35 Spectrum of Sturm-Liouville Problem

Eigenvalues for a regular Sturm-Liouville problem can be studied more conveniently through its Green's function which is a Hilbert-Schmidt kernel.

Key words: Sturm-Liouville eigenvalue problem, fundamental theorem

Summary:

(1) Remember that the inverse operator of the regular Sturm-Liouville operator is compact. All the fundamental properties of its spectrum follows from this fact $(\rightarrow 35.3)$.

(2) Details of the Weyl-Stone-Titchmarsh-Kodaira theorem **35.5** need not be understood, but remember that there is a general way to expand a function in terms of functions in a fundamental system of solutions of a formally self-adjoint differential operator.

35.1 Rewriting of the eigenvalue problem as integral equation. The Sturm-Liouville eigenvalue problem is to find λ for

$$\mathcal{L}_{ST} u \equiv \left[\frac{d}{dx}p(x)\frac{d}{dx} + q(x)\right]u = \lambda w(x)u \qquad (35.1)$$

(with p > 0) under the following boundary condition:

$$B_a[u] \equiv Ap(a)u'(a) - Bu(a) = 0,$$
 (35.2)

$$B_b[u] \equiv Cp(b)u'(b) - Du(b) = 0, \qquad (35.3)$$

The problem can be rewritten with the aid of the Green's function $(\rightarrow 15.6)$ as

$$u(x) = \lambda \int dy \, w(y) G(x|y) u(y) = \lambda(\mathcal{G}u)(x) \tag{35.4}$$

G is called the *kernel* of the integral operator \mathcal{G} .

35.2 Formal theory. [20.28 repeated] (35.4) can be written as

$$|u\rangle = \lambda \mathcal{G}|u\rangle, \tag{35.5}$$

where bras and kets are defined with the weight function $w (\rightarrow 20.22, 20.23)$. Let $|i\rangle$ be an eigenket belonging to the eigenvalue λ_i :

$$\lambda_i \mathcal{G} |i\rangle = |i\rangle. \tag{35.6}$$

If $\{|i\rangle\}$ is an orthonormal basis of $L_2([a, b], w) (\rightarrow 20.19)$, then from (35.5) we get

$$\mathcal{G} = \sum_{i} |i\rangle \lambda_i^{-1} \langle i|. \tag{35.7}$$

That is, the Green's function can be written as

$$G(x|y) = \langle x|\mathcal{G}|y\rangle = \sum_{i} \lambda_i^{-1} u_i(x) \overline{u_i(y)}.$$
(35.8)

We must justify this result.

35.3 Theorem [Fundamental theorem of Sturm-Liouville eigenvalue problem]. The eigenfunctions of a regular Sturm-Liouville problem (\rightarrow **15.4**) form an orthogonal basis of $L^2([a, b], w)$ (\rightarrow **20.19**), and the sequence of eigenvalues satisfies $|\lambda_n| \rightarrow \infty$ as $n \rightarrow \infty$.

[Demo] We can explicitly construct the Green's function for this problem as in 15.6, which is a continuous function of x and y, so that \mathcal{G} , whose kernel is given by 15.6, is a compact operator (\rightarrow **34C.9**) thanks to Hilbert and Schmidt **34C.11**. Its self-adjointness is also easy to demonstrate. Hence, we can apply **34C.12**. Note that the eigenvalues here are the reciprocals of those in **34C.12**.

Discussion.

(A) Classical approach due to Prüfer.

Our demonstration heavily relied on functional analytic methods. The facts were known before functional analytic methods were widely available. Here a classical proof of the theorem due to Prüfer is given. The argument may seem more complicated and more artful, but more delicate results than those obtained by a high-tech functional analysis may be obtained.

(1) Suppose there is a solution $u \neq 0$ to (35.1). Then, pu' and u do not vanish simultaneously. Hence, we can introduce a polar coordinate system such as

$$u(x) = \rho(x)\sin\theta(x), \qquad (35.9)$$

$$p(x)u'(x) = \rho(x)\cos\theta(x). \qquad (35.10)$$

(2) Our eigenvalue problem can be rewritten as follows:

$$\rho'(x) = (p(x)^{-1} + q(x) + \lambda w(x))\rho\sin\theta\cos\theta \qquad (35.11)$$

$$\theta' = p(x)^{-1} \cos^2 \theta + (-\lambda w(x) - q(x)) \sin^2 \theta.$$
 (35.12)

The second equation does not contain ρ , so we can integrate this for $\theta(x)$ with an arbitrary initial condition $\theta(0) = \alpha$.

(3) A necessary and sufficient condition for λ to be an eigenvalue of **35.1** is that $\theta(x)$ with the initial condition $\theta(a) = \alpha$ satisfies $\theta(b) = \beta + n\pi$, where n is a positive integer. Here the angles α and β are determined as

$$\tan \alpha = A/B, \ \tan \beta = C/D \tag{35.13}$$

with $\alpha, \beta \in [0, \pi)$.

(4) Prüfer's comparison theorem. Let $\theta(x,\lambda)$ be the solution of (2) with the

initial condition $\theta(a) = \alpha$. Then, for $x \in (\alpha, \beta]$

$$\lambda_1 < \lambda_2 \Rightarrow \theta(x, \lambda_1) < \theta(x, \lambda_2). \tag{35.14}$$

This tells us that the eigenfunction corresponding to a larger eigenvalue oscillates faster. θ is monotonically increasing as a function of λ . In particular, (5)

$$\lim_{\lambda \to -\infty} \theta(b,\lambda) \leq 0, \tag{35.15}$$

$$\lim_{\lambda \to +\infty} \theta(b, \lambda) = +\infty.$$
 (35.16)

This implies

(6) The Sturm-Liouville eigenvalue problem has a discrete set of eigenvalues such that

$$\lambda_1 < \lambda_2 < \dots < \lambda_n \to +\infty. \tag{35.17}$$

(7) Furthermore, the eigenfunction corresponding to the *n*-th largest eigenvalue has exactly n - 1 simple zeros in (a, b). See **24A.13** (Discussion) for the simplicity of the zeros (non-degeneracy of eigenstates). For nodal sets, see **37.4**. Also note that this proves the statement about the positions of the zeros of orthogonal polynomials **21A.11** (2) (see **21A.7**).

(8) Completeness of the eigenfunctions: If a continuous function h(x) satisfies

$$\int_{a}^{b} dx w(x) h(x) \phi_{n}(x) dx = 0, \qquad (35.18)$$

for all $n \in \mathbf{N}$, then $h \equiv 0$, where ϕ_n is an eigenfunction belonging to λ_n . Its proof depends on the fact that if (35.18) is true, then the solution to

$$\mathcal{L}_{ST}y = w(x)h(x) \tag{35.19}$$

with the homogeneous boundary condition has a continuous solution for any real λ . However, this cannot be true if $h \equiv 0$.

(9) (8) gives us a generalized Fourier expansion: If

$$f(x) = \sum f_n \phi_n(x) \tag{35.20}$$

is uniformly and absolutely convergent, then the coefficient can be computed as a Fourier coefficien.

(10) Let f be piecewisely C^1 . The formal series (35.20) is actually uniformly and absolutely convergent.

(B) Prüfer's technique allows us to prove the following theorem about the distribution of zeros of a Schödinger equation:

$$u'' + q(x)u = 0. (35.21)$$

Suppose

$$m^2 \le q(x) \le M^2.$$
 (35.22)

Then, for any solution $u \neq 0$, the spacing of the zeros δ satisfies

$$\frac{\pi}{M} \le \delta \le \frac{\pi}{m}.\tag{35.23}$$

Exercise.

Suppose (35.21) is considered on [a, b] with a Dirichlet condition. Demonstrate that the magnitude of the eigenvalue λ_n increases asymptotically as n^2 .

Discussion.

(C) Find the eigenvalues and eigenfunctions of the operator $d^2/dx^2 + \lambda$ on [-1, 1] with the following boundary conditions:

(1) du/dx(-1) = du/dx(1) = 0.

(2) u - du/dx = 0 at $x = \pm 1$.

(D) What happens if the regularity condition is dropped?⁴³⁰ Consider

$$\frac{d}{dt}\left(t^2\frac{d}{dt}x\right) + \lambda x = 0, \qquad (35.24)$$

with the following boundary conditions.

(1) x(-1) + x'(-1) = x(1) + x'(1) = 0 (no eigenvalue).

(2) x(-1) + x'(-1) = 0 and x(1) - x'(1) = 0 (-2 is the only eigenvalue. The corresponding eigenfunction is t.)

(E) Irrespective of the boundary conditions, the n-th eigenvalue of a Sturm-Liouville problem is a continuous function of the coefficients of the equation (Courant-Hilbert).

35.4 Justification of separation of variables. When the region of the problem is finite, very often the separated problems are regular Sturm-Liouville eigenvalue problem. Hence, **35.3** is the key (if the reader does not wish to use less elementary Friedrichs extension $(\rightarrow 34B.5)$). However, notice that **35.3** is <u>not</u> enough to justify what we wish to do on unbounded regions. Friedrichs extensions work even in such cases. Here, however, a more constructive theory is posted.

35.5 Theorem [Weyl-Stone-Titchmarsh-Kodaira]. Let L be a second order linear differential operator which is formally self-adjoint:

$$L = -\frac{d}{dx}p(x)\frac{d}{dx} + q(x), \qquad (35.25)$$

where p and q are C^{∞} on (a, b).⁴³¹ For $\lambda \in \mathbf{R}$, consider

$$Lu = \lambda u. \tag{35.26}$$

Let $\{\psi_1(x; \lambda), \psi_2(x; \lambda)\}$ be a fundamental system of solutions $(\rightarrow 24A.11)$ of this equation. Then, there is a matrix measure ρ_{ij} $(i, j \in \{1, 2\})^{432}$

⁴³⁰N

⁴³¹a could be $-\infty$ and $b \infty$.

⁴³²That is, any component of the matrix $Matr\{\rho_{ij}(\lambda)\}\$ is a measure.

such that we can make the following decomposition of unity

$$\delta(x-y) = \int_{-\infty}^{\infty} \sum_{i,j} \psi_i(x;\lambda) d\rho_{ij}(\lambda) \psi_j(y;\lambda).$$
(35.27)

The equality here is in the L_2 -sense.⁴³³ Here the so-called density matrix ρ_{ij} can be constructed from the resolvent (\rightarrow **34C.2**) of $L.\Box$ (35.27) implies the following:

$$f(x) = \int_{-\infty}^{\infty} \sum_{i,j} \psi_i(x;\lambda) d\rho_{ij}(\lambda) \hat{f}_j(\lambda), \qquad (35.28)$$

 and

$$\hat{f}_j(\lambda) = \int_a^b dy \psi_j(y;\lambda) f(y).$$
(35.29)

Thus $\hat{f}_i(\lambda)$ is a kind of generalized Fourier transform of f.

⁴³³That is, when it is applied to a ket, the difference of RHS and LHS measured in terms of the L_2 -norm is zero.