
40 Green's Function: Wave Equation

The Green's functions of wave equations are constructed di
rectly or from those of Helmholtz equation. The radiation
condition implies the specification of the time arrow.
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Summary:
(1) If we use the retarded Green's function for the Helmholtz equation,
we can obtain the retarded Green's function (-+40.1).
(2) For wave equations the tiem arow is selected by the radiation con
dition.

40.1 Fundamental solution. A fundamental solution to the wave
equation satisfies

where

Dw(t, x; t', x') = 6(t - t')6(x - x'), (40.1 )

o ~ c-28; - Ll (40.2)

is called the D 'Alernbertian. Fourier-transforming this with respect to
time, we obtain (-+39.1, 27A.24)

- (Ll + li:
2 }w(w, x; t', x') = e-iwt'6(x - x') (40.3)

with Ii: = w/ c. Thus basically this is the same as the problem of finding
a fundmental solution for the Helmholtz equation in the whole space.
If we use the retarded Green's function for the Helmholtz equation
(-+39.6), then inverse Fourier transformation gives

This can easily be integrated to give (--32C.8)

w(t,x;t',x')= 11 '1 6(t-t'-lx-x'l/c).
41r x - X
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(40.5)



Note that this is zero for any t < t'. This function is the Green function
for 3-space, and is called the retarded Green function.

Discussion.
In terms of the retarded Green's function, the inhomogeneous wave equation

Du = q

can be solved as
u(t, re) =~ r q(t, y) dy.

41r J1re-YI$.ct Iy - rei

The formula is called the Duhamel's formula.

(40.6)

(40.7)

(40.8)

40.2 Advanced Green's function. We see above that the radiation
condition (-+39.6) imposes time reversal asymmetry (causality). Since
the wave equation itself is time-reversal symmetric, the time reversed
(40.5) should also be a solution to (40.1):

WA(t, x; t', x') = I 1 18(t - t' + Ix - x'i/c).
41r x - x'

Note that this is zero for t > t' everywhere. This is anti-causal, and is
called the advanced Green's function.

40.3 Propagator. A fundamental solution K(t, x; t', x') satisfying
the boundary condition and symmetric in time is called the propaga
tor of the problem. Its existence should be clear from the advanced
and retarded Green's functions discussed above. The retarded Green's
function is related to the propagator as

G(t, x; t' x') = 8(t - t')K(t, x; t', x'), (40.9)

The fundamental solution satisfying the boundary condition and causal
ity is called the retarded Green's function.

40.4 Symmetry of propagator.

K(t,xlt',x') = K(t - t',xIO,x'). (40.10)

This time translation symmetry directly follows from 41.1. This for
mula implies

and consequently

K(t,xlt',x') = K(-t',xl- t,x').

8t K(t, xlt', x') = -8t I K(t, xlt', x').
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(40.11 )

(40.12)



They imply that

Analogously

so that we get

K(t,xlt',x') = -K(t',xlt,x').

K(t,xlt',x') = K(t,x'lt',x),

K(t,xlt',x') = -K(t',x'lt,x).

(40.13)

(40.14)

(40.15)

40.5 Eigenfunction expansion of propagator. Introducing the
eigenfunction of the Laplacian with an appropriate homogeneous bound
ary condition (Dirichlet, Robin or Neumann condition) {IAn)} such that
-~IAn) = AnIAn). we can separate the wave equation, to get

K(t, xlt', x') = (xl {~IAn)cSin[c2~? - t')] (Ani} Ix'). (40.16)

Here, if AO = 0 (this happens only when the Neumann condition is
imposed), the sine term is computed with the aid of l'Hospital's rule.

40.6 Propagator in infinite space. From (38.4) and the symme
try we can easily guess that451

1
K(t, xlO, 0) = -[8(t - x/c) - 8(t + x/c)].47fx (40.17)

This is indeed the right answer as can be computed from the continuum
version of (40.16}· .

c J 3 sin(ckt) ik.x c 47f (X!. .
K(t,xIO,o) = (27f)3 d k ck e = (27f)3-;;- Jo dksm(ckt)sm(kx).

(40.18)
See 32C.8 Exercise.

40.7 Propagator in 2- and I-spaces. For 2-space,

(2) _ ~ 8(ltl - x/c)
K (t,xIO,o) - sgn(t)27f(t2 -x2/c2)1/2'

and for 1-space
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(40.19)

(40.20)



Of course, they can be obtained by integrating unnecessary coordinates
out from the 3-space version (~16C.3).

40.8 Afterglow revisited. We can see explicitly from G(2) obtain
able from K(2) that for Ixl < tc G(2) > 0, but this does not happen for
3-space. This is the afterglow in even dimensional spaces. (~16C.4,

32D.10)

40.9 Helmholtz formula. The solution in 3-space to

D7P(t, x) = <p(t, x)

can be written as

(40.21 )

7P(t,x) = ft dt' f dxG(t, x; t', x')<p(t', x')
JTl In

£: dt' ~n d(J(x') [G(t, x; t', x') 8:(~') - 7P 8nfx') G(t, x; t', X')]

+ 1
2

f dx'[G8t7P - 7P8tG]t=T1 • (40.22)
c In

Just as in the case of the Helmholtz equation (~39.8), this is not the
formula describing 7P in terms of the initial and boundary values.
[Demo] Just as a proof of Green's formula (~16A.19), we get

f
T

2 dt f dX[(Df)g-fl:lg] = - f
T

2 dt f dS·[j'V'g-g'V'f]+ f dx 12[f8tg+g8tf]~~~~.
JT1 In JT1 Jan In c

(40.23)
Take f to be the retarded Green's function (~40.1), and 9 to be the
solution to (40.21), then this can be rewritten as the desired formula.

40.10 General causal solution. In (40.22) the surface integrals of
the 4-volume n x [T1, t] describes the effects of the incoming waves into
n from the past. Hence this can be rewritten as

7P(t, x) = 7Pin(t, x) + r dt' f dx'G(t,x;t', x')<p(t', x').JT1 I n
(40.24)

Here 7Pin denotes the incoming wave. The Ausstrahlungsbedingung
(~39.6) on 7P implies that 7Pin ~ 0 when n ~ R 3 and T1 ~ -00.
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