝𝑑𝑛𝑞 =

∫︁
𝑉 ′

𝑑𝑛𝑃𝑑𝑛𝑄, (13.35)

138Needless to say, we must also demand (𝑃, 𝑃 ) = (𝑄,𝑄) = 0 as well for 𝑑𝑊 to be exact. Check
this.
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where 𝑉 is a (2𝑛-)subset of the phase space, and 𝑉 ′ its image due to the canonical
transformation (𝑞, 𝑝) → (𝑄,𝑃 ). To demonstrate this we have only to show that
following Jacobian to be ±1:

𝐽 =
𝜕(𝑞, 𝑝)

𝜕(𝑄,𝑃 )
. (13.36)

We compute this as

𝐽 =
𝜕(𝑞, 𝑝)

𝜕(𝑄, 𝑝)

𝜕(𝑄, 𝑝)

𝜕(𝑄,𝑃 )
=

𝜕𝑞

𝜕𝑄

⃒⃒⃒⃒
𝑝

𝜕𝑝

𝜕𝑃

⃒⃒⃒⃒
𝑄

=
𝜕𝑝

𝜕𝑃

⃒⃒⃒⃒
𝑄

⧸︃
𝜕𝑄

𝜕𝑞

⃒⃒⃒⃒
𝑝

. (13.37)

Now, in terms of the generator 𝑑𝐺 = 𝑝𝑑𝑞 −𝑄𝑑𝑃 , we have

𝜕𝑄

𝜕𝑞

⃒⃒⃒⃒
𝑝

=
𝜕2𝐺

𝜕𝑞𝜕𝑃
, (13.38)

𝜕𝑝

𝜕𝑃

⃒⃒⃒⃒
𝑄

=
𝜕2𝐺

𝜕𝑃𝜕𝑞
. (13.39)

Thus, 𝐽 = 1.
13.6 implies that the phase volume is invariant of motion.

13.16 Integration by quadratures
Integration by quadrature is the search of the solutions by a finite number of alge-
braic operations (including inversion of functions) and ‘quadratures’ = calculation
of integrals of known functions. T

If 𝑛 first integrals are commutative (the classical involution case), the system is solv-
able by quadrature.

13.17 Jacobi’s method of complete integral139

Jacobi showed that for a system with 𝑛 degrees of freedom of motion if we can find a
complete solution (solution with 𝑛 + 1 arbitrary and independent constants) for the
Hamilton-Jacobi equation, we can determine the motion completely.

The Hamilton-Jacobi equation has the following form

𝜕𝐴

𝜕𝑡
+ 𝐻 = 0, (13.40)

139See Landau-Lifshitz Section 47.
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so a complete solution can have the form 𝐴 = 𝐶 + 𝑓(𝑞, 𝛼, 𝑡), where C and 𝛼 (𝑛-
vector) are the arbitrary constants. We can introduce a canonical transformation
whose generator is 𝑓 that makes 𝛼 as the new momentum (𝑓 corresponds to 𝐺)

𝑝𝑖 =
𝜕𝑓

𝜕𝑞𝑖
, 𝛽𝑗 =

𝜕𝑓

𝜕𝛼𝑗

, 𝐾 =
𝜕𝑓

𝜕𝑡
+ 𝐻 =

𝜕𝐴

𝜕𝑡
+ 𝐻 = 0. (13.41)

Thus, the new coordinates are 𝛽. Since the Hamiltonian in this coordinate system
vanishes, the canonical equation of motion tells us that 𝛽 are constants. Solving 𝑛
equations 𝛽 = 𝜕𝑓

𝜕𝛼
, we can determine 𝑞 as a function of 𝑡.

13.18 Separation of variables
If the action 𝐴 (or called Hamilton’s principal function) may be written as a sum of
two functions without common coordinates: 𝐴 = 𝐴1(𝑎1, 𝑡) + 𝐴2(𝑞2, 𝑡), we can sepa-
rately find complete solutions. Especially when 𝐴2 depends only on one coordinate
𝑞𝑛, we say this coordinate is separated from the rest, and the 1D problem may be
solved.
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