
40 Green's Function: Wave Equation

The Green's functions of wave equations are constructed di­
rectly or from those of Helmholtz equation. The radiation
condition implies the specification of the time arrow.
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Summary:
(1) If we use the retarded Green's function for the Helmholtz equation,
we can obtain the retarded Green's function (-+40.1).
(2) For wave equations the tiem arow is selected by the radiation con­
dition.

40.1 Fundamental solution. A fundamental solution to the wave
equation satisfies

where

Dw(t, x; t', x') = 6(t - t')6(x - x'), (40.1 )

o ~ c-28; - Ll (40.2)

is called the D 'Alernbertian. Fourier-transforming this with respect to
time, we obtain (-+39.1, 27A.24)

- (Ll + li:
2 }w(w, x; t', x') = e-iwt'6(x - x') (40.3)

with Ii: = w/ c. Thus basically this is the same as the problem of finding
a fundmental solution for the Helmholtz equation in the whole space.
If we use the retarded Green's function for the Helmholtz equation
(-+39.6), then inverse Fourier transformation gives

This can easily be integrated to give (--32C.8)

w(t,x;t',x')= 11 '1 6(t-t'-lx-x'l/c).
41r x - X
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(40.5)



Note that this is zero for any t < t'. This function is the Green function
for 3-space, and is called the retarded Green function.

Discussion.
In terms of the retarded Green's function, the inhomogeneous wave equation

Du = q

can be solved as
u(t, re) =~ r q(t, y) dy.

41r J1re-YI$.ct Iy - rei

The formula is called the Duhamel's formula.

(40.6)

(40.7)

(40.8)

40.2 Advanced Green's function. We see above that the radiation
condition (-+39.6) imposes time reversal asymmetry (causality). Since
the wave equation itself is time-reversal symmetric, the time reversed
(40.5) should also be a solution to (40.1):

WA(t, x; t', x') = I 1 18(t - t' + Ix - x'i/c).
41r x - x'

Note that this is zero for t > t' everywhere. This is anti-causal, and is
called the advanced Green's function.

40.3 Propagator. A fundamental solution K(t, x; t', x') satisfying
the boundary condition and symmetric in time is called the propaga­
tor of the problem. Its existence should be clear from the advanced
and retarded Green's functions discussed above. The retarded Green's
function is related to the propagator as

G(t, x; t' x') = 8(t - t')K(t, x; t', x'), (40.9)

The fundamental solution satisfying the boundary condition and causal­
ity is called the retarded Green's function.

40.4 Symmetry of propagator.

K(t,xlt',x') = K(t - t',xIO,x'). (40.10)

This time translation symmetry directly follows from 41.1. This for­
mula implies

and consequently

K(t,xlt',x') = K(-t',xl- t,x').

8t K(t, xlt', x') = -8t I K(t, xlt', x').
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(40.11 )

(40.12)



They imply that

Analogously

so that we get

K(t,xlt',x') = -K(t',xlt,x').

K(t,xlt',x') = K(t,x'lt',x),

K(t,xlt',x') = -K(t',x'lt,x).

(40.13)

(40.14)

(40.15)

40.5 Eigenfunction expansion of propagator. Introducing the
eigenfunction of the Laplacian with an appropriate homogeneous bound­
ary condition (Dirichlet, Robin or Neumann condition) {IAn)} such that
-~IAn) = AnIAn). we can separate the wave equation, to get

K(t, xlt', x') = (xl {~IAn)cSin[c2~? - t')] (Ani} Ix'). (40.16)

Here, if AO = 0 (this happens only when the Neumann condition is
imposed), the sine term is computed with the aid of l'Hospital's rule.

40.6 Propagator in infinite space. From (38.4) and the symme­
try we can easily guess that451

1
K(t, xlO, 0) = -[8(t - x/c) - 8(t + x/c)].47fx (40.17)

This is indeed the right answer as can be computed from the continuum
version of (40.16}· .

c J 3 sin(ckt) ik.x c 47f (X!. .
K(t,xIO,o) = (27f)3 d k ck e = (27f)3-;;- Jo dksm(ckt)sm(kx).

(40.18)
See 32C.8 Exercise.

40.7 Propagator in 2- and I-spaces. For 2-space,

(2) _ ~ 8(ltl - x/c)
K (t,xIO,o) - sgn(t)27f(t2 -x2/c2)1/2'

and for 1-space
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(40.19)

(40.20)



Of course, they can be obtained by integrating unnecessary coordinates
out from the 3-space version (~16C.3).

40.8 Afterglow revisited. We can see explicitly from G(2) obtain­
able from K(2) that for Ixl < tc G(2) > 0, but this does not happen for
3-space. This is the afterglow in even dimensional spaces. (~16C.4,

32D.10)

40.9 Helmholtz formula. The solution in 3-space to

D7P(t, x) = <p(t, x)

can be written as

(40.21 )

7P(t,x) = ft dt' f dxG(t, x; t', x')<p(t', x')
JTl In

£: dt' ~n d(J(x') [G(t, x; t', x') 8:(~') - 7P 8nfx') G(t, x; t', X')]

+ 1
2

f dx'[G8t7P - 7P8tG]t=T1 • (40.22)
c In

Just as in the case of the Helmholtz equation (~39.8), this is not the
formula describing 7P in terms of the initial and boundary values.
[Demo] Just as a proof of Green's formula (~16A.19), we get

f
T

2 dt f dX[(Df)g-fl:lg] = - f
T

2 dt f dS·[j'V'g-g'V'f]+ f dx 12[f8tg+g8tf]~~~~.
JT1 In JT1 Jan In c

(40.23)
Take f to be the retarded Green's function (~40.1), and 9 to be the
solution to (40.21), then this can be rewritten as the desired formula.

40.10 General causal solution. In (40.22) the surface integrals of
the 4-volume n x [T1, t] describes the effects of the incoming waves into
n from the past. Hence this can be rewritten as

7P(t, x) = 7Pin(t, x) + r dt' f dx'G(t,x;t', x')<p(t', x').JT1 I n
(40.24)

Here 7Pin denotes the incoming wave. The Ausstrahlungsbedingung
(~39.6) on 7P implies that 7Pin ~ 0 when n ~ R 3 and T1 ~ -00.

505


	ApplMathII

