35 Spectrum of Sturm-Liouville Problem

Eigenvalues for a regular Sturm-Liouville problem can be studied more conveniently through its Green's function which is a Hilbert-Schmidt kernel.

Key words: Sturm-Liouville eigenvalue problem, fundamental theorem

Summary:

(1) Remember that the inverse operator of the regular Sturm-Liouville operator is compact. All the fundamental properties of its spectrum follows from this fact (\rightarrow 35.3).
(2) Details of the Weyl-Stone-Titchmarsh-Kodaira theorem $\mathbf{3 5 . 5}$ need not be understood, but remember that there is a general way to expand a function in terms of functions in a fundamental system of solutions of a formally self-adjoint differential operator.
35.1 Rewriting of the eigenvalue problem as integral equation.

The Sturm-Liouville eigenvalue problem is to find λ for

$$
\begin{equation*}
\mathcal{L}_{S T} u \equiv\left[\frac{d}{d x} p(x) \frac{d}{d x}+q(x)\right] u=\lambda w(x) u \tag{35.1}
\end{equation*}
$$

(with $p>0$) under the following boundary condition:

$$
\begin{align*}
B_{a}[u] & \equiv A p(a) u^{\prime}(a)-B u(a)=0, \tag{35.2}\\
B_{b}[u] & \equiv C p(b) u^{\prime}(b)-D u(b)=0, \tag{35.3}
\end{align*}
$$

The problem can be rewritten with the aid of the Green's function $(\rightarrow 15.6)$ as

$$
\begin{equation*}
u(x)=\lambda \int d y w(y) G(x \mid y) u(y)=\lambda(\mathcal{G} u)(x) \tag{35.4}
\end{equation*}
$$

G is called the kernel of the integral operator \mathcal{G}.
35.2 Formal theory. [20.28 repeated] (35.4) can be written as

$$
\begin{equation*}
|u\rangle=\lambda \mathcal{G}|u\rangle, \tag{35.5}
\end{equation*}
$$

where bras and kets are defined with the weight function $w(\rightarrow \mathbf{2 0 . 2 2}$, 20.23). Let $|i\rangle$ be an eigenket belonging to the eigenvalue λ_{i} :

$$
\begin{equation*}
\lambda_{i} \mathcal{G}|i\rangle=|i\rangle . \tag{35.6}
\end{equation*}
$$

If $\{|i\rangle\}$ is an orthonormal basis of $L_{2}([a, b], w)(\rightarrow \mathbf{2 0 . 1 9})$, then from (35.5) we get

$$
\begin{equation*}
\mathcal{G}=\sum_{i}|i\rangle \lambda_{i}^{-1}\langle i| . \tag{35.7}
\end{equation*}
$$

That is, the Green's function can be written as

$$
\begin{equation*}
G(x \mid y)=\langle x| \mathcal{G}|y\rangle=\sum_{i} \lambda_{i}^{-1} u_{i}(x) \overline{u_{i}(y)} \tag{35.8}
\end{equation*}
$$

We must justify this result.
35.3 Theorem [Fundamental theorem of Sturm-Liouville eigenvalue problem]. The eigenfunctions of a regular Sturm-Liouville problem $(\rightarrow \mathbf{1 5 . 4})$ form an orthogonal basis of $L^{2}([a, b], w)(\rightarrow \mathbf{2 0 . 1 9})$, and the sequence of eigenvalues satisfies $\left|\lambda_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
[Demo] We can explicitly construct the Green's function for this problem as in 15.6, which is a continuous function of x and y, so that \mathcal{G}, whose kernel is given by 15.6, is a compact operator $(\rightarrow \mathbf{3 4 C . 9})$ thanks to Hilbert and Schmidt 34C.11. Its selfadjointness is also easy to demonstrate. Hence, we can apply 34C.12. Note that the eigenvalues here are the reciprocals of those in 34C.12.

Discussion.

(A) Classical approach due to Prüfer.

Our demonstration heavily relied on functional analytic methods. The facts were known before functional analytic methods were widely available. Here a classical proof of the theorem due to Prüfer is given. The argument may seem more complicated and more artful, but more delicate results than those obtained by a high-tech functional analysis may be obtained.
(1) Suppose there is a solution $u \not \equiv 0$ to (35.1). Then, $p u^{\prime}$ and u do not vanish simultaneously. Hence, we can introduce a polar coordinate system such as

$$
\begin{align*}
u(x) & =\rho(x) \sin \theta(x), \tag{35.9}\\
p(x) u^{\prime}(x) & =\rho(x) \cos \theta(x) . \tag{35.10}
\end{align*}
$$

(2) Our eigenvalue problem can be rewritten as follows:

$$
\begin{align*}
\rho^{\prime}(x) & =\left(p(x)^{-1}+q(x)+\lambda w(x)\right) \rho \sin \theta \cos \theta \tag{35.11}\\
\theta^{\prime} & =p(x)^{-1} \cos ^{2} \theta+(-\lambda w(x)-q(x)) \sin ^{2} \theta \tag{35.12}
\end{align*}
$$

The second equation does not contain ρ, so we can integrate this for $\theta(x)$ with an arbitrary initial condtion $\theta(0)=\alpha$.
(3) A necessary and sufficient condition for λ to be an eigenvalue of $\mathbf{3 5 . 1}$ is that $\theta(x)$ with the initial condtion $\theta(a)=\alpha$ satisfies $\theta(b)=\beta+n \pi$, where n is a positive integer. Here the angles α and β are determined as

$$
\begin{equation*}
\tan \alpha=A / B, \tan \beta=C / D \tag{35.13}
\end{equation*}
$$

with $\alpha, \beta \in[0, \pi)$.
(4) Prüfer's comparison theorem. Let $\theta(x, \lambda)$ be the solution of (2) with the
initial condition $\theta(a)=\alpha$. Then, for $x \in(\alpha, \beta]$

$$
\begin{equation*}
\lambda_{1}<\lambda_{2} \Rightarrow \theta\left(x, \lambda_{1}\right)<\theta\left(x, \lambda_{2}\right) \tag{35.14}
\end{equation*}
$$

This tells us that the eigenfunction corresponding to a larger eigenvalue oscillates faster. θ is monotonically increasing as a function of λ. In particular, (5)

$$
\begin{align*}
\lim _{\lambda \rightarrow-\infty} \theta(b, \lambda) & \leq 0 \tag{35.15}\\
\lim _{\lambda \rightarrow+\infty} \theta(b, \lambda) & =+\infty . \tag{35.16}
\end{align*}
$$

This implies
(6) The Sturm-Liouville eigenvalue problem has a discrete set of eigenvalues such that

$$
\begin{equation*}
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow+\infty \tag{35.17}
\end{equation*}
$$

(7) Furthermore, the eigenfunction corresponding to the n-th largest eigenvalue has exactly $n-1$ simple zeros in (a, b). See 24A. 13 (Discussion) for the simplicity of the zeros (non-degeneracy of eigenstates). For nodal sets, see 37.4. Also note that this proves the statement about the positions of the zeros of orthogonal polynomials 21 A. 11 (2) (see 21A.7).
(8) Completeness of the eigenfunctions: If a continuous function $h(x)$ satisfies

$$
\begin{equation*}
\int_{a}^{b} d x w(x) h(x) \phi_{n}(x) d x=0 \tag{35.18}
\end{equation*}
$$

for all $n \in N$, then $h \equiv 0$, where ϕ_{n} is an eigenfunction belonging to λ_{n}.
Its proof depends on the fact that if (35.18) is true, then the solution to

$$
\begin{equation*}
\mathcal{L}_{S T} y=w(x) h(x) \tag{35.19}
\end{equation*}
$$

with the homogeneous boundary condtion has a continuous solution for any real λ. However, this cannot be true if $h \equiv 0$.
(9) (8) gives us a generalized Fourier expansion: If

$$
\begin{equation*}
f(x)=\sum f_{n} \phi_{n}(x) \tag{35.20}
\end{equation*}
$$

is uniformly and absolutely convergent, then the coefficient can be computed as a Fourier coefficien.
(10) Let f be piecewisely C^{1}. The formal series (35.20) is actually uniformly and absolutely convergent.
(B) Prüfer's technique allows us to prove the following theorem about the distribution of zeros of a Schödinger equation:

$$
\begin{equation*}
u^{\prime \prime}+q(x) u=0 \tag{35.21}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
m^{2} \leq q(x) \leq M^{2} \tag{35.22}
\end{equation*}
$$

Then, for any solution $u \not \equiv 0$, the spacing of the zeros δ satisfies

$$
\begin{equation*}
\frac{\pi}{M} \leq \delta \leq \frac{\pi}{m} \tag{35.23}
\end{equation*}
$$

Exercise.

Suppose (35.21) is considered on $[a, b]$ with a Dirichlet condition. Demonstrate that the magnitude of the eigenvalue λ_{n} increases asymptotically as n^{2}.
Discussion.
(C) Find the eigenvalues and eigenfunctions of the operator $d^{2} / d x^{2}+\lambda$ on $[-1,1]$ with the following boundary conditions:
(1) $d u / d x(-1)=d u / d x(1)=0$.
(2) $u-d u / d x=0$ at $x= \pm 1$.
(D) What happens if the regularity condition is dropped? ${ }^{430}$

Consider

$$
\begin{equation*}
\frac{d}{d t}\left(t^{2} \frac{d}{d t} x\right)+\lambda x=0 \tag{35.24}
\end{equation*}
$$

with the following boundary conditions.
(1) $x(-1)+x^{\prime}(-1)=x(1)+x^{\prime}(1)=0$ (no eigenvalue).
(2) $x(-1)+x^{\prime}(-1)=0$ and $x(1)-x^{\prime}(1)=0(-2$ is the only eigenvalue. The corresponding eigenfunction is t.)
(E) Irrespective of the boundary conditions, the n-th eigenvalue of a Sturm-Liouville problem is a continuous function of the coefficients of the equation (CourantHilbert).
35.4 Justification of separation of variables. When the region of the problem is finite, very often the separated problems are regular Sturm-Liouville eigenvalue problem. Hence, $\mathbf{3 5 . 3}$ is the key (if the reader does not wish to use less elementary Friedrichs extension $(\rightarrow \mathbf{3 4 B} .5)$). However, notice that 35.3 is not enough to justify what we wish to do on unbounded regions. Friedrichs extensions work even in such cases. Here, however, a more constructive theory is posted.
35.5 Theorem [Weyl-Stone-Titchmarsh-Kodaira]. Let L be a second order linear differential operator which is formally self-adjoint:

$$
\begin{equation*}
L=-\frac{d}{d x} p(x) \frac{d}{d x}+q(x) \tag{35.25}
\end{equation*}
$$

where p and q are C^{∞} on $(a, b) .{ }^{431}$ For $\lambda \in \boldsymbol{R}$, consider

$$
\begin{equation*}
L u=\lambda u . \tag{35.26}
\end{equation*}
$$

Let $\left\{\psi_{1}(x ; \lambda), \psi_{2}(x ; \lambda)\right\}$ be a fundamental system of solutions $(\rightarrow \mathbf{2 4 A} \mathbf{. 1 1})$ of this equation. Then, there is a matrix measure $\rho_{i j}(i, j \in\{1,2\})^{432}$

${ }^{430} \mathrm{~N}$

${ }^{431} a$ could be $-\infty$ and $b \infty$.
${ }^{432}$ That is, any component of the matrix $\operatorname{Matr}\left\{\rho_{i j}(\lambda)\right\}$ is a measure.
such that we can make the following decomposition of unity

$$
\begin{equation*}
\delta(x-y)=\int_{-\infty}^{\infty} \sum_{i, j} \psi_{i}(x ; \lambda) d \rho_{i j}(\lambda) \psi_{j}(y ; \lambda) . \tag{35.27}
\end{equation*}
$$

The equality here is in the L_{2}-sense. ${ }^{433}$ Here the so-called density matrix $\rho_{i j}$ can be constructed from the resolvent ($\rightarrow \mathbf{3 4 C . 2}$) of L. \square (35.27) implies the following:

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} \sum_{i, j} \psi_{i}(x ; \lambda) d \rho_{i j}(\lambda) \hat{f}_{j}(\lambda) \tag{35.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}_{j}(\lambda)=\int_{a}^{b} d y \psi_{j}(y ; \lambda) f(y) \tag{35.29}
\end{equation*}
$$

Thus $\hat{f}_{i}(\lambda)$ is a kind of generalized Fourier transform of f.

[^0]
[^0]: ${ }^{433}$ That is, when it is applied to a ket, the difference of RHS and LHS measured in terms of the L_{2}-norm is zero.

