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35 Spectrum of Sturm-Liouville Problem

Eigenvalues for a regular Sturm-Liouville problem can be
studied more conveniently through its Green's function which
is a Hilbert-Schmidt kernel.

Key words: Sturm-Liouville eigenvalue problem, funda­
mental theorem

Summary:

(1) Remember that the inverse operator of the regular Sturm-Liouville
operator is compact. All the fundamental properties of its spectrum
follows from this fact (--+35.3).
(2) Details of the Weyl-Stone-Titchmarsh-Kodaira theorem 35.5 need
not be understood, but remember that there is a general way to expand
a function in terms of functions in a fundamental system of solutions
of a formally self-adjoint differential operator.

35.1 Rewriting of the eigenvalue problem as integral equation.
The Sturm-Liouville eigenvalue problem is to find A for

LSTU..- [ddxp(X) d~ + q(x)] U = AW(X)U

(with p > 0) under the following boundary condition:

Ba[u] - Ap(a)u'(a) - B'u(a) = 0,
Bb[u] - Cp(b)u'(b) - D7L(b) = 0,

(35.2)

(35.3)

The problem can be rewritten with the aid of the Green's function
(--+15.6) as

u(x) = AJdyw(y)G(xly)u(y) = A(9U)(X)

G is called the kernel of the integral operator 9.

(35.4)

35.2 Formal theory. [20.28 repeated] (35.4) can be written as

I'u) = A9Iu ), (35.5 )

where bras and kets are defined with the weight function tv (--+20.22,
20.23). Let Ii) be an eigenket belonging to the eigenvalue Ai:

(35.6)
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(35.7)

If {Ii)} is an orthonormal basis of L2([a, b], 'W) (~20.19), then from
(35.5) we get

That is, the Green's function can be written as

(35.8)

We must justify this result.

35.3 Theorem fFundamental theorem of Sturm-Liouville eigen­
value problem. The eigenfunctions of a regular Sturm-Liouville prob­
lem (~15.4) form an orthogonal basis of L2([a,b],w) (~20.19), and
the sequence of eigenvalues satisfies IAnl ~ 00 as n ~ 00.0

[Demo] We can explicitly construct the Green's function for this problem as in 15.6,
which is a continuous function of x and y, so that Q, whose kernel is given by 15.6,
is a compact operator (-+34C.9) thanks to Hilbert and Schmidt 34C.ll. Its self­
adjointness is also easy to demonstrate. Hence, we can apply 34C.12. Note that
the eigenvalues here are the reciprocals of those in 34C.12.

Discussion.
(A) Classical approach due to Priifer.
Our demonstration heavily relied on functional analytic methods. The facts were
known before functional analytic methods were widely available. Here a classical
proof of the theorem due to Priifer is given. The argument may seem more compli­
cated and more artful, but more delicate results than those obtained by a high-tech
functional analysis may be obtained.
(1) Suppose there is a solution u ;f=. °to (35.1). Then, pu' and u do not vanish
simultaneously. Hence, we can introduce a polar coordinate system such as

u(x)

p(x)u'(x)

p(x) sin lI(x),

p(x) cosll(x).

(35.9)

(35.10)

(2) Our eigenvalue problem can be rewritten as follows:

p' (x)

lI'

(p(X)-l + q(x) + Aw(x))psinllcosll

p(x )-1 cos2 II + (-AW(X) - q(x)) sin2 lI.

(35.11)

(35.12)

The second equation does not contain p, so we can integrate this for lI( x) with an
arbitrary initial condtion lI(O) =: a.
(3) A necessary and sufficient condition for A to be an eigenvalue of 35.1 is that
lI(x) with the initial condtion lI(a) =: a satisfies lI(b) =: ,6 + n7r, where n is a positive
integer. Here the angles a and ,6 are determined as

tana =: A/B, tan,6 =: C/D (35.13)

with a,,6 E [0,11-).
(4) Priifer's comparison theorem. Let lI(x, A) be the solution of (2) with the
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initial condition 8(a) = a. Then, for x E (a, 13]

Al < A2 => O(x, Ad < O(x, A2). (35.14)

This tells us that the eigenfunction corresponding to a larger eigenvalue oscillates
faster. 0 is monotonically increasing as a function of A. In particular,
(5)

lim 9(b, A) ::::; 0,
>'--00

lim 9(b, A) = +00.
>'-+00

(35.15)

(35.16)

This implies
(6) The Sturm-Liouville eigenvalue problem has a discrete set of eigenvalues such
that

A1 < A2 < '" < An ...... +00. (35.17)

(7) Furthermore, the eigenfunction corresponding to the n-th largest eigenvalue has
exactly n - 1 simple zeros in (a, b). See 24A.13 (Discussion) for the simplicity of
the zeros (non-degeneracy of eigenstates). For nodal sets, see 37.4. Also note that
this proves the statement about the positions of the zeros of orthogonal polynomials
21A.1l (2) (see 21A.7).
(8) Completeness of the eigenfunctions: If a continuous function h(x) satisfies

l b

dxw(:r)h(x)¢n(x)dx = 0,

for all n E N, then h == 0, where ¢n is an eigenfunction belonging to An.
Its proof depends on the fact that if (35.18) is true, then the solution to

[STY = w(x)h(x)

(35.18)

(35.19)

with the homogeneous boundary condtion has a continuous solution for any real A.
However, this cannot be true if h == O.
(9) (8) gives us a generalized Fourier expansion: If

(35.20)

is uniformly and absolutely convergent, then the coefficient can be computed as a
Fourier coefficien.
(10) Let f be piecewisely C1• The formal series (35.20) is actually uniformly and
absolutely convergent.
(B) Priifer's technique allows us to prove the following theorem about the distribu­
tion of zeros of a Schodinger equation:

u" + q(x)u = o.
Suppose

m 2
::::; q(x) ::::; M 2

•

Then, for any solution u =J=. 0, the spacing of the zeros fJ satisfies

~<fJ<~.
M - - m
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(35.22)

(35.23)



Exercise.
Suppose (35.21) is considered on [a, b] with a Dirichlet condition. Demonstrate that
the magnitude of the eigenvalue An increases asymptotically as n2

•

Discussion.
(C) Find the eigenvalues and eigenfunctions of the operator d2/dx 2 + A on [-1,1]
with the following boundary conditions:
(1) du/dx( -1) = du/dx(l) = O.
(2) u - du/dx = 0 at x = ±l.
(D) What happens if the regularity condition is dropped?430

Consider
d (2 d )dt t dt x + AX = 0, (35.24)

with the following boundary conditions.
(1) x( -1) + x'( -1) = x( 1) + x'(l) = 0 (no eigenvalue).
(2) x( -1) + x'( -1) = 0 and x(l) - x'(l) = 0 (-2 is the only eigenvalue. The
corresponding eigenfunction is t.)
(E) Irrespective of the boundary conditions, the n-th eigenvalue of a Sturm-Liouville
problem is a continuous function of the coefficients of the equation (Courant­
Hilbert).

35.4 Justification of separation of variables. When the region
of the problem is finite, very often the separated problems are reg­
ular Sturm-Liouville eigenvalue problem. Hence, 35.3 is the key (if
the reader does not wish to use less elementary Friedrichs extension
(---t34B.5)). However, notice that 35.3 is not enough to justify what
we wish to do on unbounded regions. Friedrichs extensions work even
in such cases. Here, however, a more constructive theory is posted.

35.5 Theorem [Weyl-Stone-Titchmarsh-Kodaira]. Let L be a
second order linear differential operator which is formally self-adjoint:

d d
L = --p(x)- + q(x),

dx dx

where p and q are Coo on (a, b).431 For A E R, consider

Lu = AU.

(35.25)

(35.26)

Let {'lh(x; A), 'l/J2(X; A)} be a fundamental system of solutions (---t24A.ll)
of this equation. Then, there is a matrix measure Pij (i, j E {1, 2} )432

430 N
431 a could be -00 and b 00.

432That is, any component of the matrix Matr{pij(A)} is a measure.
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such that we can make the following decomposition of unity

6(x - y) = i:~ 'l/Ji(X; >')dPij(>'}ljJj(Y; >.).
I,)

(35.27)

The equality here is in the L2-sense.433 Here the so-called density ma­
trix Pij can be constructed from the resolvent (~34C.2) of L.D
(35.27) implies the following:

f(x) = i:~ 'l/Ji(X; >')dPij(>.)fj(>'),
I,)

and

h l b

h(>') = a dy'l/Jj(Y; >')f(y).

Thus fi(>') is a kind of generalized Fourier transform of f.

(35.28 )

(35.29)

433That is, when it is applied to a ket, the difference of RHS and LHS measured
in terms of the L 2 -norm is zero.
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