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11 Lecture 11. Determination of motion

Here, we discuss (analytically) solvable classical mechanics problems. First, we un-
derstand the completely integrable cases geometrically (Liouville-Arnold theorem),
and then describe such systems in terms of the action-angle variables.

Then, in Lecture 12, a recent integration technique (the Lax pair approach) is
introduced. It will be illustrated with the Toda lattice. To discuss the method his-
torically, we go back to Korteweg-de Vries (KdV) equation. [This naturally leads us
to solitons, but I do not go into this vast topic.]

11.1 Determination of motion
Here the word ‘determine’ implies that we can construct a map that allows us to
transform the dynamical flow in the phase space into a simple flow (‘laminar flow’ on a
torus just like the rectifiability theorem 3.19): (𝑄,𝑃 ) (𝑃 is constant and 𝑄 = 𝑃𝑡+𝑐)
as we will see below. That is, to rectify the flow while preserving the structure of
Hamiltonian dynamical systems (i.e., by a canonical transformation). If this can be
done, the system is said to be integrable.

Thus, we need at least a rudimentary familiarity to the canonical transformation.
Needless to say, not all the systems allow such transformations (only integrable

systems). Poincaré’s recognition that the three (celestial) body problem is not inte-
grable in this sense was the birth of modern classical mechanics/study of dynamical
systems.

11.2 Canonical transformation
The transformation 𝑇 : (𝑞, 𝑝) → (𝑄,𝑃 ) that preserves the form of the canonical
equation of motion (10.14) is called a canonical transformation.117 Thus, the trans-
formation 𝑇 to be canonical implies that the equation of motion in terms of the new
variables reads

𝑑𝑄𝑖

𝑑𝑡
=
𝜕𝐾

𝜕𝑃𝑖

,
𝑑𝑃𝑖

𝑑𝑡
= − 𝜕𝐾

𝜕𝑄𝑖

, (11.1)

where 𝐾(𝑄,𝑃 ) = 𝐻(𝑞(𝑄,𝑃 ), 𝑝(𝑄,𝑃 )) is the Hamiltonian in terms of the new vari-
ables.

117Corresponding to unitary transformations in quantum mechanics.
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11.3 Generator of canonical transformation
For (11.1) to hold, we must have the action principle in terms of the new variables
(𝑄,𝑃 ).

Let (𝑞, 𝑝) be the canonical coordinates and (𝑄,𝑃 ) the new coordinates (they are
phase functions). Then, the Hamilton’s principle reads

𝛿

∫︁
(𝑃�̇�−𝐾)𝑑𝑡 = 0. (11.2)

Thus, we demand (see the remark below)

𝛿

∫︁ [︁
(𝑝𝑞 −𝐻) − (𝑃�̇�−𝐾)

]︁
𝑑𝑡 = 0. (11.3)

This means that the difference of these two integrals can be constant, so

(𝑝𝑑𝑞 −𝐻𝑑𝑡) − (𝑃𝑑𝑄−𝐾𝑑𝑡) = 𝑑𝐹, (11.4)

or
𝑑𝐹 = 𝑝𝑑𝑞 − 𝑃𝑑𝑄+ (𝐾 −𝐻)𝑑𝑡 (11.5)

must be path-independent. That is, 𝑑𝐹 must be exact.118 Thus, there is a function
𝐹 = 𝐹 (𝑞,𝑄, 𝑡) such that

𝑑𝐹 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 −
∑︁
𝑖

𝑃𝑖𝑑𝑄𝑖 + (𝐾 −𝐻)𝑑𝑡, . (11.6)

𝐹 is called the generator of the canonical transformation 𝑇 : (𝑞, 𝑝) → (𝑄,𝑃 ). (11.6)
gives

𝜕𝐹

𝜕𝑞
= 𝑝,

𝜕𝐹

𝜕𝑄
= −𝑃, 𝜕𝐹

𝜕𝑡
= 𝐾 −𝐻. (11.7)

Solving these equations we can construct the canonical transformation 𝑇 . In partic-
ular, if 𝐹 is time-independent, then 𝐾 = 𝐻 is obtained by replacing 𝑞 and 𝑝 in 𝐻 in
terms of 𝑄 and 𝑃 .

Remark: For the system described by 𝑞 and 𝑝 to satisfy the canonical equation
of motion, much more general transformations are allowed, but the form with the
generator discussed above is the most convenient, especially because the Hamilto-
nian is virtually preserved if the generator is time-independent. Thus, when we say

118If form 𝜃 can be written as an (external) derivative of another form 𝜔 as 𝜃 = 𝑑𝜔, 𝜃 is called
an exact form. A form 𝜃 that satisfies 𝑑𝜃 = 0 is called a closed form. Obviously, an exact form is a
closed form.
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‘canonical transformation’ we restrict ourselves to this type of transformations.

Applying a sort of Legendre transformation to generators, we can construct dif-
ferent (perhaps more convenient) transformations:

𝑑(𝐹 + 𝑃𝑄) = 𝑝𝑑𝑞 +𝑄𝑑𝑃 + (𝐾 −𝐻)𝑑𝑡. (11.8)

Thus, replacing 𝐹 with 𝐺 = 𝐹 +
∑︀

𝑖 𝑃𝑖𝑄𝑖, we obtain

𝑑𝐺 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 +
∑︁
𝑖

𝑄𝑖𝑑𝑃𝑖 + (𝐾 −𝐻)𝑑𝑡. (11.9)

11.4 Complete integrability
Let 𝐹1, · · · , 𝐹𝑛 (𝐹1 = 𝐻) be pairwise involutive (i.e., [𝐹𝑖, 𝐹𝑗]𝑃𝐵 = 0) smooth functions
on 2𝑛-mfd 𝑀 . If 𝐹𝑖’s are functionally independent (or ∇𝐹𝑖’s are linearly independent
on a dense set of 𝑀), then,
(1) 𝑀𝑓 = {𝑥 |𝐹𝑖(𝑥) = 𝑓𝑖} is diffeomorphic to 𝑇 𝑘 × R𝑛−𝑘.
(2) The Hamiltonian flow on 𝑀𝑓 takes the following form with the coordinate system
on 𝑇 𝑘 × R𝑛−𝑘: 𝜙1, · · · , 𝜙𝑘 mod 2𝜋, 𝑦1, · · · , 𝑦𝑛−𝑘

�̇�𝑖 = 𝜔𝑖, �̇�𝑗 = 𝑐𝑗, (11.10)

where 𝜔 and 𝑐 are constants.

11.5 Slightly general form of integrability119

For a 𝑛-dimensional Hamiltonian system suppose there are 𝑛 first integrals
𝐹1, · · · , 𝐹𝑛 (i.e., [𝐻,𝐹𝑖] = 0) such that

[𝐹𝑖, 𝐹𝑗] =
∑︁
𝑘

𝑐𝑘𝑖𝑗𝐹𝑘, (11.11)

where 𝑐𝑘𝑖𝑗 are constants. If
(1) on 𝑀𝑓 = {𝑥 |𝐹𝑖(𝑥) = 𝑓𝑖} 𝐹𝑖 are functionally independent
(2)

∑︀
𝑘 𝑐

𝑘
𝑖𝑗𝑓𝑘 = 0.

(3) The Lie algebra 𝒜 of linear combination
∑︀
𝜆𝑖𝐹𝑖 is solvable.120

119Theorem 1 Chapter 4 of V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects
of classical and celestial mechanics in Dynamical systems III ed. V. I. Arnold (Springer, 1988).

120⟨⟨Solvable Lie algebra⟩⟩ A Lie algebra g is solvable, if

g ⊃ [g, g] ⊃ [[g, g], [g, g]] → {0}

.
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Then, the Hamiltonian dynamical system is solvable by quadrature. p107

11.6 Liouville-Arnold’s theorem
This is a special case of 11.4 when the motion is bounded (confined in a finite space;
𝑀 is compact). In this case 11.4 reads:
Let 𝐹1, · · · , 𝐹𝑛 (𝐹1 = 𝐻) be pairwise involutive (i.e., [𝐹𝑖, 𝐹𝑗]𝑃𝐵 = 0) smooth functions
on 2𝑛-mfd 𝑀 . If 𝐹𝑖’s are functionally independent (or ∇𝐹𝑖’s are linearly independent
on a dense set of 𝑀), then
(1) 𝑀𝑓 = {𝑥 |𝐹𝑖(𝑥) = 𝑓𝑖} is diffeomorphic to 𝑇 𝑛.
(2) The Hamiltonian flow on 𝑀𝑓 takes the following form with the coordinate system
on 𝑇 𝑛: 𝜙1, · · · , 𝜙𝑛 mod 2𝜋

�̇�𝑖 = 𝜔𝑖, (11.12)

where 𝜔 are constants.

Figure 11.1: Arnold-Liouville foliated torus [Fig. 8.3.2 of Abraham & Marsden]

[Demo] Consider 𝑛 Hamiltonian dynamical systems on 𝑀 each of which is governed
by 𝐹𝑗 (𝑗 ∈ {1, · · · , 𝑛}) as its Hamiltonian. We introduce a canonical coordinate
system (𝑞, 𝑝) for the phase space. The canonical equation of motion (𝑠 is the time
variable) governed by the Hamiltonian 𝐹𝑗 reads

𝑑𝑞

𝑑𝑠
=
𝜕𝐹𝑗

𝜕𝑝
,
𝑑𝑝

𝑑𝑠
= −𝜕𝐹𝑗

𝜕𝑞
. (11.13)

Since 𝐹𝑗 are involutive, the tangent vectors parallel to the flows for these 𝑛 systems
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commute. Let us check this:121

[𝐹1,𝑝𝜕𝑞−𝐹1,𝑞𝜕𝑝, 𝐹2,𝑝𝜕𝑞−𝐹2,𝑞𝜕𝑝] = [𝐹1,𝑝𝜕𝑞, 𝐹2,𝑝𝜕𝑞]+[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑞𝜕𝑝]−[𝐹1,𝑝𝜕𝑞, 𝐹2,𝑞𝜕𝑝]−[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑝𝜕𝑞]
(11.14)

[𝐹1,𝑝𝜕𝑞, 𝐹2,𝑝𝜕𝑞] = (𝐹1,𝑝𝐹2,𝑝𝑞 − 𝐹2,𝑝𝐹1,𝑝𝑞)𝜕𝑞. (11.15)

[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑞𝜕𝑝] = (𝐹1,𝑞𝐹2,𝑞𝑝 − 𝐹2,𝑞𝐹1,𝑞𝑝)𝜕𝑝. (11.16)

[𝐹1,𝑝𝜕𝑞, 𝐹2,𝑞𝜕𝑝] = 𝐹1,𝑝𝐹2,𝑞𝑞𝜕𝑝 − 𝐹2,𝑞𝐹1,𝑝𝑝𝜕𝑞 (11.17)

[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑝𝜕𝑞] = 𝐹1,𝑞𝐹2,𝑝𝑝𝜕𝑞 − 𝐹2,𝑝𝐹1,𝑞𝑞𝜕𝑝 (11.18)

(11.19)

Collecting the terms containing 𝜕𝑞, we get

𝐹1,𝑝𝐹2,𝑝𝑞−𝐹2,𝑝𝐹1,𝑝𝑞+𝐹2,𝑞𝐹1,𝑝𝑝−𝐹1,𝑞𝐹2,𝑝𝑝 = −𝜕𝑝(𝐹1,𝑞𝐹2,𝑝−𝐹1,𝑝𝐹2,𝑞) = 𝜕𝑝[𝐹2, 𝐹1]𝑃𝐵 = 0.
(11.20)

Similarly, collecting the terms containing 𝜕𝑝, we get

𝐹1,𝑞𝐹2,𝑞𝑝−𝐹2,𝑞𝐹1,𝑞𝑝−𝐹1,𝑝𝐹2,𝑞𝑞 +𝐹2,𝑝𝐹1,𝑞𝑞 = 𝜕𝑞(𝐹1,𝑞𝐹2,𝑝−𝐹2,𝑞𝐹1,𝑝) = 𝜕𝑞[𝐹1, 𝐹2]𝑃𝐵 = 0.
(11.21)

Thus, the Lie bracket (11.14) vanishes.122 This implies that the time evolution groups
due to {𝐹𝑖} commute. Thus there are 𝑛 independent directions.

The compact manifold 𝑀𝑓 must be invariant under the 𝑛-dimensional Abelian
group defined by the time evolutions due to {𝐹𝑖}. This implies that 𝑀𝑓 is diffeomor-
phic to 𝑇 𝑛.

11.7 Action-angle variables123

If 𝑀 is compact for a completely integrable system, then 𝑀𝑓 is diffeomorphic to 𝑇 𝑛.
(1) The small nbh of 𝑀𝑓 in the ambient symplectic mfd 𝑀 is diffeomorphic to 𝐷×𝑇 𝑛,
where 𝐷 is a small domain in R𝑛.
(2) In 𝐷 × 𝑇 𝑛 there exists canonical coordinates 𝜙 mod 2𝜋and 𝐼 (𝐼 ∈ 𝐷, 𝜑 ∈ 𝑇 𝑛 in
which 𝐹𝑘’s depend only on 𝐼.

121We are checking [𝑋,𝑌 ]𝑓 = 0 for any differentiable 𝑓 . That is, Two paths going from (𝑎, 𝑏) →
(𝐴,𝐵), that is, (𝑎, 𝑏) → (𝐴, 𝑏) → (𝐴,𝐵) and (𝑎, 𝑏) → (𝑎,𝐵) → (𝐴,𝐵) give the same result.
Notation: 𝜕𝑥𝑓 = 𝑓,𝑥 is used.

122We have shown that [𝐹,𝐺]𝑃𝐵 = 0 implies that the Hamiltonian flows defined by 𝐹 and by 𝐺
determine independent (commutative) time evolutions.

123Nekhoroshev proved a version when the involution relation holds for a subset of {𝐹𝑗} (Arnold
DS III p117).
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𝐼 are called action variables and 𝜙 angle variables. The completely integrable
Hamiltonian 𝐻 has the form 𝐻 = 𝐻(𝐼). Consequently, the equation of motion reads

𝐼 = 0, �̇� = 𝜔(𝐼) =
𝜕𝐻

𝜕𝐼
. (11.22)

Thus 𝐼 labels the invariant tori. If the Hessian of 𝐻(𝐼) is nondegenerate, the systems
is said to be non-degenerate.

11.8 Demonstration of 11.7124

Thanks to the Liouville-Arnold theorem 11.6 in the nbh of the torus 𝑀𝑓 ≡ 𝑇 𝑛,
we can take as coordinates the functions 𝐼𝑖 = 𝐹𝑖 and the angles 𝜙𝑖. Since the
differentials 𝑑𝐹𝑖 are linearly independent, we can use 𝐼 and 𝜑 as a coordinate system
for 𝐷× 𝑇 𝑛. We have to show that 𝐼, 𝜙 system is a canonical coordinate system. We
know [𝐼𝑖, 𝐼𝑗]𝑃𝐵 = 0 (involutive invariants). [𝜙𝑗, 𝐼𝑘]𝑃𝐵 is a constant on 𝑀𝑓 according
to 11.6, so it is a function of 𝐼 only. The Jacobi identity applied to 𝐼𝑘, 𝜙𝑖 and 𝜙𝑗

implies (here [ , ] implies [ , ]𝑃𝐵)

[𝐼𝑘, [𝜙𝑖, 𝜙𝑗]] + [𝜙𝑖, [𝜙𝑗, 𝐼𝑘]] + [𝜙𝑗, [𝐼𝑘, 𝜙𝑖]] = 0, (11.23)

so [𝐼𝑘, [𝜙𝑖, 𝜙𝑗]] is a function of 𝐼 only. Since 𝐼 and 𝜙 describe the system dynamics,
the Poisson bracket determinant det[𝐼𝑘, 𝜙𝑖] must not be zero. Therefore, we can solve
the following equation

[𝐼𝑘, [𝜙𝑖, 𝜙𝑗]] =
∑︁
𝑠

[𝐼𝑘, 𝜙𝑠]
𝜕

𝜕𝜙𝑠

[𝜙𝑖, 𝜙𝑗] (11.24)

to conclude that 𝜕[𝜙𝑖, 𝜙𝑗]/𝜕𝜙𝑠 is a function of 𝐼 only. Therefore, we may write

[𝜙𝑖, 𝜙𝑗] =
∑︁
𝑠

𝑓 𝑠
𝑖𝑗(𝐼)𝜙𝑠 + 𝑔𝑖𝑗(𝐼). (11.25)

Since the derivatives of 𝜙 must be single-valued, when 𝜙𝑖 and 𝜙𝑗 go around the
torus, the Poisson bracket should also return to the original value. Therefore, 𝜙𝑠

dependence should not exist: 𝑓 𝑠
𝑖𝑗(𝐼) = 0.

We change 𝐼 → 𝐽 to make [𝐽𝑖, 𝜙𝑘] = 𝛿𝑗𝑘. Let us check the possibility.

[𝐼𝑖, 𝜙𝑗] =
∑︁
𝑘

𝜕𝐼𝑖
𝜕𝐽𝑘

[𝐽𝑘, 𝜙𝑗] =
𝜕𝐼𝑖
𝜕𝐽𝑗

. (11.26)

124The proof here paraphrases with details the proof on p115 of Arnold, DS III. A general version
for the situation 11.5 also holds (p118 Th10).
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The consistency condition reads

𝜕

𝜕𝐽𝑠
[𝐼𝑖, 𝜙𝑗] =

𝜕

𝜕𝐽𝑗
[𝐼𝑖, 𝜙𝑠] ⇐⇒

∑︁
𝑘

[𝐼𝑘, 𝜙𝑠]
𝜕

𝜕𝐼𝑘
[𝐼𝑖, 𝜙𝑗] =

∑︁
𝑘

[𝐼𝑘, 𝜙𝑗]
𝜕

𝜕𝐼𝑘
[𝐼𝑖, 𝜙𝑠],

(11.27)
but this follows from the Jacobi identity for 𝐼𝑖, 𝜙𝑗 nd 𝜙𝑘:

[𝐼𝑖, [𝜙𝑗, 𝜙𝑘]]+[𝜙𝑗, [𝜙𝑘, 𝐼𝑖]]+[𝜙𝑗, [𝐼𝑖, 𝜙𝑘]] = 0 ⇒ [𝜙𝑗, [𝜙𝑘, 𝐼𝑖]]+[𝜙𝑗, [𝐼𝑖, 𝜙𝑘]] = 0. (11.28)

Thus, we can obtain 𝐽 such that [𝐽𝑖, 𝜙𝑗] = 𝛿𝑖𝑗.
The remaining task125 is to guarantee [𝜙𝑖, 𝜙𝑗] = 0. If this is not the case, set

𝜓𝑖 = 𝜙𝑖 + 𝑓𝑖(𝐽). Then, we must solve the following equation for 𝑓 :

[𝜓𝑖, 𝜓𝑗] = [𝜙𝑖, 𝜙𝑗] −
𝜕𝑓𝑖
𝜕𝐽𝑗

+
𝜕𝑓𝑗
𝜕𝐽𝑖

= 0. (11.29)

Consider formally

𝑞 =
∑︁
𝑖<𝑗

[𝜙𝑖, 𝜙𝑗]𝑑𝐽𝑖 ∧ 𝑑𝐽𝑗 =
∑︁
𝑖<𝑘

(︂
𝜕𝑓𝑖
𝜕𝐽𝑘

− 𝜕𝑓𝑘
𝜕𝐽𝑖

)︂
𝑑𝐽𝑖 ∧ 𝑑𝐽𝑘 = 𝑑

∑︁
𝑖

𝑓𝑖𝑑𝐽𝑖, (11.30)

so 𝑑𝑞 = 0 is the consistency (solvability) condition. This follows from the closedness
of the symplectic 2-form 𝑑𝜙 ∧ 𝑑𝐽 (which is a shorthand of

∑︀
𝑖 𝑑𝜙𝑖 ∧ 𝑑𝐽𝑖; that is, the

invariance of (13.26) in 13.11): 𝑑(𝑑𝜙 ∧ 𝑑𝐽) = 0; we can compute this 2-form as∑︁
𝑖

𝑑𝜙𝑖 ∧ 𝑑𝐽𝑖 =
∑︁
𝑖,𝑗

𝜕𝜙𝑖

𝜕𝐽𝑗
𝑑𝐽𝑗 ∧ 𝑑𝐽𝑖 =

∑︁
𝑖<𝑗

(︂
𝜕𝜙𝑖

𝜕𝐽𝑗
− 𝜕𝜙𝑗

𝜕𝐽𝑖

)︂
𝑑𝐽𝑗 ∧ 𝑑𝐽𝑖, (11.31)

but note that
𝜕𝜙𝑖

𝜕𝐼𝑗
− 𝜕𝜙𝑗

𝜕𝐼𝑖
= [𝜙𝑖, 𝜙𝑗]. (11.32)

Thus, 𝑞 is a symplectic 2-form, so 𝑑𝑞 = 0.

11.9 Calculation of action variables
Let 𝑞.𝑝 be the symplectic coordinates in R2𝑛, and 𝛾1, · · · , 𝛾𝑛 are the fundamental
cycles of 𝑀𝑓 ≡ 𝑇 𝑛. Since 𝑝𝑑𝑞 − 𝐼𝑑𝜙 is closed, the difference∮︁

𝛾𝑠

𝑝𝑑𝑞 −
∮︁
𝛾𝑠

𝐼𝑑𝜙 =

∮︁
𝛾𝑠

𝑝𝑑𝑞 − 2𝜋𝐼𝑠 (11.33)

125[𝐽𝑖, 𝐽𝑘] = 0, because 𝐽 = 𝐽(𝐼) and 𝐼 does not depend on 𝜙.
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is a constant. Since the action variables can be determined up to additive constants,
this means

𝐼𝑠 =
1

2𝜋

∮︁
𝛾𝑠

𝑝𝑑𝑞. (11.34)

11.10 Action for harmonic oscillator
Let the Hamiltonian be

𝐻 =
1

2
(𝑎2𝑝2 + 𝑏2𝑞2). (11.35)

Then, 𝑀𝐸 specified by 𝐻 = 𝐸 is an ellipse

𝑝2

2𝐸/𝑎2
+

𝑞2

2𝐸/𝑏2
= 1. (11.36)

Its area is 2𝜋𝐸/𝑎𝑏. The angular frequency is 𝜔 = 𝑎𝑏 as can be seen from �̇� = −𝑏2𝑞,
𝑞 = 𝑎2𝑝 ⇒ 𝑞 = −(𝑎𝑏)2𝑞. Thus,

𝐼(𝐸) =
1

2𝜋

∮︁
𝑝𝑑𝑞 = 𝐸/𝑎𝑏 = 𝐸/𝜔. (11.37)

11.11 Adiabatic invariants
Let 𝐺(𝑞, 𝐼) be the generating function of the canonical transformation (𝑞, 𝑝) → (𝜔, 𝐼)
(see (13.4)) for a completely integrable system:

𝜕𝐺

𝜕𝑞
= 𝑝,

𝜕𝐺

𝜕𝐼
= 𝜔. (11.38)

Assume that the system is subjected to a small perturbation 𝜆(𝑡). Then, the above
canonical transformation now depends on time as well (through 𝜆(𝑡)), so the new
Hamiltonian reads to order 𝑂[𝜆]

𝐾 = 𝐻(𝐼) +
𝜕𝐺

𝜕𝑡
= 𝐻(𝐼) + Λ�̇�(𝑡), (11.39)

where Λ = 𝜕𝐺/𝜕𝜆. Therefore, the perturbed Hamilton’s equation reads

𝐼 = −𝜕𝐾
𝜕𝜔

=
𝜕Λ

𝜕𝜔
�̇�(𝑡). (11.40)
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𝐿𝑎𝑚 is a bounded function, so it must be a multiple periodic function. Therefore its
derivative must have the vanishing time average. Therefore, it 𝜆 change very slowly,
𝐼 must be zero. That is, 𝐼 is invariant to order �̇�. Such a quantity is called an
adiabatic invariant.
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