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10 Lecture 10: Classical mechanics: review

Newton realized that if we know the current position x and velocity  of a point
mass, its future (and its past) is completely determined. This is called the Newton-
Laplace principle of determinacy. This means its acceleration # is determined by x
and 2. The resultant ODE is called Newton’s equation of motion.

Since every graduate student should be very familiar with the practical use of
classical mechanics, in this lecture, I concentrate on topics that are not very widely
known or not so much stressed:

(1) How to construct a variational principle,

(2) When the variational principle is actually a minimization principe,

(3) A succinct demo of the Jacobi identity for Poisson brackets.

(4) How Schrédinger ‘used’ the Hamiltonian principle to derive his equation.

10.1 Newton-Laplace Principle of Determinacy'!’
The principle asserts that the state (= point in the phase space) of a mechanical sys-
tem (= everything from Newton’s and Laplace’s point of view) at any fixed moment
of time ¢t uniquely determines all of its (future and past) states:

From z(ty) and v(tg) = &(to), (z(t),v(t)) for all ¢ is uniquely determined.

In particular, we can calculate the acceleration as
¥ = f(x,a,t). (10.1)

This is known as Newton’s equation of motion. With time-reversal symmetry there
is no first order derivatives in the equation

i = fla,1). (10.2)

Thus, to describe the system mechanics is to provide f, the force (experimentally).
As noted in the preface to Principia, for Newton to find f for various phenomena
was the core physics. This idea hindered the kinetic theory of gasses to explain the
gas pressure.

The equivalence of Newton’s equation of motion and the principle of determinacy
is shown by the unique existence theorem of the solution for the ODE (see 3.18).

HO0The following paper proposes to use the halting problem to deny the existence of Laplace’s
demon: Josef Rukavicka, Rejection of Laplace’s Demon. Am Math Month 121 498 (2014). Basically,
the question is: what is the significance of undecidable questions in this context?
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Thus it is not unconditional, but as long as the motion is sufficiently smooth the
equivalence is guaranteed.

Newton introduced the concept of ‘force” and established the law of universal grav-
itation (with superposition principle).

10.2 Determinacy implies predictability?

One of the key issues of nonlinear dynamics is to make it clear that the answer
to the question is negative: even though deterministic you cannot predict the
future of the system, because the indefiniteness (error) in the intial condition
could be exponentially magnified within a short time span.

There are, however, actually, more serious reasons why determinacy cannot
generally imply predictability. One is already mentioned in the footnote of
10.1: for example, the calculation needed to predict the future may not end.
I do not know whether we can make a natural-looking ODE example for this.
In this case whether computation can actually produce a number or not is the
issue; we cannot even predict whether the computer will eventually give the
answer or not. The other case of unpredictability is that the computer can
indeed produce numbers, but their reliability (i.e., the size of the error bar) are
never guaranteed.

10.3 Variational principle
The fundamental equation of mechanics is (10.2), but why is this form? Is there any
deeper reason (yes, rational reason) for the Creator to choose this law?'!! Somehow,
the law should be ‘optimized’, a natural route to variational principles. In elementary
classical mechanics we have already learned Lagrange’s principle, but here let us
construct the variational principle from (10.2). We use

Theorem [Veinberg]''? Suppose

1 This is exactly the ‘naturalness’ question (used in high energy physics). C. Lanczos, The
variational principle of mechanics (University of Toronto Press, 3rd ed., 1960) Preface says, “There
is hardly any other branch of the mathematical sciences in which abstract mathematics speculation
and concrete physical evidences go so beautifully together and complement each other so perfectly.”
It is a good lesson to know that mathematical beauty does not guarantee the correctness of a theory
in natural science. It is very often the case that what we believe natural is not actually naturally
realized in Nature; to recognize this may be a sign of a true progress.

112Gee R. W. Atherton and G. M. Homsy, On the existence and formulation of variational principle
for nonlinear differential equations, Studies Appl. Math. LIV, 31 (1975). For ODE there is a newer
paper: I. A. Anderson and G. Thompson, The inverse problem of the calculus of variation for
ordinary differential equations, Memoir AMS 98, Number 473 (1991).
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(1) N is an operator from a Hilbert space H into its conjugate space,

(2) N has a linear Gateau derivative''® DN (u,h) at every point of the ball B =
{u]||Ju — uo|| < r} and for any h € H,

(3) The scalar product (hy, DN (u, hs)) is continuous at every point of the ball B for
any hy, hy € H.

Then, a necessary and sufficient condition for N(u) = 0 to be the Euler-Lagrange’s
equation of a variational principle in the ball B is the symmetry

(h1, DN (u, hs)) = (ha, DN (u, h1)). (10.3)

The variational functional F'(u) is given by

F@):—i/dﬁéiﬂu@ﬁVQu@D. (10.4)

You should have realized a perfect parallelism between the condition for a force
F' to be conservative: curlF' = 0 and the above theorem.

10.4 Application to Newton’s equation of motion

(10.3) implies (exercise!) that f cannot depend on & = v (that is, imposing the
variational principle enforces time-reversal symmetry) and the force must be conser-
vative. Under these conditions we obtain (exercise!) the usual result we know: the
variational functional is A called the action:

A:/ﬁg (10.5)

with
L=T-YV, (10.6)
called the Lagrangian, where 7" is the kinetic energy and V' the potential energy. The

equation of motion obtained from 0A = 0 (the action principle) reads (Lagrange’s
equation of motion), as you know well,

Gateau derivative)) This is a functional-derivative counterpart of the directional derivative,
and is also called the weak derivative. Let F': X — Y, where X and Y are normed space. Then,

113 <

DF(,h) = L P+ th)

dt =0
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Remark on the Lagrangian:

(0) Landau-Lifshitz, Mechanics Chapter 1 is the best practical introduction.

(1) L is not unique; we may add any total derivative wrt time. This allows more
general transformations than the ordinary coordinate changes (called canonical trans-
formations (Lecture 13)).

(2) T is always a quadratic form of 4.

10.5 Action minimum principle
The variational principle itself does not care whether A is minimum or not along the
actual motion, but the founding fathers of the principle clearly expected ‘minimiza-
tion.” This is actually true as long as the path is not too long. Precisely put, until
the stationary curve hits the conjugate point, the minimum principle is true.

10.6 Conjugate point
Consider two actual trajectories going through a point A making a small angle
with each other. If these two trajectories cross with each other at B, it is called
a conjugate point of A (see Fi.g 10.1).
If the final point is reached from the initial point before reaching its conju-
gate point, the action is actually minimum.

Figure 10.1: A conjugate point. Here, trajectories L and H both satisfy the variational principle.

[Demo] In Fig. 10.1 trajectories L and H both satisfy the variational principle,
starting from A with different directions, and then cross for the first time at
B (a conjugate point of A). Suppose APHQB is not an actual trajectory. If
PHQ is not the actual trajectory, then there must be an actual one PDQ. Since
we can choose Q sufficiently close to P,!'* 10.7 tells us the action along PDQ

H4Gyuppose PHQ is not an actual path. Take R on this path. If PR is an actual path, we can
choose replace PHQ with RHQ. If PR is not actual, there must be a ‘bypass’ which is the actual
path.
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is smaller than that along PHQ. Then, 624 < 0 on PDQ, contradicting the
assumption that 624 = 0 along PHQ).

10.7 Locally, action principle is minimum principle
We first rewrite the action principle in the form of Maupertuis (1698-1759)’s
principle (= the action principle on the constant energy E surface):

A:/tldt(T—V):/tldt@T—E):2/t1dtT—E(t1—tO). (10.8)

to to

This means we have only to consider the first term as the action (denoted as
A"). Since T is quadratic wrt ¢, where ¢ is the spatial coordinate, we may write
T = Ai;¢:iq;/2 = Aijdgidq;/2dt* (summation convention implied), so

Therefore,

A= Z/tl dtT = /Sjtl ds \/2(E = V), [ Aijqi(5)q;(s). (10.10)

to s=

Now, we must study 624’. We vary the trajectory as ¢ — ¢ + dg. Choose
the time range [to,t;] sufficiently small so the variation dq is much smaller
than 0¢’. Therefore, we have only to consider the second /- - in (10.10). This
is a (positive definite) quadratic form, so its stationary value must be minimum.

10.8 Legendre transformation L — H
We know Lagrange’s equation of motion means the following 1-form:

A%
dL = pdq — —dq, 10.11
- (10.11)

where ¢ are spatial coordinates, and p the momenta. Now we apply the following
Legendre transformation

H =suplpg— L =T+ U. (10.12)

q

H is called the Hamiltonian and

dH = qdp + %—qu (10.13)
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implies the Hamilton’s equation of motion (= the canonical equation of motion)

OH OV OH

q= D0 9 0 —p- (10.14)

10.9 Hamilton’s principle.
Since L =Y p;g; — H (10.8), the action principle 10.4 may be rewritten as

5/ [Zpiqi — H] dt = 0. (10.15)

Regarding p and ¢ to be independent variables, we obtain directly the canonical equa-
tion of motion (10.14) (use integration by parts). The resultant variational principle
(10.15) is called Hamilton’s principle.

10.10 Poisson bracket.
Let f and g be differentiable phase functions (functions of ¢ and p). We introduce
the Poisson bracket [f, g|pp''® as

_0fdg 099f _ T <3f dg Oy 3f) | (10.16)

0¢; Op; a 0q; Op;

10.11 Canonical equation of motion in terms of Poisson brackets
(10.14) reads
¢ = ¢, Hlpp, pi=[pi,HlpB. (10.17)

Thus, the canonical equations of motion for ¢ and p have become symmetric. (cf.
Heisenberg’s equation of motion in QM)

10.12 Properties of Poisson bracket
Note the following general relations:

U561 simply, [f, g] when quantum and classical mechanics do not appear simultaneously.
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1

() [f, 9lpB = =9, flrB-
(ii) [f, 9+ hlps = [f. glpB + [f. hlps.
Eiii§ lcf,9lpe = c[f, g]lpB, where ¢ is a constant.

iv) [Jacobi’s identity| [f, 9, hlpelps + 9, [h: flpslps + [h, [f, 9lpBlPE = 0.

(i)-(iv) imply that the Poisson bracket defines a Lie algebra structure for the set
of the differentiable phase functions. (i)-(iii) are easy to show. (iv) implies that
[, ]pp is not associative. Usually showing (iv) requires almost brute force lengthy
calculation, but see at the end of this item.

Notice further that
(v) [fg,hlps = flg,hlpe + [f, hlpBY.
(vi) If f and g depend on a parameter « differentiably, then d[f, g|pp/da = [df /dev, 9| pp+
[ y dg/dOé]pB.
(vii) Let F' be a function of phase functions f;. Then [F, g|pp = (OF/0f;)|f:, 9lpB-

Notice that for any differentiable phase function h, we can define a one parameter
group defined by df /da = [f, h|pp (actually this is called an infinitesimal canonical
transformation and h its generator; see 13.4). Use this to (vi) (compute d[f, g]/da),
and we get Jacobi’s identity (iv) immediately.

10.13 Integral of motion; conservation of energy
An integral of motion () is a phase function which is time-independent. (10.17)
implies

[Q,H]pp =0, (10.18)
if () does not have any explicit time dependence.
Obviously,
[H,H]pp = 0. (10.19)

This is the conservation of (mechanical) energy (H must be t-independent).

10.14 Poisson brackets of various quantities
We can easily demonstrate

pi,pilpe =0, |6, ¢;lpe =0, [¢, pjlpe = dij. (10.20)

Here (i, j, k) is a cyclic permutation of (1,2,3). We also have for angular momentum
L;
[Li; Ljlpp = L, [Li,pslpe = pr, [Li,qilpB = @i, (10.21)
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and other Poisson brackets between angular momentum components and phase vari-
ables are zero. More generally, for a differentiable phase function F',

OF OF
[F,pilps = 0g;’ [F,q]pe = _api' (10.22)

10.15 Hamilton-Jacobi’s equation.
Let us consider the action A defined in 10.4 as a function of the end time ¢ and the
end position ¢; = ¢;(t):

t
Alg.t) = [ Llalo).d(s).9)ds, (10.23)
to
where L is the Lagrangian. Obviously,
dA . .
—r = Lla(t), a(),t) = pi(t)as(t) — H, (10.24)

where H is the Hamiltonian (10.12). Hence,

dA =" pidg; — Hdt, (10.25)
that is,
0A 0A
=p;, — =—H. 10.26
o 1" or (10.26)
Since H is a function of ¢;, p;, and ¢, we obtain a closed equation for A
0A 0A
—+H|(q,—,t)=0. 10.27
o " (q 9a: ) (10.27)

This is called the Hamilton-Jacobi equation. Note that it does not contain the mo-
mentum coordinates. For example, for a particle of mass m in the potential V', the
Hamilton-Jacobi equation reads

oA 1 0A\ > OA\ > oA\ >
W + % { (&) + (8_y) + (&) } + V(%% Z) = 0. (10'28)
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10.16 Schrodinger’s “Quantization as eigenvalue problem I”!1°

Schrodinger starts with the Hamilton-Jacobi equation (10.27) in the following sepa-
rated form:

04,

Hl\q¢— | =F 10.29
(52) - (1029)
with A = —Et+ Apy, where Ay is called Hamilton’s principal function. He introduces

P as

Ay = hlog. (10.30)

Schrodinger use the symbol K instead of A. Thus, the equation (10.29) now reads

2m

(V)? — ﬁ( —V)? =0. (10.31)

Instead of this equality, he replaces the quantization condition with the following
variational problem; he says in a footnote that he is aware that this formulation is
not necessarily unique:

§J = 5/d3:c {(VW — S (E-V)?*| =0. (10.32)

The resultant equation is (assuming that the wave function vanishes at infinity) the
time-independent Schodinger equation.

In this paper, he goes on to solve the hydrogen atom completely (he acknowledges
H. Weyl’s help). The ad hoc introduction of the Schrédinger equation as outlined
above is fully justified by recovering Bohr’s energy levels.

H6Quantisierung als Eigenwertproblem I, Ann. Phys(4) 79, 361-376 (1926): received on January
97, 1926
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