40 Green’s Function: Wave Equation

The Green’s functions of wave equations are constructed di-
rectly or from those of Helmholtz equation. The radiation
condition implies the specification of the time arrow.
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Summary:

(1) If we use the retarded Green’s function for the Helmholtz equation,
we can obtain the retarded Green’s function (—40.1).

(2) For wave equations the tiem arow is selected by the radiation con-
dition.

40.1 Fundamental solution. A fundamental solution to the wave
equation satisfies

Du(t,z:t',z') = 6(t — t')é(x — x'), (40.1)
where
O0=c29} - A (40.2)
is called the D’Alembertian. Fourier-transforming this with respect to
time, we obtain (—39.1, 27A.24)
— (A4 &Di(w,z;t,2') = e 6(x — ) (40.3)

with £ = w/c. Thus basically this is the same as the problem of finding
a fundmental solution for the Helmholtz equation in the whole space.
If we use the retarded Green’s function for the Helmholtz equation
(—39.6), then inverse Fourier transformation gives

. , , 1 eiw|‘.’l7——w'|/c—iw(t—t')
w(t,a:;t,a:):w(t—t,:c—:c;0,0)z—/ w pr Py

2T
(40.4)
This can easily be integrated to give (—32C.8)

1

e —t —|le—-2o . 40.5
47r|sc—-a:’|6(t |z — &'|/c) (40.5)

w(t,z;t',x') =
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Note that this is zero for any ¢ < #. This function is the Green function
for 3-space, and is called the retarded Green function.

Discussion.
In terms of the retarded Green’s function, the inhomogeneous wave equation

Ou=gq (40.6)

can be solved as

1 / q(t,y)
u(t,®) = — dy. 40.7
t:=) 47 Jiz—y|<ct ly — | Y ( )

The formula is called the Duhamel’s formula.

40.2 Advanced Green’s function. We see above that the radiation
condition (—39.6) imposes time reversal asymmetry (causality). Since
the wave equation itself is time-reversal symmetric, the time reversed
(40.5) should also be a solution to (40.1):

1
walt, et 2') = mé(‘t —t' + |z - x'|/c). (40.8)

Note that this is zero for t > t' everywhere. This is anti-causal, and is
called the advanced Green’s function.

40.3 Propagator. A fundamental solution K(t,;t',x') satisfying
the boundary condition and symmetric in time is called the propaga-
tor of the problem. Its existence should be clear from the advanced
and retarded Green’s functions discussed above. The retarded Green’s
function is related to the propagator as

Gtz t'a') = Ot — ) K(t, a: ¢, a'), (40.9)

The fundamental solution satisfying the boundary condition and causal-
ity is called the retarded Green’s function.

40.4 Symmetry of propagator.
K(t,z|t', ') = K(t —¢,z|0,2). (40.10)
This time translation symmetry directly follows from 41.1. This for-

mula implies
Kt z|t' ') = K(~-t',z| —t,2). (40.11)

and consequently

O K(t, x|t ') = -0, K(t, z|t', ). (40.12)
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They imply that

K(t,z|t',&') = —K(t' x|t z'). (40.13)
Analogously

K(t,z|t',z2') = K(t,z'|t', z), (40.14)
so that we get

K(t,z|t', ") = —K(t',2'|t, z). (40.15)

40.5 Eigenfunction expansion of propagator. Introducing the
eigenfunction of the Laplacian with an appropriate homogeneous bound-
ary condition (Dirichlet, Robin or Neumann condition) {|A,)} such that
—A|X,) = Ay |An). we can separate the wave equation, to get

Kt :B't wl)__ w|{z|>\ CSIH[C \/\/__—( t,)]<)\n|}|$/> (4016)

Here, if Ay = 0 (this happens only when the Neumann condition is
imposed), the sine term is computed with the aid of ’'Hospital’s rule.

40.6 Propagator in infinite space. From (38.4) and the symme-
try we can easily guess that*5!

K(t, 2|0, 0) = ﬁ[é(t—x/c) _8(t + z/0)). (40.17)

This is indeed the right answer as can be computed from the continuum
version of (40.16)

c sin(ckt) k. ¢ 4w
t — d3k iK-L _ /
K(t.z|0,0) (27r)3/ ¢ = @ dk sin(ckt) sin(kz).
(40.18)
See 32C.8 Exercise.
40.7 Propagator in 2- and 1-spaces. For 2-space,
1 _O(|t] —z/c)
(2)
K (t,z|0,0) = sgn(t )27r( YR (40.19)
and for 1-space
KW(t, 2|0,0) = sgn(t)%@(tz —z?/c?). (40.20)

Blp| = 2
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Of course, they can be obtained by integrating unnecessary coordinates
out from the 3-space version (—16C.3).

40.8 After%low revisited. We can see explicitly from G obtain-
able from K that for |2| < tc G > 0, but this does not happen for
3-space. This is the afterglow in even dimensional spaces. (—16C.4,
32D.10)

40.9 Helmholtz formula. The solution in 3-space to

Dy(t, ) = o(t, ) (40.21)

can be written as

! ! / ! !/ !
P(t,x) = /1dt/9d:cG(t,a:;t,a:)(p(t,:c)

T

v / VW aw 0 TSN
— /Tl dt /mda(w) [G(t,w,t , 2 )6n(m') - wan(wl)G(t,w,t , ')
+ % | 42160 ~ 90,Gl.r. (40.22)

Just as in the case of the Helmholtz equation (—39.8), this is not the
formula describing % in terms of the initial and boundary values.
[Demo] Just as a proof of Green’s formula (—16A.19), we get

Ts T2 1 =
/Tl dt/Qd-’v[(Df)g—ng] = —/Tl dt /m dS"[ng—gi]Jr/Q dz—[f0,9+90, fliZ1;.

(40.23)
Take f to be the retarded Green’s function (—40.1), and g to be the
solution to (40.21), then this can be rewritten as the desired formula.

40.10 General causal solution. In (40.22) the surface integrals of
the 4-volume 2 x [T7,t] describes the effects of the incoming waves into
 from the past. Hence this can be rewritten as

Dt @) = Yinlt, @) + /Tt & [ dwGltast, @ )p(t o). (40.24)

Here 4);, denotes the incoming wave. The Ausstrahlungsbedingung
(—39.6) on v implies that 1, — 0 when Q — R® and T} — —oo.
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