
37 Spectrum of Laplacian

The spectrum of Laplacian gives the energy level of quan­
tum mechanical billiards. It is important to grasp its gen­
eral feature to understand the general spectrum of a particle
in a potential well. One of the most interesting questions
was to determine the shape of the domain from the spec­
trum: Can you here the shape of the drum? Now, we know
that this is impossible even in 2-space.
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Summary:
(1) Understand the eigenfunction expansion of Green's functions (-37.7,
37.9).
(2) Remember the general features of the spectrum and eigenfunctions
of the Laplacian with the Dirichlet condition on a bounded domain
(-37.1). (Theoreticians) This is an example of the spectrum of com­
pact operators.
(3) We cannot hear the shape of the drum (-37.6).

37.1 Theorem [Fundamental theorem].440 Let n be a bounded
open region, and an be smooth. Then, the following eigenvalue problem

- /:).n = An, ulan = 0 (37.1)

has the following properties:
(1) There are countably many eigenvalues {An} such that 0 :s; Al :s;
A2 :s; .. " and limn ---+ oo An = +00.
(2) There is no finite accumulation point for {An}.
(3) Let 'Pn be an eigenfunction belonging to An. Then, {'Pn} IS an
orthogonal basis of L 2(n).0

Physically, if we consider the eigenmodes of a drumhead, at least
(1) and (2) are understandable. There should not be any upper limit in
its frequency for an ideal continuum drumhead. For a finite frequency
there cannot be infinitely many independent modes.
[Demo for 3-space] With the aid of the Green's function (--+36.3), we can convert
(37.1) into an integral equation problem:

u(x) = Ain G(xly)u(y)dy == A(9U)(X). (37.2)

440 Actually, much more general theorems are known, since the Laplacian can be
defined on any Riemann manifold.
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Since G(xly) - w(xly) is everywhere finite on n, if we can show

LIw(xlyWdx < +00 for'rly E n, (37.3)

the Hilbert-Schmidt theorem (-+34C.ll) tells us that 9 is a compact (self-adjoint)
operator (-+34C.9). Let BE be a ball of radius E centered at y. On n \ BE the
integral is finite, so we have only to consider

(37.4)

But this is finite as can be seen from the order w 2 = O[lx - YI-2]. Hence, Theorem
34C.12 tells us (1)-(3) except nonnegativity of the eigenvalue. We know -~ is
non-negative, so eigenvalues cannot be negative.

Discussion.
According to the variational principle for the eigenvalues of self-adjoint operators,
34C.13, we can say that the fundamental frequency of a drum goes up if the drum
head is constrained; in contrast, if the drum head is torn, then its fundamental
frequency goes down.

37.2 Theorem [Monotonicity]. Let there be two open regions such
that 0 :J 0'. Consider the eigenvalue problems -.6.u = AU on 0 with
the condition ·ulan = 0, and that with 0 replaced by 0'. Let the n-th
eigenvalue (arranged in the increasing order) for the problem with the
region 0 be An, and that for the region 0' be A~. Then, An :s; A~.D
[Demo] We use the variational principle for the eigenvalues of compact self-adjoint
operators 34C.13. Notice, however, the eigenvalue there is the reciprocal of the
eigenvalues in our present context. That is, the variational principle gives us the
eigenvalue with the smallest modulus. Due to the non-negativity of the eigenval­
ues, actually the variational principle gives us the smallest eigenvalue AI' More
generally, the minimum of (',01- ~I',O) under the condition (',01',0) = 1 is An in the or­
thogonal complement Vn of the direct sum of the eigenspaces for .AI, ... ,An-I' For
any n the minimum value of (',01- ~I',O) on Vn with the condition ',Olan = ',Olan' = 0
cannot be smaller than that with the condition ',Oan = O.

37.3 Theorem. Eigenvalues depend on 0 continuously.D441

37.4 Theorem [Courant]. Let 'Un be the eigenfunction belonging to
the n-th smallest eigenvalue of -.6. on 0 under the condition ulan = O.
Then the nodal set:

(37.5)

441See Courant-Hilbert, vol. I Chapter 6, Section 2 Theorem 10.
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separates D into at most n disjoint components.D442

Discussion.
Consider iA.Laplace eigenvalue problem in a bounded closed domain with a homo­
geneous Dirichlet boundary condition in 2-space. The curves on which the eigen­
function vanishes is called the nodal curve. Demonstrate that a nodal curve is
perpendicular to the boundary curve, when the former touches the latter where the
latter is smooth.

37.5 Vibrating drumhead. The eigenmodes of a 2-dimensional drum­
head of shape Dobey

(37.6)

If D is a disk of radius a, then the eigenfunctions (modes) are given by

(37.7)

where w = r~m) fa with r~m) being the n-th zero of Jm (--+27A.2). Il­
lustration of low frequency modes can be found in Wyld p164-5.443

37.6 Can one hear the shape of the drum? Suppose the set
of all the eigenvalues of -~ on D1 and that on D2 are identical. Can
we conclude that the shapes of the domains are congruent: D1 =D2?
If yes, we can hear the shape of a drum. Now, we know this is not true
even for 2-d drums.444 However, we can hear quite a lot. For example,
we can here the area of the drumhead: Let N (.x) be the number of
eigenvalues less than .x. Then,

(37.8)

asymptotically for large .x, where p,(D) is the volume of D (conjectured
by Lorentz who gave a lecture on this at Gottingen. This was later
proved by Weyl). We can also here the number of holes.

37.7 Eigenfunction expansion of Green's function. The formal

442See Courant-Hilbert, Chapter 6, Section 6 for a proof.
443Excellent pictures of modes of a kettledrum can be found in T. D. Rossing,

"The Physics of Kettledrums," Sci. Am. 247 (5) (1982) [November 1982].
444 A readable account can be found in M A Shubin (I'd.) Partial Differential

Equations VII (Springer, 1994) Section 16.7 (p165-). However, the counter examples
are all on the domains with non-smooth boundaries. No smooth counterexample is
known. This is still a major problem. Historically, the first negative answer to the
question was given in 16-space by Smale.
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theory in 35.2 can be justified exactly as in the regular Sturm-Liouville
problem (---+35.3) thanks to 37.1. Hence we have:
Theorem. The Green's function for the Laplacian in a compact do­
main n can be written as

00

G(xly) = L Ai1Ui(X)Ui(Y),
i=l

(37.9)

where Ui is the normalized eigenvector belonging to the eigenvalue Ai
of -.D..O
From this, the symmetry of Green's functions (---+36.4) is obvious.

37.8 Examples.
(1) The Green's function for a rectangular domain [0, a] X [0, b]. The
eigenvalues and the corresponding normalized eigenfunctions are given
by

2 . m1rX . n1rY (m1r) 2 (n1r) 2
U mn = "j(;b sln -a- sm -b-' Amn = ----;;: + b (37.10)

for positive integers m and n. Hence, the Green's function for the
present problem is, according to (37.9)

4 sin !!!:J!£ sin m7rX' sin !!:!!.Jl. sin mry'
G( 1") - '"' a a b b

x,y X ,y - 1r2ab m;-;'O (mja)2 + (njb)2 (37.11)

(2) Cylindrically symmetric Green's function for 3-space. In this case
it is sensible to define the L2-space with weight r, because the volume
element is 21rrdrdz. Hence, the delta function with the same weight
(---+20.25) is convenient (that is, 8(r - r')8(z - z')jr ---+20.26). The
Green's function is the solution to

(
EP 1 0 02 ) , 8(r - r')

-.D.u = - -or-2 + :;:--or + -oz-2 U = 8(z - Z )----'--r-...:.... (37.12)

with the vanishing condition at infinity. We first solve the eigenvalue
problem

(
02 1 0 02 )

- or2 + :;:- or + oz2 U = K,2 U • (37.13)

We get the eigenvalues and the corresponding normalized eigenfunc­
tions as (---+27A.21)

1 iKZ T (k) \ 2 k2
'tLK,k = .J21fe JO r, /lK,k = K, + .
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Here, K E Rand k is any positive real. Thus 37.7 (or its natural
extension) tells us that the Green's function for our problem is

, , _ 1 1+00 1000 eiK,(z-zIlJo(kr)Jo(kr')
G(r,zlr ,z) - -2 dK dk .2 k2 •

1r -00 0 K +
(37.15)

Exercise.
Construct the Green's functions for the Laplace equation with the following bound­
ary conditions:
(1) On [0,11"] X [0,211"] with a homogeneous Dirichlet boundary condition along x = 0,
x = 11" and y = 211", and a homogeneous Neumann boundary condition on y = O.
(2) On the same domain with a periodic boundary condition. ,;., -f1u. d- oI;.,-e.otz.;... (4. ):: J.I~(;hv·",

(j 1k f"""'-").

37.9 Neumann function in terms of eigenfunctions. Under the
homogeneous Neumann boundary condition any constant is an eigen­
function belonging to the zero eigenvalue. Hence, as can clearly be seen
in (37.9), we cannot construct the Green's function. However, still the
following 'generalized Green's function' works:

,
GN(xly) = L Aiui(x}ui(Y), (37.16)

where' implies that zero eigenvalue is excluded from the summation,
and Ui is the normalized eigenfunction belonging to the eigenvalue Ai.

The solution to 37.8 can be written as

(37.17)

(This is essentially (36.19). The difference is a constant which we may
ignore.)
[Demo] First we find the equation for GN

(37.18)

where V is the volume of n. We have used that the normalized eigenfunction
belonging to zero is 1/VV. Since the eigenfunctions are with the homogeneous
Neumann condition

(37.19)

This is compatible with the equation (37.18). Now put v = GN in Green's formula
16A.19, and we get (37.17), ignoring an additive constant.
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