
APPENDIX A.
Rudiments of Analysis

Warning. This is not a substitute of a standard textbook of ele­
mentary calculus, but covers most topics every undergraduate analysis
course must cover. This is only a summary or a check list of the reader's
knowledge. Scan the titles of the numbered entries, and if she finds a
somewhat unfamiliar concept, read the entry. Try to form vivid mental
image of defined concepts. Try to be able to explain why the state­
ments are plausible intuitively. If you feel a theorem to be obvious, you
need not prove it. The following material heavily relies on K. Kodaira,
Introductory Calculus I-IV (Iwanami 1986), and Encyclopedic Dictio­
nary of Mathematics (Iwanami 1985, 3rd edition). J. D. DePree and
C. W. Swartz, Introduction to Real Analysis (Wiley, 1988) may be rec­
ommended as an introductory textbook.

Table of Standard Symbols
I. Point sets and limits
II. Functions
III. Differentiation
IV. Integration
V. Infinite Series
VI. Functions of two variables
VII. Fourier series and Fourier transform
VIII. Ordinary differential equations
IX. Vector analysis
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Al

Table of Standard Symbols

all, any, arbitrary.
there exist (s)
A=} B means A implies B.
if and only if (iff)
A.,- B means "A is defined by B."
a E A implies that a is an element of A.

the set of all complex numbers.
the set of all nonnegative integers
the set of all rational numbers
the set of all real numbers.
the set of all the integers
the set of all the r-times continuously differentiable functions.
the set of all the continuous functions
the set of all the infinite times differentiable functions.
the set of all (real) analytic functions
Lebesgue integrable functions on A with weight p.
Square Lebesgue integrable functions on A with weight p.

infimum
supremum
support

Left (right) hand side

Point Set and Limit

The properties of reals (=real numbers) such as their continuity are
assumed to be known.

Al.I Sequence. Let aI, a2, ... be reals. aI, a2, a3,'" is called a
sequence and is denoted as {an}. Each real in the sequence {an} is
called a term.
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Al.2 Convergence, limit. A sequence is said to converge to ex if
for any positive E, there is a positive integer N( E) such that

n > N (E) :::} Ian - ex I < E. (A1.I)

ex is called the limit of the sequence {an}, and is often written as an ---t ex.

Al.3 Theorem [Cauchy]. A necessary and sufficient condition for a
(real) sequence {an} to converge is that for any positive number E there
is a positive integer N (E) such that

n > N (E), m > N (E) :::} Ian - am I < Eo (A1.2)

o
Such a sequence is called a Cauchy sequence. [In an infinite dimensional
space, a Cauchy sequence may not converge.]

AlA Symbol '0' and '0'.
(I) f = 0 [g] means that the quantity f is of order 9 in the appropriate
limit in the context. That is lim f /9 is not divergent. For example,
I - cosx = O[x2] in the x ---t 0 limit. That is, limx-+o(1 - cosx)/x2 <
+00, which is, of course, correct.
(2) f = o[g] means that the quantity f is 'much smaller' than g in the
appropriate limit in the context. For example, sin(x2 ) = o[x] in the
x ---t 0 limit.

Al.5 Limit and arithmetic operations commute. Let an ---t ex
and bn ---t {3. Then,
(i) If an 2:: bn for infinitely many n, then ex 2:: {3.
(ii) an ± bn ---t ex ± (3.
(iii) anbn ---t ex{3.
(iv) If an I- 0 and ex I- 0, then bn/ an ---t {3 / ex.

Al.6 Lower and upper bound, supremum and infimum. Let
S c R. If any element in S does not exceed a real f-l (i.e., s :S f-l for any
s E S) [resp., is not exceeded by a real number f-l (i.e., s 2:: f-l for any
s E S)], we say S is bounded to the above [resp., bounded to the below]
and f-l is called an upper bound [resp., lower bound] of S. The smallest
upper bound [resp., the largest lower bound] of S is called the supreme
[resp., infimum] of S, and is written as SUPsES S [resp., infsEs s]. If S is
bounded to the above and to the below, S is said to be bounded.

Al.7 Monotone sequences. If al < a2 < ... < an < ... [resp.,
al > a2 > ... > an > ...], {an} is called a monotone increasing [resp.,
monotone decreasing] sequence. If al 2:: a2 2:: ... 2:: an 2:: ... [resp.,
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al ::; a2 ::; ... ::; an ::; ...], {an} is called a monotone non-decreasing
[resp., monotone non-increasing] sequence.

Al.8 Theorem [Bounded monotone sequences converge].
A monotone non-decreasing [resp., non-increasing] sequence bounded
to the above [resp., to the below] converges to its supremum [resp., its
infimum]. 0

Al.9 Divergence to ± infinity. If a monotone non-decreasing se­
quence [resp., non-increasing sequence] is not bounded to the above
[resp., to the below], we say it diverges to positive infinity [resp., neg­
ative infinity] and write limn-+oo an = +00 [resp., limn-+oo an = -00].

Al.IO Limsup and liminf. Suppose {an} is a bounded sequence. Let
sUPn an+m = am for m = 1,2,3,···. Then {an} is a bounded monotone
non-increasing sequence. Hence, Theorem Al.8 tells us that limn-+oo an
exists. This is called the superior limit of the sequence {an}, and is writ­
ten as lim SUPn-+oo an' Analogously, the limit limm -+oo infn an+m exists,
which is called the inferior limit of the sequence {an}, and is written
as lim infn-+oo an'
(i) For any positive E there are only finitely many an larger than lim SUPIHOO an +
E, but there are infinitely many an larger than lim sUPn-+oo an - E.

(ii) For any positive E there are only finitely many an smaller than
lim infn-+oo an -E, but there are infinitely many an smaller than lim infn-+oo all +
E.

(iii) A necessary and sufficient condition for {an} to converge is lim supan =
lim inf an'

Al.II Infinite series. For a sequence {an}, al +a2+a3 +... +an+...
is called an infinite series, and is often written as L:~=1 an' The conver­
gence of the series is defined by the convergence of the sequence {sn}
consisting of its partial sums: Sn..- al + ... + an' limn-+oo Sn, if it con­
verges, is called the sum of the infinite series L:~=1 all' If { sn} does not
converge, the series is said to be divergent.
If L:~=1 an converges, then an converges to zero.

Al.12 Absolute convergence. If L:~=1 lanl converges, L:~=1 an IS
said to be absolutely convergent.
(i) If {an} converges absolutely, {an} converges.
(ii) Suppose L:~=1 rn is convergent and f n ~ O. If lanl ::; rn for all n
larger than some integer m, then L:~=1 an converges absolutely.

Al.13 Power series. A series of the form L:~=o an(x - b)n is called a
power series, where b is a constant.
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Al.14 Conditional convergence, alternating series. If a con­
vergent series is not absolutely convergent, it is said to converge condi­
tionally. If positive and negative terms appear alternatingly, the series
is called an alternating series.
If {an} (an > 0) is a monotone decreasing sequence converging to zero,
then the alternating series al - a2 + a3 - a4 + ... converges (-[AV7]).

Al.15 Theorem [Nested sequence of intervals shrinking to a
point share the point]. If a sequence of closed intervals {In} such
that In = [an, bn] satisfies (i) h ::) h ::) ... ::) In ::) .,. and (ii)
limn--+oo(bn - an) = 0, then there is a unique real c which is in all
In·O
For this theorem it is crucial that In are closed intervals.

Al.16 Denumerability. An infnite set for which we can make a one­
to-one correspondence with nonnegative integers N is called a countable
set or denumerable set. An infinite set which is not countable is called
an uncountable set or nondenumerable set.
The set of rational numbers Q is countable.

Al.17 Cantor's Theorem [Continuum is not denumerable]. A
closed interval I = [a, b] is nondenumerable. 0

Al.18 n-space, distance, E-neighborhood. The totality of the
n-tuples (Xl, x2,' .. ,xn ) is a direct product set R x ... x R =R n

and is called the n-space. The (Euclidean) distance between two points
(XI,' .. ,xn ) and (YI," . ,Yn) is defined by [(Xl -YI)2+ . . '+(Xn _Yn)2p /2.
The (Euclidean) distance between point P and Q is denoted by IPQI.
The totality of the points which are within the distance Eof point P is
called the E-neighborhood (E-nbh) of P (and is denoted by U€ (P) in this
Appendix).

Al.19 Inner point, boundary, accumulating point, closure,
open kernel. Let S be a subset of R n

.

Inner point: P is an inner point of S if there is E > 0 such that
U€(P) c S.
Boundary point: If for any E> 0 U€(P) C,p Sand U€(P) n S '# 0, P is
called a boundary point of S.
Boundary: The totality of the boundary points of S is called the bound­
ary of S and is denoted by as.
Closure: S u as is called the closure of 3 and is denoted by [3]. If
T c S, then tTl C [Sl.
Open kernel: S \ as is called the open kernel of S and is denoted by
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8°.
Dense: Let T be a subset of 8. If [T] :J 8, T is said to be dense in 8.
Accumulating point: If Ue(P) n 8 contains infinitely many points of 8
for any positive E, we say P is an accumulat'ing point of 8.
Isolated point: If a point in 8 is not an accumulating point of 8, the
point is called an isolated point.
(i) A necessary and sufficient condition for a point Q to be in [8] is
that for any positive E Ue ( Q) n 8 i= 0.
(ii) The totality of rational numbers Q has no inner point and [Q] = R.
(iii) All the inner points of 8 are accumulating points of 8. An accumu­
lating point of 8 is its inner point or its boundary point. If a boundary
point of 8 is not in 8, it is an accumulating point of 8.
(iv) A necessary and sufficient condition for a point P to be an isolated
point of 8 is that there is a positive E such that Ue(P) n 8 = 0.

A1.20 Open set, closed set. If 8 contains only its inner points,
that is, if 8 = 8°, then 8 is called an open set. If all the boundary
points are included in 8, that is, if 8 = [8], 8 is called a closed set.
The empty set 0 is simultaneously open and closed, so is R.
(i) The intersection of finite or infinite closed sets is a closed set.
(ii) The union of finite or infinite open sets is an open set.
(iii) The intersection of finitely many open sets is an open set.
(iv) The union of finitely many closed sets is a closed set.

A1.21 Limit of point sequence. A sequence of points {Pn } (Pn E
R n) is called a point sequence. If there is a point A such that limn-too IPnAI =
0, we say the point sequence {Pn } converges to A. and write limn-too Pn =
A.

A1.22 Bounded set, diameter. If the distance between any point
P E 8 and the origin 0 is bounded to the above (-+A1.6), then the set
8 is called a bounded set. When 8 is a bounded set we can define its
diameter 8(8) as 8(8) =SUPP,QES IPQI. There is a theorem analogous
to Al.15:

A1.23 Theorem [Shrinking nested sequence of bounded closed
sets]. If a sequence of nonempty bounded closed sets {8n } satisfies the
following two conditions (i) and (ii), then there is a unique point P
shared by all of the closed sets 8n : (i) 8 1 :J 82 :J ... :J 8n :J "', (ii)
limn-too 8(8n ) = O.

A1.24 Covering. Let U be a set of sets. The joint set of all the
members of U is written as UUEUU. If a set 8 satisfies 8 C UUEUU,

then U is called a covering of S. If all the elements of U is open, it
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is called an open covering of S. If a covering U contains only a finite
number of elements, U is called a finite covering. If a subset V of U is
also a covering of S, V is called a subcovering of U.

A1.25 Compact set. If any open covering of S has a finite sub­
covering, S is called a compact set.

A1.26 Theorem [Compactness is equivalent to bounded closed­
ness]. S is compact if and only if S is a bounded closed set.o
The only-if part is called the Heine-Borel covering theorem. This is
true only if the space is finite dimensional.

[27] Theorem [Bolzano and Weierstrass]. A bounded infinite set
must have an accumulating point( ---+Al.19).0
Theorem. A bounded point sequence has a converging subsequence. 0 477

A2 Function

A2.1 Function, domain, range, independent and dependent
variables. Let D c R. A rule f corresponding a single real 17 to each
~ E D is called a function f.478 17 := f(~) is called the value of f at (
D is called its domain and f(D) == {f(OI~ E D} is called the range
of f. Usually, f is described as f (x), and x is called the variable, and
f(x) is called a function of x. When we write y:= f(x), x is called the
independent variable and y the dependent variable.

A2.2 Limit of function. Let f(x) be a function whose domain is
D. We say f (x) converges to 0: in the limit x ---+ a, if for any positive
£, there is a positive number 8(£) such that

Ix - al < 8(£), xED => If(x) - 0:1 < £.

and we write limx --+ a f( x) := 0:. limx --+ a and arithmetic operations are
commutative as A1.5. We have a theorem analogous to A1.3:

477 These theorems assume that we can always choose one point from each member
of a family of infinitely many sets. From the constructive point of view, this is not
always possible. That is, we may not be able to write a computer program to do
so. In the usual mathematics, we postulate this possibility as an axiom called the
Axiom of Choice.

478 This is often called a map as well.
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A2.3 Cauchy's criterion. Let f be a function whose domain is D. A
necessary and sufficient condition for f to be convergent in the x ----t a
limit is: For any positive € there is a positive 6( €) such that for x, y E D

Ix - al < 8(€), Iy - al < 8(E) * If(x) - f(y)1 < E.

o

A2.4 Graph of a function. The graph Gf of a function f is a set
Gf = {(x, f(x))lx ED}.

A2.5 Continuity. A function f is continuous at a, if limx-+a f(x) =
f(a).
If the definition of the limit is spelled out completely as in A2.2, we
say: f is continuous at a, if for xED and for any positive E there is a
positive 6(E) such that

Ix - al < 6(E) =} If(x) - f(a)1 < E.

Theorem. If the domain of a continuous function f is a closed interval,
then its range is again a closed interval. 0

A2.6 Left and right continuity. When taking the x ----t a limit,
if x is always smaller (resp., larger) than a, we write this limiting pro­
cedure as limx-+a-o (resp., limx-+a+o) and is called the left limit (resp.,
right limit). If limx-+a-o f(x) = f(a) (resp., limx-+a-o f(x) = f(a)), we
say f is left (resp., right) continuous at a.

A2.7 Theorem of middle value. Let a function f be continuous
in a closed interval [a,b], and f(a) =I- f(b). There is a real c such that
a < c < band f(c) = f.t for any f.t between f(a) and f(b). 0
The image of a finite interval by a continuous map is again a finite
interval.

A2.8 Uniform continuity. A function f is uniformly continuous
in D if for any positive E, there is a positive constant 6(E) such that

Ix - yl < 6(E),x E D,Y ED=} If(x) - f(y)1 < E.

Theorem. A continuous function defined on a closed interval is uni­
formly continuous on the interval. 0

A2.9 Maximum and minimum. Let f be a function whose domain
is D. If f(D) is bounded, we say f is bounded. If there is a maximum
(resp., minimum) value in f(D), then it is called the maximum (resp.,
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minimum) of f.
Theorem [Maximum value theorem]. A continuous function de­
fined on a closed interval has a maximum and minimum values. 0

A2.10 Composite function. Let f be a function whose domain is
D, and g is a function whose domain is in the range of f, f(D). Then
h(x) = g(1(x)) is called the composite function of f and g, and is de­
noted by go f.

A2.11 Monotone function. Let f be a function whose domain is
D. If for any x, y E D x < y implies f(x) < f(y) (resp., f(x) > f(y)),
f is called a monotone increasing function (resp., monotone decreas­
ing function). If for any x, y E D x < y implies f(x) ::; f(y) (resp.,
f(x) 2:: f(y)), f is called a monotone non-decreasing function (resp.,
monotone non-increasing function).

A2.12 Inverse function. Let f be a function whose domain is D.
If there is only one x such that f(x) = y for each y E f(D), the corre­
spondence y -+ x defines a function. This function, denoted by f- 1 , is
called the inverse function of f.
The symbol f- 1 is used generally to denote the preimage of a point.
Thus f-l(X) = {ylf(y) = x, y ED}, where D is the domain of f. f- 1

becomes the inverse function, if f- 1(x) is a single point for all x in the
range of f.
Theorem. If f is a monotone increasing (resp., decreasing) function
defined on an interval, then f has the inverse function which is mono­
tone increasing (resp., decreasing). 0

A2.13 Even and odd functions. If a function f has a domain in­
variant under x -+ -x, and
(i) f(x) = f( -x), we say f is an even function,
(ii) f(x) = - f( -x), we say f is an odd function.

A3 Differentiation

A3.! Differentiability, derivative. Let f be a function defined on
an interval I, and a E I. If the following limit, denoted by l'(a), exists,
we say f is differentiable at a:

f'(a) = lim f(x) - f(a).
x->a X - a

532



l'(a) is called the differential coefficient of f at a. If f is differentiable
for any x E I, we say that f is differentiable in I, and l'(x) becomes a
function on I. l' is called the derivative of f. To obtain l' from f is
said to differentiate f. Recognize that the existence ofthe limit implies
that the limit does not depend on how the point a is reached.

A3.2 Theorem [Differentiability implies continuity]. If f is dif­
ferentiable at a, then f is continuous there. If f is differentiable in an
interval I, it is continuous in the interval. 0
Warning. However, continuity does not guarantee differentiability.
See A3.l2.

A3.3 Increment, differential quotient]. Let f be as in A3.l and
write y = f(x), and b:..y =f(x + b:..x) - f(x). b:..x and b:..y are called
increments. Then

f'(x) = lim ~y,
~x-+o uX

so that the derivative is also called the differential quotient and is de­
noted by dyjdx. If f is differentiable, then we may write

dy
b:..y = dx b:..x + o[b:..x],

For 0 see Al.4.

A3.4 Right or left differentiable. If the right limit (-tA2.6) limx-+a+o(f(x)­
f (a) )/ (x - a) exists, then we say f is right differentiable at a, and the
limit, called right differential coefficient at a, is denoted by D+ f(a).
Analogously the left differential coefficient D- f(a) can be defined.

A3.5 Differentiation and arithmetic operations commute. Let
f, 9 be differentiable in some interval, and Cl, C2 be constants. Then
'arithmetic operations do not destroy differentiability':
(i) d:(cl!(x) + c2g(X)) = cl!'(x) + c2g'(X).
(ii) d:(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).
(iii) If 9 is not zero then ..!L!(x) = !'(x)g(x)-!(x)g'(x)., dx g(x) g(x)2

A3.6 Derivative of composite function. Let f be a differentiable
function on an interval I, and 9 be a differentiable function on an in­
terval J containing f(1). Then, go f (-tA2.l0) is differentiable and

ddxg(f(X)) = g'(f(x))J'(x).

A3.7 Derivative of inverse function. Let f be a differentiable
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monotone function on an interval I. Then its inverse function (~A2.I2)

is differentiable and

A3.S Theorem [Mean-value theorem]. Let f be a continuous func­
tion on the closed interval [a, b]. If f is differentiable in (a, b), then there
is ~ E (a, b) such that

f'(~) = f(b) - f(a).
b-a

o
A special case of this theorem is:

A3.9 Theorem [Rolle's theorem]. Let f be continuous in [a, b].
If f is differentiable in (a, b) and f(a) = f(b), then there is ~ E (a. b)
such that f'(O = O. 0

A3.I0 Theorem [Generalization of mean-value theorem]. Let
f and g be continuous functions on a closed interval [a, b], and are dif­
ferentiable on (a, b). If f' and g' do not simultaneously vanish in (a, b)
and g(a) -:j= g(b), then there is ~ E (a, b) such that

f'(O f(b) - f(a)
g'(O g(b) - g(a)'

o

A3.II Theorem [Condition for monotonicity]. A necessary and
sufficient condition for a differentiable function defined on an interval I
is monotone increasing (~A2.11) is that f' (x) 2:: 0 on I and f' (x) > 0
on a dense (~Al.19) subset of I. 0

A3.I2 Counterexamples.
(i) f(x) = x sin(ljx) is continuous at x = 0 but not differentiable there.
(ii) f(x) = L:;:;O=l 2-n lsin(7rn!x)I is continuous on R, but not differen­
tiable on Q.
(iii) f(x) = L:~=12-n cos(knnx) (k is an odd integer larger than 13) is
continuous on R, but is nowhere differentiable.

A3.I3 Higher order derivatives. Suppose f is a differentiable func­
tion on an interval I. If l' is again differentiable on I, then we can define
the second derivative df' / dx. If the function f is sufficiently smooth,
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then we can define higher-order derivatives like the n-th derivative,
which is denoted by f(n)(x), dnf jdxn, Dnf(x) or (djdx)n f(x). Arith­
metic operations do not destroy higher order differentiability as A3.5.
The composite function of n-times differentiable functions is n-times
differentiable as [6].

A3.I4 Leibniz' formula.

dn

dxn(f(x)g(x)) fCnJ(x)g(x) + (7) fCn-lJ(x)g'(x) + ...

+(~)fCn-k)(x)gCk)(x) + ... + f(x)gCnJ(x).

A3.I5 Taylor's formula, remainder. Let f be a n-times differen­
tiable function on an interval I, and a E I. Then for any x E I there
is a point ~ between a and x such that

n-l f(kJ( ) fCn)(t)
f(x) = f(a) + L ,a (x - al + ,<" (x - a)n.

k=l k. n.
(A3.1)

The last term is called the remainder, and is written as R n . 0
For n = 1 this is the mean-value theorem (-+A3.8), and this theorem
is regarded as an extension of the mean-value theorem.
The remainder can be written as follows: Let e= a + O(x - a) (0 <
B < 1).
(i) Schlomilch's remainder: Choosing an integer q (0 :::; q :::; n - 1),

(ii) Cauchy's remainder. This is a special case of (i) with q = n - 1:

R = fCnJ(~) (1 _ B)n-l(x _ a)n
n (n-l)! .

(iii) The remainder in (A3.1) is another special case of (i) with q = 0,
and is called Lagrange's remainder.

A3.I6 Taylor's series. If f is infinite times differentiable, and {Rn }

in A3.I5 converges to zero, then f can be expanded in a Taylor series
about a:

00 JCk)(a)
f(x) = f(a) +E k! (x - a)lc.
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A3.17 Convex and concave function. Let f be a function whose
domain is I. Let Xl, X2 E I and A and fl be positive reals satisfying
A+fl=l.lf

(A3.2)

we say f is convex on I, and f is called a convex function. If there is
no equality in (A3.2), then we say f is strictly convex, and f is called a
strictly convex function. If - f is (strictly) convex, we say f is (strictly)
concave, and f is called a (strictly) concave function.

A3.18 Theorem [Convexity and second derivative]. Let f be
a twice differentiable function on an interval I.
(i) A necessary and sufficient condition that f is convex on I is that
1"(x) 2:: °for all the inner points of I.
(ii) If 1"(x) > °for all the inner points of I, then f is strictly convex.
o
An analogous theorem for concave functions should be self-evident.
Simply switch f to - f.
Remark. (i) assumes that f is twice differentiable. Convex functions
must be continuous, but need not even be differentiable once.

A3.19 Local maximum, minimum. Let f be a continuous function
on an interval I, and a be an inner point of I. f(a) is a local maximum
(resp., local minimum), if for some positive number E °< Ix - al < E

implies f(x) < f(a) (resp., f(x) > f(a)). These are collectively called
local extrema.
Theorem. If f is a differentiable function on an interval I, and has a
local extremum at a E 1°,479 then f'(a) = 0.0
Theorem. Let f be a function which is n-times (n 2:: 2) differentiable
and f'(a) = 1"(a) = ... = fCn-I)(a) = °at some inner point of I.
(i) If n is odd, then f(a) is not an extremum of f.
(ii) If n is even, and fCn)(a) > 0, then f(a) is a local minimum of f(x).
(iii) If n is even, and fCn)(a) < 0, then f(a) is a local maximum of
f(x ).0

A3.20 Stationary value. Suppose f is n-times differentiable in an
interval I, and for some inner point a of I f' (a) = 1"(a) = ... =
fCn-l)(a) = 0 but fCn)(a) # O. If n 2:: 3 and odd, f(a) is called a
stationary value of f, and a is called a stationary point of f.
Theorem. For the f in this item,
(i) If fCn)(a) > 0, then there is a positive number E such that f is
strictly convex in [a, a + E] and strictly concave in [a - E, a].

479 For ° see Al.19.
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(ii) If f(nJ(a) < 0, then there is a positive number E such that f is
strictly concave in [a, a + €] and strictly convex in [a - €, a].O

A3.21 Class en. Let f be a function defined on an interval I. If
j is n-times differentiable and j(n) is continuous on I, then j is called
a function of class en (or a en-function). If f is infinite-times differ­
entiable, it is called a eoo -function.
Theorem. Let f and 9 be en-functions on an interval I.
(i) Arithmetic operations do not destroy en-functions.
(ii) go f is again a en-function.
(iii) If for all x Elf' (x) # 0, and f is monotone, then its inverse
function f- 1 is a monotone en-function.O
These statements hold for eoo functions as well.

A3.22 Class ew
• Let f be a COO-function in an open interval I.

If f can be Taylor-expanded (-tA3.16) in the neighborhood of each
a E I, then f is said to be real analytic in I and is called a real analytic
function or a eW-function.
Warning. A COO-function need not be a real analytic function. A
typical example is

'IjJ(x) Oforx:S;O,

e- 1/ x for x > 0.

Its derivatives at x = °all vanish, so that Taylor series formally con­
structed becomes identically zero, but this contradicts the fact that
'IjJ(x) > °for positive x. Hence, this function is not real analytic.
This is an important function to be used to 'mollify' functions through
convolution.

A3.23 Theorem [Existence of mollifier]. Let a and b be two arbi­
trary points (a < b) in R. There is a eoo-function p(x) on R such that
p(x) =°for x :S a, p(x) = 1 for x 2:: band °:S p(x) :S 1.0
Corollary. Let f and 9 be eoo-functions on R, and a and b are the
same as in the theorem. There is a eoo-function h such that h(x) = f(x)
for x :s; a, h(x) = g(x) for x 2:: b (and h interpolates f and 9 between
a and b). 0
Thus eoo-functions can be deformed freely. In contradistinction, ew _

functions cannot be deformed freely as shown in the following

A3.24 Theorem [Identity theorem]. Let f and 9 be eW-functions
defined on an open set I. If f and 9 coincide in some neighborhood of
a point a E I, then f and 9 are identical on I. 0

A3.25 Complex analysis. Real analytic functions are best under-
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stood as special complex-valued functions defined on the complex plain.
"The shortest path between two truths in the real domain passes through
the complex domain." (J. Hadamard). H. A. Priestley, Introduction to
Complex Analysis (Oxford UP, 1990, revised edition) is a convenient
introduction to the topic. See also my notes for Physics 413, which is
much more complete than the book with a sizable chapter on conformal
mapping and its application to boundary value problems.

A4 Integration

A4.1 Definite integral (Riemann integral). Let f be a continuous
function defined on a closed interval I = [a, b]. Let a = XQ < Xl <
X2 < ... < Xk < ... < Xm-l < Xm = b, and partition [a, b] into m
intervals [Xk-l, Xk] (k = 1,2,···, m). The partion determined by the
set .6. _ {XQ, Xl, ... , x m } is called the partition.6.. Let the maximum
of IXk - Xk-ll (k = 1,2, .. ·,m) be 8(.6.). The following limit exists
(remember that f is assumed to be continuous) and called the definite
integral of f on [a, b]:

l
b

f(x)dx = lim L f(~k)(Xk - Xk-l),
a 8(Ll)-+Q k

where ~k E [Xk-l, Xk]. The limit does not depend on the choice of ~k' f
is called the integrand, x the integration variable, and b (resp., a) the
upper limit (resp., lower limit) of integration. The integration variable
x is a dummy variable in the sense that we may freely replace it with
any letter.
We define for b> a fb

a f(x)dx - f: f(x)dx, and faa f(x)dx = O.
Sometimes, the definite integral is written as

l b
dx f(x).

This notation clearly shows that integration is an operation applied to
f·

A4.2 Riemann-integrability. Integration can be defined even if f is
not continuous. Let f be a bounded function on [a, b]. For the partition
.6. in A4.1, define

m m

SLl =L Mk(Xk - Xk-l), SLl =L mk(xk - Xk-l),
k=l k=l
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where M k (resp., mk) is the maximum (resp., minimum) value of f
in [Xk-l, Xk]. Let S = sup~ S~ and s = inf~ s~ (Here the supremum
(infimum) is looked for over all the possible finite partitions of [a, b]. If
S = s, we say f is Riemann integrable on [a, b]. In this case, S = s is
the definition of J: f(x)dx. Even if f has finitely many discontinuous
points in I, f is Riemann-integrable.

A4.3 Basic properties of definite integral. Let f and 9 be Riemann­
integrable on the closed interval [a, b].
(i) For c E (a, b)

i
b

f(x)dx = i c

f(x)dx + l b
f(x)dx.

(ii) For arbitrary constant Cl and cz,

i
b
[clf(x) + czg(x)]dx = Clib f(x)dx + czib g(x)dx.

(iii) If f ;::: 0 on [a, b]' then J: f(x )dx ;::: O. If, furthermore, f is contin­
uous and is not identically zero, then the integral is strictly positive.
(iv)

A4.4 Theorem [Mean value theorem].
(1) If f is a continuous function defined on a closed interval [a, b]' there
exists a point f, E (a, b) such that

1 ib

b - a a f(x)dx = f(O·

(2) If f and 9 are continuous on the closed interval [a,b], and if 9 > 0
on the open interval (a, b), then there exists ~ E (a, b) such that

i
b

f(x)g(x)dx = f(~) i
b

g(x)dx.

o

A4.5 Fundamental theorem of calculus, primitive function, in­
definite integral. If f is integrable on a closed interval I = [a, b], then
for x E [a, b], we can define the definite integral of j on [a, xl:

F(x) = ix

j(t)dt
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which is a function of x on [.
Theorem [Fundamental theorem of calculus].

l b

f (x) = F(b) - F(a)

or F'(x) = f(x).D
Any function such that F'(x) = f(x) on [is called a primitive function
of f. A primitive function for f, if any, is not unique; it is unique up
to an additive constant. Thus any primitive function of f, if any, can
be written as

F(x) = l x

f(t)dx + C,

where C is called the integration constant.
The indefinite integral of f is defined as a primitive function of f, and
is denoted by

Jf(x)dx.

A4.6 Integration by parts. Let f and g be C1-functions (-tA3.21)
on an interval [. Then

lb

f(x)g'(x)dx = f(x)g(x)l~ - lb

f'(x)g(x)dx,

where h(x)l~ =h(b) - h(a).

A4.7 Improper integral. When

lim r f(x)dx
c->b Ja

exists, we write this J: f( x )dx even if f is not integrable on [a, b) in the
sense of A4.2, and call it an improper integral. b may be a discontinu­
ous point of f or ±oo. It is easy to construct the Cauchy convergence
criterion (-tA1.3) for improper integrals.
Improper integrals satisfy A4.3 (i) and (ii), and if the improper in­
tegral of If I is definable (we say f is absolutely integrable; absolutely
integrable functions are integrable.), (iii) holds as well.
Also the fundamental theorem of calculus (-tA4.5), and the mean
value theorem (-tA4.4) are valid.

A4.8 Change of integration variables. Let f be a continuous func­
tion on an interval [ = [a, b]' cp(t) be a continuous function defined on
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an interval J whose range is in I. a,{3 E J (a =I=- (3), a = cp(a) and
b = cp((3). Then

l b

f(x)dx = J: f(cp(t))cp'(t)dt.

If f is an even function (~[AII13]), then

rb
f(x)dx = j-a f(x)dx.ia -b

If f is an odd function (~AII13]), then

rb
f(x)dx = _j-a f(x)dx.

ia -b

A5 Infinite Series

A5.1 Changing the order of summation in infinite series. Abso­
lutely convergent series and conditionally convergent series (~Al.12,

Al.14) have diametrically different properties with respect to the re­
arrangement of the terms in the summation:
Theorem.
(i) The sum of an absolutely convergent series does not depend on the
order of summation of the terms in the series.
(ii) If a series L:~=1 an is conditionally convergent, then for any given
real ethere is a reordering of the series {a-y(n)} such that

00

L a-y(n) = e·
n=l

There is also a reordering to make the series divergent to ±oo. 0

A5.2 Product of two series. The product of two absolutely con­
vergent series (~Al.12) can be computed via distributive law: Let
s = L: an and t = L: bn, and both are absolutely convergent. Then

This is not necessarily true for conditionally convergent series, e.g., con­
sider an = bn = (_1)n / .,(ii.
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A5.3 Theorem [Comparison theorem I. comparison with im­
proper integral]. Let r(x) > 0 be a continuous monotone decreasing
function (~A2.11) on [k,+oo) with k being a positive integer such
that limx --+ oo r(x) = O. Let rn =r(n). ~~=k rn converges (resp., di­
verges), if Jkoo r(x)dx converges (resp., diverges). 0
Examples:
(i) ~~=1 n -8 (s > 0) converges for S > 1 and diverges for S ~ 1.
(ii) ~~=2{lj[n(logn)8]} (s > 0) converges for s > 1 and diverges for
s ~ 1.
(iii) ~~=3{lj[nlogn(loglogn)8]} (s > 0) converges for s > 1 and di­
verges for s 2:: 1.

A5.4 Theorem [Comparison theorem II. comparison of series].
Let ~~1 Un and ~~=1 Vn be positive term series, and there is a positive
integer no such that for n > no

Then
(i) If ~ Vn converges, then so is ~ Un'

(ii) If ~ Un diverges, then so is ~ V n . 0
From this theorem, we get useful convergence criteria:

A5.5 Cauchy's convergence criterion. Let ~ an be a positive term
series. Suppose the limit p = limn--+oo(anjan+d exists. If p < 1, then
the series converges, and if p ~ 1, the series diverges.

A5.6 Gauss' convergence criterion. For a positive term series ~ an
with

an (J [1]-- = 1+ - + 0 1+<5'
an +1 n n

where 8 is positive.48o Then the series converges if (J > 1, and diverges
if (J :::; 1.

A5.7 Abel's formula. Let the partial sums Sm

t m = ~:=1 bn • Then

m m

L antn = [smtm - Sk-1 t k] - L Sn bn+1'
n=k n=k

This is a discrete analogue of integration by parts (~A4.6).

This transformation implies the following criteria:
(i) If ~~=1 an converges and ~~=2(tn - tn-d converges absolutely, then

480For the symbol 0 see Al.4.
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E~=l antn converges.
(ii) The sequence {sn} is bounded and {tn} is a monotone decreasing
positive sequence converging to zero, then E antn converges.
For example, (ii) implies that E tn cos(nx) and E tn sin(nx) converge,
if {tn } is a monotone decreasing positive sequence converging to zero.
This is an extension of [AI14] on alternating series.

A5.8 Function sequence, convergence. A sequence of functions
{fn(x)} is called a function sequence defined on I, if the domains of all
the functions in the sequence are identically I. For a fixed x = eEl, if
the sequence {fn(e)} converges, we say the function sequence converges
at x = ( If the function sequence converges at every point of I, we
say that the sequence converges on I. The limit for each x may be
written as f(x), which is regarded as the limit function of the function
sequence, and we say the function sequence {fn(x)} converges to f(x).
More formally, we say that the function sequence {fn(x)} converges to
f(x) if for each x E I and for any positive number E, there is a positive
integer no( E, x) such that

n > no(E,x) => Ifn(x) - f(x)1 < E. (A5.1 )

A5.9 Uniform convergence. Let {fn(x)} be a function sequence
defined on an interval I. If in (A5.1) no(E, x) is independent of x E I,
we say the function sequence {fn} is uniformly convergent to f on I.
That {fn} is uniformly convergent to f on I is equivalent to

lim sup Ifn(x) - f(x)1 = o.
n-+oo xEI

A5.!O Theorem [Cauchy's criterion for uniform convergence].
Let {fn(x)} be a function sequence defined on an interval I. A necessary
and sufficient condition for the sequence to be uniformly convergent is
that there is a positive integer no(E) such that for any x E I

o

A5.!! Function series, convergence, uniform convergence, max­
imal convergence. L:~=1 f n (x) is called a function series. Let its
partial sum be Sm (x) = L:~=1 fn(x). If the function sequence {sn (x)}
(uniformly) converges to sex), we say the series L:~=1 fn(x) (uniformly)
converges to sex), which is called the sum of the series. If L:~=1 fn(x)
is uniformly and absolutely convergent, we say the series is maximally
convergent.
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A5.I2 Theorem [Uniform convergence preserves continuity].
Let {fn(x)} be a function sequence of continuous functions defined on
an interval I.
(i) If the sequence uniformly converges to f on I, then f is continuous
in I.
(ii) If the series 2:~=1 fn(x) converges uniformly, then its sum is a con­
tinuous function on 1.0

A5.I3 Theorem [Dini's theorem]. Let {fn(x)} be a sequence of
continuous functions defined on the closed interval [a, b]. Suppose the
sequence is monotonically decreasing: for any x E [a, b] !I (x) 2:: h (x) 2::
... 2:: fn(x) 2:: .... If the sequence {fn(x)} converges on [a, b] to a con­
tinuous function f (x), then the sequence uniformly converges to f on
[a, b]. O.
A5.I4 Theorem [Comparison theorem]. Let 2:~=1 an be a conver­
gent positive term series. For a sequence of {fn(x)}, suppose Ifn(x)1 ::;
an for all n on an interval I. Then the infinite sum 2:~=1 fn(x) is max­
imally convergent.O

A5.I5 Theorem [Exchange of limit and integration]. Let {fn(x)}
be a sequence of continuous functions defined on [a, b]' uniformly con­
vergent to f(x) there. Then

l
b

f(x)dx = lim l b

fn(x)dx.
a n-->oo a

o
A more general theorem (Arzel1i's theorem) will be given in A5.I7.
The theorem implies that a uniformly convergent series of continuous
functions is termwisely integrable:

A5.I6 Theorem [Exchange of limit and differentiation]. Let
fn(x) be a C1-function (-tA3.2I). If 2:~1 fn(x) converges on I, and
2:~=1 f~ (x) converges uniformly on I, then the sum of the series is
differentiable and

d 00 00

dx L fn(x) = L f~(x)
n=l n=l

o

A5.I7 Theorem [Arzela's theorem]. Let fn(x) be a continuous
function defined on a closed set [a,b] (actually this need not be a closed
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interval) and uniformly bounded, i.e., there is a positive number M
independent of n such that Ifn (x) I < M on the interval. If the function
sequence {fn(x)} converges to a continuous function f(x) on [a,b], then

l
b

f(x)dx = lim l b

fn(x)dx.
a n---+oo a

o

A5.IS Majorant. For a function sequence {fn(x)} defined on an
interval I, a function O"(x) such that Ifn(x)1 < O"(x) is called a majorant
of the sequence.
Theorem. If a majorant 0"(x) is integrable on the interval, then the
order of integration and limn ---+ oo can be exchanged. []

A5.I9 Convergence radius of power series. For a power series
",00 nLtn=O anx ,

1
r = l' I 11/1m sUPn---+oo an n

is called the convergence radius of the power series (the reason for the
name is seen from the following theorem A5.20. The formula is called
the Cauchy-Hadamard formula). Here, if the lim sup diverges to +00,
then we define r = 0, and if lim sup converges to zero, then we define
r = +00.

A5.20 Theorem [Power series is termwisely differentiable]. The
power series L:~=o anxn is absolutely convergent for Ixl < r, and is di­
vergent for Ixl > r, where r is the convergence radius (---tA5.I9). For
any 0 < p < r, the series is uniformly convergent (---tA5.II) in [-p, p]
to a continuous function (cf. A5.I2), so that the series is termwisely
differentiable there. 0

A5.2I Theorem [Power series defines a real analytic function].
The power series L:~o anxn whose convergence radius is r uniquely
determines a CW-function (---tA3.22) f in the open interval (-r, r).
Actually, the power series is the Taylor series (---tA3.I6) for f. 0

A5.22 Theorem [Continuity at x = r or -r]. Let r be the con­
vergence radius of the power series L:~=o an xn = f (x). If L:~=o anrn

is convergent, then f(x) is continuous in (-r,r]. If L:~=oan(-r)n is
convergent, then f(x) is continuous in [-r,r). 0

A5.23 Infinite product. For a sequence {an} (an =j:. 0) ala2'" an'"
is called an infinite prod'l.lct, and is denoted by rr~=l an' Pn = ala2 ... an
is called the partial product.
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A5024 Convergence of infinite product. Let I1~=1 an be an infi­
nite product and its partial product sequence be {Pn}. If this sequence
converges, and P = limn -+oo Pn is not zero, we say the infinite product
converges to p: P = I1~=1 an' Else, we say the infinite product is diver­
gent.

A5025 Theorem [Convergence condition for infinite product].
(i) A necessary and sufficient condition for the infinite product I1~=1(1 +
un) (un > -1) to be convergent is that the infinite series L:~=1 log( 1 +
un) converges.
(ii) If L:~=1 Un (Un> -1) converge absolutely, then I1~=1(1 + 'un) con­
verges. (In this case we say the infinite product converges absolutely,
and the product does not depend on the order of its terms.)
(iii) If L: Un (Un> -1) and L: u; both converges, then the infinite prod­
uct I1~=1(1 + un) converges. 0

A5026 Conditional convergence of infinite product. If an in­
finite product I1~=1(1 +un) converges but does not converge absolutely
(-tA5.25(ii)), we can reorder the product to converge to any positive
number. 0
This is quite parallel to a similar theorem for conditionally convergent
series (-tA5.1(ii)).

A6 Function of Two Variables

Since real valued-functions of two variables illustrate complications due
to the existence of many independent variables, in this rudimentary
part, we discuss only a function defined on a point set D in R 2

•

A60l Rudiments of topology.
(i) If an open set U E R 2 is not a join of two open sets, U is said to be
connected.
(ii) Theorem. A necessary and sufficient condition for an open set U
to be connected is that any points P, Q E U can be connected by a
piecewise straight curve in U. 0
(iii) A connected open set is called a region, and its closure (-tAl.l9)
is called a closed region.
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(iv) Distance p(x, y) of two points x and y in R 2 is defined as

p(x, y) = Ix - yl = V(X1 - yd2+ (X2 - Y2)2,

where x (or y) is identified with its coordinate expression, say, (Xl, X2).

A6.2 Function, domain, range. Let D be a point set in R 2
. A rule

which defines a corresfondence of each xED to some real is called a
function from D c R to R. D is called its domain and f(D) C R is
called its range.481 We write f : D -+ R.

A6.3 Limit. Let D be a point set in R 2
• For f : D -+ R, we say

limp-+.4 f(P) = 0: E R, if for any positive number E there is a positive
number 8(E) such that

p(P, A) < 8(E) => If(P) - 0:1 < E.

Notice that the limit should not depend on how P approaches A.
It is easy to write down Cauchy's criterion for the convergence (cf
Al.3).

A6.4 Continuity. Let D be a point set in R 2
• A function f :

D -+ R is continuous at an accumulation point (-+Al.19) P E D,
if limQ-+p f(Q) = f(P). (To discuss the continuity on the point of D
which are not accumulating points of D is uninteresting.)
Uniform continuity can also be defined quite analogously as in the one­
variable function case (cf A2.8).

A6.5 Theorem [Maximum value theorem]. A real-valued contin­
uous function defined on a bounded closed set D C R 2 has a maximum
and minimum values on D. The range of f is a closed interval. 0
(cf [AlI9]).

A6.6 Partial differentiation. Let f(x, y) be a real-valued function
defined in a region D C R 2

, and (a, b) E D. If f(x, b) is differentiable
at a with respect to x, we say that f( x, y) is partially differentiable with
respect to x at (a, b), and the derivative is denoted by fx(a, b). More
generally, if f is partial differentiable in D with respect to x, we may
define fx(x, y):

f ( ) 1
· f(x + h) - f(x)

x x,y = 1m h .
h-+O

If we write z = f(x, y), fAx, y) is written as &zj&x. fx(x, y) is called
the partial derivative of f with respect to x. We say that we partial­
differentiate f with respect to x to obtain fx(x, y). Similarly, we can

481The set {f(x) : xED} is often written as f(D).
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define the partial derivative with respect to y of f. Analogously, we
can define higher-order (mixed) partial derivatives like fxxy.
Warning. Even if fx and fy exists at a point, f need not be continuous
at the point. 0
This implies that the 'differentiability' of f must be defined separately
from its partial differentiability.

A6.7 Differentiability, total differential. Let f(x, y) be a real­
valued function defined in a region D C R 2

, and (a, b) E D. We say f
is differentiable at (a, b) if there is constants A and B such that

f(x, y) = f(a, b) + A(x - a) + B(y - b) + oh!(x - a)2 + (y - b)2].

Theorem. If f above is differentiable at (a, b), then f is continu­
ous there, and is partially differentiable with respect to x and y with
A = fx(a, b), B = fy(a, b). D.
dz = fxdx + fydy is called the total differential of f.
We say that f is differentiable in D, if f is differentiable at every point
in D.
Intuitively, if a local linear approximation is reliable, we say the func­
tion is differentiable.
A6.8 Theorem [Partial differentiability and differentiability].
Let f be a function defined in a region D C R 2. If fx and fy exist and
are continuous in D, then f is differentiable in D. 0

A6.9 Theorem [Order of partial differentiation]. Let f be a
function defined in a region D C R 2. If partial derivatives fx, fy, fxy
and fyx exist and if fxy and fyx are continuous, then fxy = fyx' 0

A6.10 Theorem [Young's theorem]. Let f be a function defined
in a region D C R 2. If fx and fy exist and f is differentiable, then
fxy = fyx' 0

A6.11 Theorem [Schwarz' theorem]. Let f be a function defined
in a region D C R 2. If partial derivatives fx, fy and fxy exist and if
fxy is continuous, then fyx exists and fxy = fyx' 0

A6.12 fxy = fyx is not always correct. Let f(x, y) = xy(x2 ­
y2)/(x2 + y2) except for (0,0), where f is defined to be O. Then
fxy(O,O) =I- fyx(O,O); the left-hand-side is -1, and the right-hand-side
is 1.

A6.13 en-class function. If f has all the partial derivatives of order
n, which are all continuous, we say that f is a en-function. If deriva­
tives of any order exists, we say that the function is a COO-function.
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A6.14 Composite function. Let cp(t) and 'ljJ(t) be continuous func­
tions defined on an interval I such that (cp(t),'ljJ(t)) E D for all t E I.
If f(x,y) is a continuous function defined on D, then f(cp(t),'ljJ(t)) is
continuous.
If cp(t) and 'ljJ(t) are differentiable with respect to t, and f(x, y) is dif­
ferentiable in D, then f(cp(t),'ljJ(t)) is differentiable with respect to t,
and

:t f (cp(t), 'ljJ(t)) = fx( cp(t), 'ljJ(t))cp' (t) + fy( cp(t), 'ljJ(t) )'ljJ' (t).

If cp(t) and 'ljJ(t) are en-functions of t, and f(x, y) is en in D, then
f(cp(t),'ljJ(t)) is again en.
These propositions hold even if we replace the function of t with func­
tions of sand t. For example, If cp(s, t) and 'ljJ(s, t) are en-functions of
sand t in a domain D1 , (cp(s,t),'ljJ(t,s)) ED, and f(x,y) is en in D,
then f(cp(s,t),'ljJ(s,t)) is again en in D 1•

A6.15 Taylor's formula. Let f(x, y) be a en-class function defined on
a region D, (a, b) E D, and the line segment AP with P = (a+ h, b+ k)
be in D. Then

n-l 1 (a a)m
f(a + f,b + k) = f(a,b) + L -, f-a + k-

a
, f(a,b) + Rn

m=l m. x y

with
1 (a a)n

Rn=n! fax+kay f(a+Bh,b+Bk)

for some () E (0, 1). Rn is called the residue.
If f is a COO-function (-.[13]) in a region D and if in some subregion
DA of D limn-->oo R n = 0, then we say f is Taylor-expandable in DA:

00 ap+q f( a b)
f(x,y)=f(a,b)=L L a a' (x-a)P(y-b)q.

n=l p+q=n xP yq

If f is Taylor-expandable, we say f is a real analytic function (eW
_

function) of two variables.
This is a double series, so we need some general theory of double series
and double sequences.

A6.16 Limit of double sequence. Let {anm } be a double sequence.
If for any positive E, there is a positive integer N( E) such that
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then we say the double sequence converges to a, and write limm,n->oo amn =
a. It is easy to state Cauchy's convergence criterion (~A1.3) for a dou­
ble series.

A6.17 Warning. limm,n->oo and limm->oo limn->oo or limm->oo limn--+ oo
are distinct. For example, if amn = 2mnl(m2+n2

), limm--+ oo limn->oo amn =
o and limn->oo limm--+ oo amn = 0, but limm,n->oo amn does not exist. If
amn = (_l)n 1m + (_l)m In, then limm,n--+oo amn = 0 but the other lim­
its do not exist.

A6.18 Theorem [Exchange of limits]. Suppose limm,n--+oo amn = a
exists. If for each n liIllm--+oo amn exists, then limn->oo limm--+ oo amn = a.
If for each m limn--+ oo amn exists, then limm--+oo limn--+ oo amn = a. 0

A6.19 Double series, convergence. For a double sequence {amn },
2::,n=1 amn is called a double series. We say that the double series
converges if the double sequence {smn} of its partial sums Smn =
2:;=1 2:~=1 apq converges. Its absolute convergence can also be defined
analogously as in the ordinary series case (~Al.12).

Theorem. If a double sequence 2:: n=1 amn converges absolutely, then
00 00 00 '

2:m=1 2:n=1 amn = 2:m,n=1 amn . D

A6.20 Power series of two variables. The set G such that 2::,n=O amnxmyn
for V(x, y) EGis absolutely convergent is called the convergence do-
main of the double power series.
Theorem. If for (e, 7]) i- (0,0) the double series 2: amnem7]n is bounded,
then for Ixl < lei and Iyl < 17]1 the double power series 2::,n=O amnXmYn
is absolutely convergent.D

A6.21 Exchange of order of limits, uniform convergence. If
for any positive E there is N (E) independent of m such that

n > N (E) * Iamn - am I < E,

we say {amn } converges to am uniformly with respect to m.
Theorem. If {amn } converges to am uniformly with respect to m in
the n ~ 00 limit, and if am converges to a in the m ~ 00 limit, then
limm n--+oo amn = a. D
The~rem. If limn->oo limm--+oo amn exists, {amn } converges to am uni­
formly with respect to m in the n ~ 00 limit, and if am converges to a
in the m ~ 00 limit, then limm--+ oo limn--+ oo amn = limn--+ oo limm->oo amn =
a. 0
In contrast to A6.18 here the existence of limm n--+oo amn is not assumed.,

A6.22 Counterexample.
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(i) For amn = (-1)nm /(m+n), limm-+oo limn-+oo amn = 0, limn-+oo limm-+ oo amn
does not exist.
(ii) For amn = m/(m + n) both limits exist but not identical.

A6.23 Theorem [Differentiation and integration within inte­
gration]. Let f(x, y) be a bounded function defined on a rectangle
K = {(x, y)lx E [a, b]' y E [c, d]}. Assume that f is continuous as a
function of x (resp., y) for each y (resp., x). Then
(i) f: dxf(x, y) is a continuous function of y in [c, d].
(ii) If f(x, y) is partially differentiable with respect to y, and if fy(x, y)
is bounded on K, and continuous as a function of x for each y, then

d 1b 1b
f)dy a dxf(x, y) = a dx f)yf(x, y).

(iii)
d (U

du ia dxf(x, y) = f( u, y).

(iv)

l d

dy l b

dxf(x, y) = l b

dx l d

dyf(x, y).

o

A6.24 Theorem [Differentiation and integration within im­
proper integration]. Let f(x, y) be a bounded function defined on a
rectangle K = {(x, y)lx > a, y E [c, d]}. Assume that f is continuous
as a function of x (resp., y) for each y (resp., x). Assume, further­
more, that there is a nonnegative continuous function 0"(x) such that
If(x,y)1 ~ O"(x) and Ja+ oo dxO"(x) < +00. Then
(i) Ja+ oo dxf(x, y) is a continuous function of y in [c, d].
(ii) If f(x, y) is partially differentiable with respect to y and if there
is a nonnegative continuous function O"(x) such that Ify(x, y)1 ~ O"l(X)
and ftXJ dXO"l (x) < +00, then

d 1+00 (+oo f)
dy a dxf(x, y) = ia dx f)yf(x, y).

(iii)

fd (+oo 1+00 fd
c dy ia dxf(x, y) = a dx c dyf(x, y).

o

551



A 7 Fourier Series and Fourier Transform

In this section all the integrals are Riemann integrals [AIV1]. Thus
integrable or absolutely integrable means Riemann-integrable and ab­
solutely Riemann integrable.

A 7.1 Fourier series.{Fourier series Let I be a function on R with
period 21r.482 Assume that the following integrals exist483

1 fn21l"an = - dxl(x) cosnx for n = 0,1,2"",
1r 0

1 12
1l"bn = - dxl(x)sinnx for n = 1,2,3,···.

1r 0

Then
1 00

S[J] = -aD + L (an cos nx + bnsin nx)
2 n+l

is called the Fourier series of f. To construct S[j] is said to Fourier­
expand f.
Notice that the Fourier series converges uniformly (~[AVll]) if I:~=o Ian I
and I:~=o Ibn I both converge.

A 7.2 Theorem. Let I be a 21r periodic function which has at most
finitely many discontinuities, and is absolutely integrable on [0, 21r]. If
S[J] converges uniformly, then S[/](xo) converges to I(xo) if I is con­
tinuous at xo. Specifically, if I is 21r-periodic continuous function, then
S[J] = 1.0
This theorem uses the property of the Fourier series (its uniform con­
vergence), so it is not very satisfactory. A7.8 below tells us that we
cannot remove of this extra condition from this theorem.

A 7.3 Complex Fourier series. Let I be a function on R with period
21r. Assume that the following integrals exist

C = ~ r27r
dxl(x)e-ikx for k = ... -2 -1 °1 2 ...

n 21r Jo ' , "" .

Then
00

S[J]..---- L cneikx

k=-oo

482That is, f(x + 21r) = f(x) for any x E R.
483 The integration range can be [-1r.1r].
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is called the complex Fourier series of I.
Needless to say, a theorem corresponding to A 7.2 holds.

A7.4 Theorem [Bessel's inequality]. If I is 21'1"-periodic and square
integrable on [0,21'1"], then

21r kf;oo ICkl 2 s i 1r
1r dx ll(x)1

2
•

o

A 7.5 Theorem [Parseval's equality]. If I is a 21r-periodic continu­
ous function, and I' is square integrable (especially I is a 21'1"-periodic
C1-function (~A3.21)), then S[J] uniformly converges to I. In this
case the following equality holds

21r k"foo ICkl 2
= J:1r dxll(xW,

which is called Parseval's equality.D
Warning. The continuity of I is not sufficient even for pointwise con­
vergence of S[J] to I. See A 7.8.

A 7.6 L2-convergence. A function sequence In defined on (-1r, 1'1")

is said to L 2 -converge to I (or to converge in the square mean), if

as n ~ 00.

A7.7 Theorem. If I is a 21'1"-periodic continuous function, then S[J]
L2-converges to I, and Parceval's equality (~A7.5) holds. 0

A 7.8 Theorem [duBois-Reymond]. For a 21r-periodic function I,
its continuity does not guarantee the pointwise convergence of S[J] to
I. [Counterexamples exist.] 0
However,

A 7.9 Theorem [Fejer]. Let Sn be the partial sum of the Fourier
series up to the n-th term. Define

1 n

O"n - --1 L Sk.
n + k=O

If I is a 21'1"-periodic continuous function, then O"n uniformly converges
to I. 0
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A 7.10 Piecewise C 1-function. A function I is said to be piece­
wise C1, if there are finitely many points ')'1 < ')'2 < ... < ')'m such that
on each open interval hI, ')'l+d I and f' are continuous and bounded.
Notice that at each ')'1 right and left limits (~A2.6) of I (denoted by
1hz +0) and Ihl- 0)) exist.

A 7.11 Theorem. If I is piecewisely C1
, then S[I] converges to

[J(x + 0) + I(x - 0)]/2 for all x. The same holds if f' is piecewise
continuous and square-integrable (i.e., its boundedness need not be as­
sumed). The convergence is uniform except in the arbitrarily small
neighborhood of the discontinuities of f. 0

A 7.12 Theorem. If f is a 27r-periodic function, integrable on (-7r, 7r)
and is of bounded variation,484 then the conclusion of A 7.11 holds. 0

A7.13 Theorem [Locality of convergence]. Let hand 12 be piece­
wise 27r-periodic functions integrable on (-7r, 7r). If there is a neighbor­
hood of Xo such that h =12 on it, then S[h] converges (resp., diverges)
at XQ if and only if S[12] converges (resp., diverges) at XQ. When they
converge, the limits are identical. 0

A 7.14 Fourier transform. Let f be an integrable function on R.
If the following integral exists

j = I: dxf(x )e-ikx,

it is called the Fourier transform of f. Mathematicians often multiply
1/fi1i- to this definition to symmetrize the formulas. However, this
makes the convolution formula A 7.20(iv) awkward. For physicists and
practitioners, the definition here is the most convenient.
If a function f : R ~ C is continuous except for finitely many points,
and absolutely integrable, then its Fourier transform j : R ~ C is a
bounded continuous function such that limk--+oo f( ±k) = O.
Also we have an important relation

A A

f' = ikf.

A7.15 Rapidly decreasing function. A function f : R ~ C is
called a rapidly decreasing function, if the following two conditions hold:
(i) f is a COO-function (~A3.21).

484That is, f can be written as a difference of two monotone increasing functions
(-+A2.11).
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(ii) For any k, lEN, xl f(k l ~ 0 in the Ixl ~ 00 limit.
The function is also called a Schwartz-class function (or S-function).

A 7.16 Inverse Fourier transform. If f is a rapidly decreasing func­
tion, then the following inversion formula holds:

1 100
~ .f(x) = - dkf(k)e1k

.
r

.
21f -00

D

A 7.17 Theorem. If f : R ~ C is continuous (and bounded), and
both f and} are absolutely integrable, then the inversion formula holds.
D

A 7.18 Parseval's equality. If the inversion formula holds and if
f is square integrable, we have

D

A 7.19 Convolution. Let f and 9 be integrable function defined on R.
The following 17.,( x) is called the convolution of f and 9 and is denoted
by f * g:

h(x) = (f * g)(x)..-- 1: dyf(x - y)g(y).

A 7.20 Properties of convolution.
(i) The definition is symmetric with respect to f and g, that is, f *9 =
9 * f·
(ii) If f and 9 are rapidly decreasing, then so is h.
(iii) h(k) = f(k) * 9

(iv) f; 9 = }f;.

A 7.21 Theorem [Inversion formula for piecewise C1-function].
Let f be piecewise C1-function (~A7.10) on R. Then

1 1 100
. ~'2 [J(xo - 0) + f(xo + 0)] = 21f P.v . -00 dke1kxo f(k).

Here p.v. implies Cauchy's principal value of the integral. D
We can write the formula as

1 . Joo sin(.\(xo - 0)
-[J(xo - 0) + f(xo + 0)] = hm d~ ~ f(O·2 .\.......00 -00 Xo -
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A 7.22 Multidimensional case. It is easy to generalize the rapidly
decreasing property to multidimensional cases. If a function is rapidly
decreasing, then formal generalization of the above results to multidi­
mensional cases are legitimate.

AS Ordinary Differential Equation

Practical advice. See Schaum's outline series Differential Equations
by R. Bronson for elementary methods and practice. To learn the the­
oretical side, V. 1. Arnold, Ordinary differential equations (MIT Press
1973; there is a new version from Springer) is highly recommended.

A8.! Ordinary differential equation. Let y be a n-times differen­
tiable function of x E R. A funcitonal relation f(x, y, y',' .. ,y(n») = 0
among x,y, y', "', y(n) is called an ordinary differential equation (ODE)
for y(x), and n is called its order, where the domain of f is assumed
to be appropriate. Such y(x) that satisfies f = 0 is called a solution to
the ODE.

A8.2 General solution, singular solution. The solution y = i.p(x, Cl, C2 • ... ,cn )

to f = 0 in A8.! which contains n arbitrary constants Cl, •. " Cn (which
are called integral constants) is called the general solution of f = O. A
solution which can be obtained from this by specifying the arbitrary
constants is called a particular solution. A solution which cannot be
obtained as a particular solution is called a singular solution.

A8.3 Normal form. If the highest order derivative of y is explic­
itly solved as y(n)(x) = F(x,y','" ,y(n-l»), we say the ODE is in the
normal form. Notice that not normal ODE's may have many patho­
logical phenomena.

A8A Initial value problem of first order ODE. Consider the fol­
lowing first order ODE

dy
- = f(x,y),
dx
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where f is defined in a region D C R 2
• To solve this under the condi­

tion that y(xo) = Yo ((xo, Yo) E D) is called a initial value problem.

A8.5 Theorem [Cauchy-Peano]. If for (A8.1) f is continuous on
a region D C R 2, then for any (xo,Yo) E D there is a solution y(x)
of (A8.I) passing through this point whose domain is an open interval
(a,w) (-00::;; a < w::;; 00), and in the limits x ---+ a and x ---+ w y(x)
approaches the boundary of D or the solution becomes unbounded. D

A8.6 Lipschitz condition. Let f(x, y) be a continuous function
whose domain is a region D C R 2 . For any compact set (---+[AI25])
KeD, if for any (x, v), (x', v') E K there is a positive constant LK
(which is usually dependent on K) such that

If (x, y) - f (x' , y') I ::;; L [{ Iy - y/l,

then f is said to satisfy a Lipschitz condition on D for y.
If f and fy are both continuous in D, then f satisfies a Lipschitz con­
dition on D.

A8.7 Theorem [Cauchy-Lipschitz uniqueness theorem]. For
(A8.1), if f satisfies a Lipschitz condition on D for y, then if there
is a solution passing through (xo, Yo) E D, it is unique. D

A8.8 Theorem. Let f : R ---+ R be a continuous and monotone
decreasing function. Then the initial value problem dy / dx = f(y) (for
x > xo) with y(xo) = Yo has a unique solution for x :2: xo. D

A8.9 Method of quadrature. To solve an ODE by a finite number of
indefinite integrals is called the method of quadrature. Representative
examples are given in A8.I0-A8.I3.

A8.I0 Separation of variables. The first order equation of the fol­
lowing form

dy
dx = p(x)q(y),

where p and q are continuous functions, is solvable by the separation
of variables: Let Q(y) be a primitive function (---+[AIV5]) ofl/q(y) and
P that of p. Then Q(y) = P(x) + C is the general solution, where Cis
the integration constant.

A8.II Perfect differential equation, integrating factor. The
first order ODE of the following form

dy P(x, y)
dx Q(x, V)'
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where Q =/= O. If there is a function <I> such that <I>x = P and <I>y = Q,
then <I>(x, y) = C, C being the integral constant, is the general solution.
Even if P and Q may not have such a 'potential' <I>' P and Q times some
function I called integrating factor may have a 'potential.' However, it
is generally not easy to find such a factor except for some special cases.

A8.I2 Linear first order equation, variation of parameter. The
first order equation

dy
dx = p(x)y + q(x)

is called a linear equation. The equation can be solved by the method of
variation of parameters. Let y(x) = C(x)erP(S)dS. Then the equation
for C can be integrated easily. As we will see in A8.I4, the method of
variation of parameters always works for linear equations.

A8.I3 Bernoulli equation. The first order equation of the following
form is called a Bernoulli equation:

dy
dx =p(x)y+Q(x)yn,

where n is a real number. Introducing the new variable z(x) = y(x)l-n,
we can reduce this equation to the case [12] for z(x).

A8.I4 Linear ODE with constant coefficients, characteristic
equation. Consider

(A8.2)

where a and b are constants.

P()..) = )..2 + a).. + b

is called its characteristic equation, and its roots are called character­
istic roots.

A8.I5 Theorem [General solution to (A8.2)]. If the characteristic
roots of (A8.2) are 0: and (3 (=/= 0:), then its general solution is the linear
combination of rpl(X) = eQX and rp2(X) = ef3x . If 0: = (3, then the gen­
eral solution is the linear combination of rpl(X) = eQX and rp2(X) = xeQX

(the characteristic roots need not be real.) 0
rpl(X) and rp2(X) are called fundamental solutions and {rpl(X),rp2(X)} is
called the system of fundamental solutions for (A8.2).
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A8.16 Inhomogeneous equation, Lagrange's method of vari­
ation of constants. An ODE

(AS.3)

with nonzero f is called an inhomogeneous ODE (the one without
nonzero f is called a homogeneous equation). The general solution
is given by the sum of the general solution to the corresponding ho­
mogeneous equation and one particular solution to the inhomogeneous
problem. A method to find one solution to (AS.3) is the Lagrange's
method of variation of constants. Let CPi( x) be the fundamental solu­
tions and determine the functions Ci ( x) to satisfy (AS.3):

One solution can be obtained from

f(X)cp2(X) dC2
W(x) dx

where W(x) = cpl(X)cp~(x) - cp2(X)cp~(x), the Wronskian of the funda­
mental system. 0
If the two characteristic roots a and f3 are distinct, then such a u is
given by

u(x) = _1_ (r dsf(s)eO'(t-s) _ rt
dsf(s)e(3(t-S)) .

a - f3 Jo Jo

A9 Vector Analysis

A9.1 Gradient. Suppose we have a sufficiently smooth function f :
D --+ R, where D C R 2 is a region. We may imagine that f(P) for
P E D is the altitude of the point P on the island D. Since we assume
the landscape to be sufficiently smooth, at each point on D there is a
well defined direction n of the steepest ascent and the slope (magni­
tude) s(~ 0). That is, at each point on D, we may define the gradient
vector sn, which will be denoted by a vector field grad f.
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A9.2 Coordinate expression of grad f. Although grad f is mean­
ingful without any specific coordinate system, in actual calculations,
introduction of a coordinate system is often useful. Choose a Cartesian
coordinate system O-xy. Then the vector has the following representa­
tion:

(
of of)

grad f = ax' ay ,

or

(A9.1)

A9.3 Remark. Note that to represent grad f in terms of numbers,
we need two devices: one is the coordinate system to specify the point
in D with two numbers, which allow us to describe f as a function
of two independent variables, and two vectors to span the two dimen­
sional vector 'grad l' at each point on D. In principle any choice is
fine, but practically, it is wise to choose these base vectors to be paral­
lel to the coordinate directions at each point. In the choice A9.2, the
coordinate system has globally the same coordinate direction at every
point on D, and the basis vectors are chosen to be parallel to these
directions, so again globally uniformly chosen. Nonuniformity in space
of representation schemes may cause complications. Especially when
we formally use operators as explained below, we must be very careful
(-----tA9.7,A9.9 for a warning).

A9.4 Nabla or del. (A9.1) suggests that grad is a map which maps f
to the gradient vector at each point in its domain (if f is once partially
differentiable). We often write this linear operator as V', which is called
nabla,485 but is often read 'del' in the US. We write grad f = V'f. V'
has the following expression if we use the Cartesian coordinates (read
[3])

n a
V' ,,- L ikfj , (A9.2)

1.:=1 Xk

where Xk is the k-th coordinate and h is the unit directional vector in
the k- th coordinate direction.

A9.5 Divergence. Suppose we have a flow field (velocity field) u
on a domain D E R 3

. Let us consider a convex domain486 V C R 3

which may be imagined to be covered by area elements dS whose area
is IdSI, and whose outward normal unit vector is dS IldSI. Then u· dS

48S'Nabla' is a kind of harp (Assyrian harp).
486 A set is said to be convex if the segment connecting any two points in the set

is entirely included in the same set.
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is the rate of the volume of fluid going out through the area element in
the unit time. Hence the area integral

r dS.uJav

is the total amount of the volume of the fluid lost from the domain V.
The following limit, if exists, is called the divergence of the vector field
u at point P and is written as div u:

d · - l' fav u . dS
'lVU = 1m IVI 'IVI-+O

(A9.3)

(A9.4)

where the limit is taken over a nested sequence of convex volumes con­
verging to a unique point P. Thus its meaning is clear: div u is the
rate of loss of the quantity carried by the flow field u per unit volume.

A9.6 Cartesian expression of div. From (A9.3) assuming the ex­
istence of the limit, we may easily derive the Cartesian expression for
div. Choose as V a tiny cube whose surfaces are perpendicular to the
Cartesian coordinates of O-xyz. We immediately get

d
. _ fht x OUy oU z

'LV U - ox + oy + oz'

A9.7 Operator div. (A9.4) again suggests that div is an operator
which maps a vector field to a scalar field. Comparing (A9.2) and
(A9.4) allows us to write

div u = \7 . u.

This 'abuse' of the symbol is allowed only in the Cartesian coordinates.
Generalization to n-space is straightforward.

A9.8 Curl. Let u be a vector field as in A9.5. Take a singly connected
compact surface S in R 3 whose boundary is smooth. The boundary
closed curve with the orientation according to the right-hand rule is
denoted by oS (see Fig.). Consider the following line integral along
oS:

r u. dl,Jas
where dl is the line element along the boundary curve. Ket us imagine
a straight vortex line and take S to be a disc perpendicular to the line
and its center is on the line. Immediately we see that the integral is
the strength of the vortex whose center (singular point) goes through
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(A9.5)

S. Thus the following limit, if exists, describes the 'area' density of
the n-component of the vortex (as in the case of angular velocity, the
direction of vortex is the direction of the axis of rotation with the right­
hand rule):

. Ja8 u· dl
n· curl u = hm lSI '15/-.0

where the limit is over the sequence of smooth surfaces which converges
to point P with its orientation in the n-direction. If the limit exists,
then obviously there is a vector curl u called curl of the vector filed u.

A9.9 Cartesian expression of curl. If we assume the existence
of the limit (A9.5), we can easily derive the Cartesian expression for
curl u. We have

curl u = (ouz _ oUy oU;r _ oUz oUx _ ouy )

oy oz 'oz ax 'oy ax' (A9.6)

or
~ J k

curl u = ax Oy Oz = \7 xu. (A9.7)
UX u y Uz

This 'abuse' of the nabla symbol is admissible only with the Cartesian
coordinates.

A9.10 Potential field, potential, solenoidal field, irrotational
field. If a vector field u allows an expression u = grad 1>, then the field
is called a potential field and 1> is called its potential. A field without
divergence div u = 0 is called a divergenceless or solenoidal field. The
field without curl curl u = 0 is called an irrotational field.

A9.!!.
(i) c'url grad 1> = 0 (Potential fields are irrotational).
(ii) div curl u = O.
(iii) If a vector field is irrotational on a singly connected domain,487
then the field is a potential field.
(iv) If a vector field u is solenoidal in a singly connected domain, then
there is a vector field A on the domain such that u = curl A. A is
called a vector potential.

487 A domain is singly connected, if, for any given pair of points in the domain,
any two curves connecting them are homotopic. That is, they can be smoothly
deformed into each other without going out of the domain.
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A9.12 Theorem [Gauss-Stokes-Green's theorem]. From our def­
initions of divergence and curl, we have
(i) Gauss' theorem.

r u. dB = rdiv UdT,
Jav Jv (A9.8)

where V is a domain in the 3-space and dT is the volume element.
(ii) Stokes' theorem.

r u. dl = rcurl u· dB,
Jas Js

where S is a compact surface in 3-space.

(A9.9)

A9.13 Laplacian. The operator /);, defined by /);,1 - div grad 1 is
called the Laplacian, and is often written as 'V2 • /);, is defined for a
scalar function.

A9.14 Laplacian for vector fields. If we formally calculate curl curl u
in the Cartesian coordinates, then we have

curl curl u = grad div u - 'V2u.

Since the formal calculation treating 'V as a vector is legitimate only
in the Cartesian coordinate system, this calculation is meaningful only
in the Cartesian system. Thus, in particular 'V2u = (/);,'ux,/);,uy,/);,uz )

is meaningful only in this coordinate system. However, the other two
terms are coordinate-free expressions. Hence, we define /);,u as

/);,u _ grad div u - cud curl u.
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