
36 Green's Function: Laplace Equation

The Green's function method to solve the general boundary
value problem for the Laplace equation is given. Neumann
conditions need special care.
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Summary:
(1) The reader must be able to explain the general idea of Green to her
friend, and how to use Green's formula (---t36.6).
(2) The Neumann function needs a special care, because homogeneous
boundary conditions and the unit source are not compatible (---t36. 7,
37.9).

36.1 Summary up to this point. Definition of Green's functions
and fundamental solutions can be found in 14.2. An intuitive idea was
explained in 1.8. Green's formula is in 16A.19 and some examples of
Green's functions are in 16.

36.2 Fundamental solution. The fundamental solution ofthe Laplace
equation is a solution to

(36.1 )

It is customary to put - in front of the Laplacian, because -6. is a
positive definite operator (---t32A.3). In d-space the following w is a
fundamental solution. For d ~ 3 the function vanishes at infinity, so it
is also a Green's function for free space R d with the vanishing condition
at infinity (---t16A.4)

for d ~ 3,

for d = 2,
(36.2)

where Sd-l is the surface volume of the (d - l)-unit sphere. 434

Notice that d-space function w can be obtained from the (d + 1)­
space counterpart through integrating along one coordinate direction
(---t16A.5).
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(36.3)-P~

where S is the surface, r is the distance between the point on the surface and the ~6-.

point P where we measure the potential.
(2) Let us introduce the angle () between the outward normal and the line connecting
the point on the surface and the point P. Then notice that

Discussion: Double layer.
(1) Consider two parallel surfaces with their spacing d. We assume that the surfaces
are orientable435 and let v denote the outward normal direction. Let us assume that
the outer surface has a uniformly distributed charge of area density +p, and the
inner surface has the same distribution of the charge but of oppoisite sign. p = pd
is the area density of the dipole moment. We take the limit of d -> 0 while keeping
p. The resultant double surface is called (electrical) double layer.
(1) Show that the electrical potential (assuming 0 potential at infinity) is given by
(in 3-space) (ignore numerical coefficients)

dr
- cos() = -,

dv

so that (36.3) can be written as

yep) = (p cos () dO".
is r2

(3) Notice that the solid angle of dO" seen from P is given by

dn = ± dO" cos () ,
r 2

(36.4)

(36.5)

(36.6)

where the sign convention is +, if P is on the positive side of the double layer,436
and -, if P is on the negative side. Hence, we have

V=± lPdn. (36.7)

(4) This implies that, when p = const., if P is outside a closed double layer S, then
V = O. If P is inside, then V = -41rp.

36.3 Theorem [Unique existence of Dirichlet problem Green's
function]. For any well behaved437 surface an enclosing an open re­
gion n, there exists the unique Green's function GD(xIY) for -Do which
vanishes on an.D

435that is, there are two sides unlike the Mobius strip.
436This does not mean that P is located outside the layer even when the layer is

closed. Simply, we draw a tangent plane on the shell and we ask on which side P
exists.

437 This vague statement will not be made precise here to avoid the technicality.
Piecewise smooth surfaces are admissible. Cf. 1.19(2) Discussion.
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[Demo] The Green's function for the homogeneous Dirichlet problem is the solution
to

- L\Gn(xly) =6(x - y) (36.8)

with Gn = 0 for x E an. Here y is in n.438 The problem can be rewritten
as Gn(xly) = w(xly) + u(xly), where w is a fundamental solution in 36.2 and u
satisfies

- L\u(xly) = 0 (36.9)

with the Dirichlet boundary condition u(xly) = -w(xly) for x E an. We have dis­
cussed that this problem has a unique solution at least informally (-.1.19, 29.9).

36.4 Symmetry of Dirichlet Green's function. In Green's for­
mula (~16A.19) set u(x) = Gn(xly) and v(x) = Gn(xlz). Then, we
get

If we use (36.8), this immediately gives

Gn(ylz) = Gn(zly),

(36.10)

(36.11)

the symmetry of the Green's function. We have already discussed this
(formally in 35.2, 16A.20) (~37.7).

36.5 Free space Green's function is the largest. Let GD(xly)
be the Green's function for a region D. Then,

(36.12)

Here w is the fundamental solution given in 36.2, that is, the Coulomb
potential.
This follows easily from the maximum principle 29.6.

36.6 Solution to Dirichlet problem in terms of Green's function
(16A.21 repeated). The solution to the following Dirichlet problem on
an open region n

- flu = ep, ulan = f,
where ep and f are integrable functions, is given by

(36.13)

(36.14)u(x) = r GD(xly)ep(y)dy - r f(y)8n (Y1 GD(xly)dCJ(Y).Jn Jen

Here 8n (y) is the outward normal derivative at y, T is the volume ele­
ment, and CJ is the surface volume element.

438Inevitably, y is an internal point of n, since it is open.

484



Discussion 3(.1v-
The Discussion in 36.2 allows us to understand (! ;) in terms of the charge distri­

j\
bution in n and the double laye~n. That is, Dirichle conditions can be understood

as appropriate double layers. •

36.7 Special feature of homogeneous Neumann condition. For
a Neumann problem we do not know u but onu on the boundary. We
need the Green's function satisfying the homogeneous Neumann condi­
tion. However, we cannot impose a homogeneous boundary condition
on a closed surface an as seen below. Let GN satisfy

Then, Gauss' theorem (--+2C.13) tells us that

r oGN dCJ = -1.
Jan an

(36.15)

(36.16)

Therefore, the homogeneous Neumann condition cannot be imposed.439

The simplest boundary condition compatible with (36.15) is

oGN = -1/ r dCJ = -1 (36.17)an Jan (surface area of D)'

36.8 Neumann function. The function satisfying (36.15) and (36.17)
is called the Neumann function. In terms of the Neumann function, the
solution to the following Neumann problem

reads

- 6:u = If, ulan = h (36.18)

(36.19 )

Note that the solution to a Neumann problem is unique only up to an
additive constant (--+1.19(3)).
[Demo] In Green's formula let u be the solution and v be the Neumann function
GN. Then we have

u(x) = l GN(xly)ip(y)dy + full [GN(x1y)h(y) + u(y)j ill dO'(y)] dO'(y),

rGN(xly)ip(y)dy + r GN(xly)h(y)dO'(y) + canst. (36.20)Jn Jail
439If we wish to keep the homogeneous Neumann boundary condition, we must

modify (36.15). This will be discussed in 37.9.
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The constant can be ignored, because we need the solution up to an additive con­
stant.

36.9 Method of images. (-+16A.7, 16A.8, 16A.14) With the aid
of the superposition principle and the conformal invariance (say, the
reflection principle) (-+16A.I0), we can construct Green's functions
for special cases. For example, the half 3-space Green's function can
be obtained by 16A.7. Analogous half 2-space Green's function can
be obtained. Notice that this Green's function vanishes at infinity in
contrast to the free space counterpart.
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