
34 Linear Operators

A linear partial differential operator is understood as a lin­
ear map from a function space into another function space.
The most important case for physicists may be the linear
map on a Hilbert space. We will discuss the meaning of
self-adjointness of an operator in conjunction to quantum
mechanics in Part A. Part B discusses spectral decomposi­
tion of an operator. Part C is a short summary of spectrum
theory.

Key words: linear operator (symmetric, self-adjoint), op­
erator extension, observable, spectral decomposition, de­
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Summary:
(1) In quantum mechanics, self-adjoint linear operators are regarded
as observables. The reason why self-adjointness is required can be
glimpsed in 34A.2-5. [Notice that the explanation is probably very
different from the one given in physics courses, because in the ordi­
nary quantum mechanics courses self-adjointness is never explained cor­
rectly.]
(2) Spectral decomposition is a generalization of diagonalization of ma­
trices, and is the theoretical underpinning of separation of variables
(34B.3, 34B.6).
(3) Whether we may apply the spectral decomposition to a partial dif­
ferential operator can be checked very formally (34B.5).
(4) Spectrum of an operator is often directly related to physical observ­
abIes as electronic and phonon spectra. A clear definition of spectrum
must be recognized (34C.2). Physicists call absolutely continuous spec­
trum band spectrum, and point spectrum discrete spectrum (34C.8).
Cantor-set like spectrum has also become relevant to physics, which is
the singular continuous spectrum.
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34.A Self-Adjointness

34A.l Linear operator.416 As discussed in 20.9 the superposition
principle requires that the quantum mechanical state is described by a
vector in a vector space (----+20.1) (Hilbert space ----+20.3) V. A linear
operator A is a linear map from a subspace D(A) of V into V. D(A) is
called the domain of A, and AD(A) ={Az : z E D(A)} is called the
range of A. In quantum mechanics it is assumed that a linear operator
(with appropriate properties) A corresponds to a dynamical variable
(observable), and that for a state Ix), the expectation value of the ob­
servable A is given by (xIAlx).417
Example. The domain of d/ dx in L2([a, bJ) (----+20.5(2» is not the
whole space, because d/ dx cannot be operated on non-differentiable
functions. 418 However, since G I ([a, b]) is dense in L 2([a, b]), the domain
of d/dx is dense in L2([a, b]).

34A.2 When can a linear operator be an observable?
(1) Let A be a linear operator on a Hilbert space V (----+20.3). If D(A)
is dense in V and Hermitian (i.e., (xIAy) = (Axly)419 ), we say A is
symmetric. Since this is a necessary and sufficient condition for (xIAlx)
to be real, physical observables must at least be symmetric.
(2) However, this is not enough, because the extension of A may not
be symmetric. An operator A such that D(A) ::) D(A) and A = A on
D(A) is called an extension of A. Unfortunately, indeed some symmet­
ric operators are extended to non-symmetric operators.420 The whole
Hilbert space should be physically meaningful, so that symmetry is not
enough to characterize a respectable observable.

416The most authoritative (and accessible) reference is T. Kato, Perturbation The­
ory for Linear Operators (Springer, 1966).
417Dirac explicitly assumes these, while Landau and Lifshitz use spectral decom­

position to justify the assumption. However, all the assumptions have come from
the observations based on finite dimensional linear algebra.

418More precisely, df/dx E L2([0, b]) is required.
4190f course, this means

Jx(t)(Ay)(t)dt = J(Ax)(t)y(t)dt.

420 An example from H. Ezawa, Quantum Mechanics III (Iwanami, 1972) p26.
follows. Let V = L 2 (R). The operator Z is defined by

(34.1)

467



(3) It is important that a symmetric operator A which corresponds to a
'physical observable' should not be extended further. A condition is the
self-adjointness. To understand this statement, we need the following
entries.

34A.3 Adjoint operator. Let A be an operator on a Hilbert space V
whose domain is dense. Let D(A*) be the totality of x E V such that

(xIAy) = (zly) (34.3)

for all y E D(A) for some z E V. For x E D(A*) z is unique: if there
were two Zl and Z2, then (Zl - z2ly) = 0 for 'l/y E D(A). Since D(A)
is dense, this implies Zl = Z2. Thus there is a unique map x -+ z. We
will write this as z = A*x, defining a linear map A*. This is called the
adjoint of A.

For example, -idjdx defined on cJ 421 is self-adjoint:

JdTf(x) (-i d~) g(x) = JdT {-i (d~f(X)) } g(x),

so that indeed (-idjdx)* = -idjdx.

(34.4)

34A.4 Self-adjoint operator. If A is a linear operator with a dense
domain and A = A* (i.e., D(A) = D(A*) and symmetric), then A is
called a self-adjoint operator.

34A.5 Observable should be at least self-adjoint. We know
that an observable must be a symmetric operator. However, A* is
obviously its extension, so it is natural to interpret that A* is 'the'
observable. However, we know that this may not be symmetric. This
strongly suggests that observables must be self-adjoint, so that we will
never encounter imaginary eigenvalues. Later, we will learn that for
a self-adjoint operator, we can unambiguously determine (define) the
probability of observing a particular value (or a particular range of the
values) for any state in the state space thanks to the spectral decom­
position theorem (-+34B.3). This justifies the identification.

with the dense domain spanned by {Hn e- x2
!2} (-+21B.6). It is easy to check that

Z is symmetric. However, if this is applied to

cp(x) = X- 3!2 e-1!4x
2

, for x> 0; otherwise cp(x) = 0, (34.2)

we know Z cp( x) = -icp(x) (except at x = 0; this exception may be ignored, be­
cause we are in a L2-space), so that (cp\Z\cp) = -i, the expectation value is purely
imaginary!

421 C 1 functions with compact supports, i.e., they vanish outside sufficieintly large
sphere centeres at the origin.
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34.B Spectral Decomposition

34B.l Spectral decomposition in finite dimensional space. Con­
sider a normal linear operator422 A on a finite dimensional vector space.
Let {>..} be its eigenvalues, and I>..) be the corresponding normalized
eigenkets. Then, we have the following spectral decomposition formula

A = L 1>")>"(>"1 = L >"P(>") ,
A A

(34.5)

(34.6)

where P(>..) is the orthogonal projection (---t20.18) to the eigenspace
belonging to >...

1 = L 1>..)(>..1 = L P(>..)
A A

is called a decomposition of unity (---t20.15). If we can have this de­
composition, we can spectral decompose the operator. How can we
generalize this to the operators on a Hilbert space (---t20.3)?

34B.2 Decomposition of unity in Hilbert space. This is, for
physicists, just (---t20.23)

1 =i: Iv)w(v)dv(vl, (34.7)

where Iv) is an eigenket or improper eigenket (because it may not be
normalizable), and w is a weight function (let us call w( v) a spectral
weight). To find improper eigenkets is called the generalized eigenvalue
problem (35.5 solves the problem.).

34B.3 Theorem. Let A be a self-adjoint operator (---t34AA) on a
Hilbert space V. Then, there is a unique decomposition of unity

such that

1 = JIv)w(v)(vl

A = i: vlv)w(v)dv(vl·

(34.8)

(34.9)

34BA Why do we pay attention to spectral decomposition?

4221£ a linear operator A satisfies A *A = A.4.*, then we say A is a normal operator.
Its matrix representation is a normal matrix and is diagonalizable with a unitary
transformation. Actually, a necessary and sufficient condition for a matrix A to be
diagonalizable with a unitary transformation is that A is normal.
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It is a fundamental tool to understand operators, and is a very useful
tool for quantum mechanics. In our current partial differential equa­
tion context, the spectral decomposition is of superb importance with
respect to, as the reader should have already guessed, the separation
of variables (-+18, 23). However, to understand the justification of
the method in general, we need almost all the machineries of elemen­
tary functional analysis. First of all, most partial differential operators
are not self-adjoint. For example, the Laplacian with a homogeneous
Dirichlet condition is only symmetric. Hence, to use the operator the­
ory, we must consider the self-adjoint extension (-+34A.2) of the dif­
ferentialoperator. Rather heavy tools are required to obtain it, but the
result boils down to:

34B.5 Practical conclusion. The following is a practical conclu­
sion about differential operators:
(1) If P(x, D) is formally self-adjoint, Le.,

where

for

kf(x)P(x, D)g(x)dx = J(pT(x, D)f(x)) g(x)dx,

pT(x, D)f(x) = L (-D)Q(aQ(x)f(x)),
IQlsm

(34.10)

(34.11)

(34.12)P(x, D)f(x) = L aQ(x)D
Q

,
IQlsm

(This guarantees that the operator is symmetric (-+34A.2)) and
(2) if P(x, D) is semibounded, i.e., for any sufficiently differentiable
f E L 2([2), there is a positive a such that

± kf(x)P(x,D)f(x)dx :S allfl1 2 (34.13)

for + or -, then (thanks to Friedrichs-Freudenthal's theorem423 ), then
P can be extended to a self-adjoint operator and,
(A) The totality of normalized eigenfunctions fUn} of the operator:

(34.14)

makes an orthonormal basis for L 2([2),
and
(B) we may justify the separation of variables:

423See K. Yosida, Functional Analysis (Springer, 1980 Sixth edition), Chapter XI,
Section 7, Theorem 2.
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34B.6 Justification of separation of variables. Let n be a region
and P be a partial differential operator (with appropriate boundary
conditions) on L 2(n) satisfying the consitions (1) and (2) in 34B.5.
Then there is an appropriate weight w (-+34B.3) such that the solu­
tion to

Ltu = P(x, D)-u, (34.15)

where L t is a differential operator with respect to time, is given by I.{J

such that

(34.16)

The formula inside [ ] holds if the spectrum is discrete (if not, the for­
mula is not simple as we will see in 36.5).

Discussion.
(A) The extension may be understood formally as follows. Let L· be the formal
adjoint of L. Then the operator L introduced as follows is the extension of L (that
is, L· = L :::> L).

(uILv) = (L*ulv).

(B) We have encountered the following equation in 23.9 (2)

[
d2 1 d m

2]- + -- + - R = _>.2 R
dr 2 r dr r 2

(34.17)

(34.18)

with the boundary conditions R(a) = R(b) = 0 (a < b). The eigenfunctions are
written in terms of the following 'esoteric' functions Jim (x) and Kim (x). We wish
to demonstrate that the eigenfunctions of this problem makes a complete system.
We wish to use the 'high-tech' functional analytic weapon. That is:
(1) Demonstrate that the operator is formally self-adjoint.
(2) Demonstrate that the operator is semibounded (......25B.14).
(C) With the aid of the same argument as above demonstrate that the totality of
spherical harmonics makes a complete set of functions. That is, demonstrate that

2_ 1 8. 8 1 82

L = -:--8 88 sm 888 + -.-2- 8 2sm sm 8 'P

is formally self-adjoint and semibounded.424

(34.19)

424Do not forget an appropriate weight when you perform integration. This also

applies to (B).
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34.C Spectrum

34C.l Introduction to spectrum. Physicists usually write for a
linear operator

£IA) = AlA) (34.20)
and say that A is an eigenvalue. However, if £ is a linear operator
acting on a subset of a Hilbert space, then the equation makes sense,
strictly speaking, only when IA) is in the Hilbert space (That is, IA)
is normalizable ---t20.3). We know this is not always the case. If we
rewrite (34.20) as

(£ - A)IA) = 0, (34.21)

we realize that what we wish to mean by (34.20) is that (£ - A)-l is not
a bounded operator: a linear operator A is a bounded operator, if its op­
erator norm (---t12.2) is bounded: IIAII - sUPaED(A) IIAall/llall < +00.

34C.2 Resolvent, resolvent set. Let £ be a linear operator on a
Hilbert space V with a dense domain (---t34A.l). The operator

R(A) =(£ - A1)-l (34.22)

is called the resolvent of L. If the domain of R( A) is dense, and R( A)
is bounded on its domain, then A is called a regular point. The totality
of the regular points of L is called the resolvent set of L and is denoted
by p(L).

Notice that if A, JL E p(£). then

R(A) - R(JL) = (A - JL)R(A)R(JL). (34.23)

This is called the resolvent equation.

Exercise.
(1) Demonstrate the resolvent equation.
(2) Construct the resolvent kernel (i.e., R(x, y; >..) == (xl(L - >..)-lly)) for L =
-d2 /dx 2 with the boundary condition 11'(0) = 11'(1) = O. Cf. 20.28,20.29.

34C.3 Spectrum. Let £ be a linear operator whose domain is dense
in a Hilbert space V. Then a-(£) =c \ p(£) is called the spectrum of
£. In other words, A is a point in the spectrum of £, if (£ - A)-l is not
defined, or even if it is defined, its domain is not dense in V. or even if
dense, it is not a bounded operator.

34C.4 Classification of spectrum. Let T be a linear operator whose
domain is dense in a Hilbert space V.
(1) If T - A is not one to one, that is, there is a nonzero ket IU)425 such

425 Of course, the ket must be in the Hilbert space. That is, it must be normalizable.
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that Alu) = >'Iu), we say>. is an eigenvalue. The totality of such>. is
called the point spectrum of T.
(2) If T - >. is one to one, but if R(>') is not a bounded linear operator,
and
(21) if the domain of R(>') is dense, then we say>. belongs to the con­
tinuous spectrum.
[(22) if the domain of R(>') is not dense, then we say>. belongs to the
residual spectrum. ]

34C.5 Discrete and essential spectrum. The totality of eigen­
values is called the point spectrum (Jp' The union of the continuous
spectrum and the set of eigenvalues of infinite multiplicity is called the
essential spectrum and is denoted by (Jess (L ). (J( L) \ (Jess (L) is called
the discrete spectrum and is denoted by (Jdisc( L).

34C.6 Classification of continuous spectrum. Let L be a lin­
ear operator whose domain is in a Hilbert space V with a continuous
spectrum (Jc(L). It is classified as follows:

Let w(>.) be the spectral weight (---+34B.2). If for any set A c
(Jc(L) with measure zero (---+19.3) fA 1>.)w(>.)d>.(>.IV = {O}, we say
the spectrum is absolutely continuous, and the continuous spectrum is
called an absolutely continuous spectrum. The definition applies to a
subset of (Jc(L), so we may say the operator L has an absolutely contin­
uous spectrum in [a, b], if f; 1>.)w(>.)d>.(>.IVV is a nontrivial subspace
of the Hilbert space V, but for any measure zero subset Q of [a, b]
fQ 1>.)w(>.)d>.(>.IV = {O}. Otherwise, we say L has a singular continu­
ous spectrum (like the one concentrated on a Cantor set).

34C.7 Pure point spectrum. Let L be a linear operator whose do­
main is dense in a Hilbert space V. If the linear hull of the eigenspaces
for all >. E (Jp(L) is dense in V, then we say L has a pure point spectrum.

34C.8 Are the above classification relevant to physics?
(1) The Hamiltonian of ID harmonic oscillator has a pure point spec­
trum. (J = (Jp = (Jdisc'
(2) The Hamiltonian of a particle in a ID periodic potential has an ab­
solutely continuous spectrum, which physicists call a band spectrum.
(3) Consider a random Id harmonic lattice. For example, the value of
the spring constant is k or k' (=I- k) chosen randomly for each spring,
or a harmonic lattice with a uniform spring constant but two kinds of
mass points m and M(=I- m) randomly placed on the lattice points. In
this case all the harmonic modes are localized (i.e., in l2 ---+20.5(1)) and
its spectrum is pure point (---+34C.7). The reason for the localization
is not very hard to understand intuitively; if there is a cluster of lighter
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atoms, then they tend to behave differently from the rest. If the reader
solve a finite size lattice system, then the mode localization lengths
may be larger than the system size, so she would see clear localization
for higher frequency modes only as illustrated below:
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(4) The problem in (3) is mathematically the same as the random
Frenkel model; that is, the discrete Schrodinger equation with random
hopping or with random site potential energy can be cast into the har­
monic lattice problem. In this case localization is called the Anderson
localization.
(5) If the spring constant or hopping probability above is chosen to be
almost periodic (that is, it behaves like sin kx with k being irrational),426
then the spectrum becomes self-similar.

In this case the eigenfunctions are not localized in the standard
sense (Le., not in 12), but very different from the ordinary delocal­
ized wave functions. If the largest peak is normalized, then in many
cases the slow algebraic decay is observed. Experimentally, now we can
fabricate almost periodic layered structures on which we can perform
optical experiments. Numerically, the behavior above can be observed
most easily with the most irrational k = 1/(1 + 1/(1 + /(1 + 11(· . '.
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426physicists say a function f(x) is almost periodic if f(x) is a sum of periodic
functions with incommensurate (not rationally related) periods.
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(6) If the system exhibits only a point spectrum, then there cannot be
any transport of phonons or electrons, because all the eigenfunctions
are spatially localized.

Discussion.
If the system exhibits only a point spectrum, then there cannot be any transport
of phonons or electrons, because all the eigenfunctions are spatially localized.

34C.9 Compact operator. If a linear operator A has a sequence
of finite-dimensional operator427 converging428 to it, we say A is a com­
pact operator. If A is self-adjoint, then, roughly speaking, we can write
A", 2:1:=1 Ik)Ak(kl·

34C.10 Integral operator, Fredholm integral equation. For­
mally we can introduce a linear operator by the following integral429

(fu)(x) = l b
dyw(y)K(x, y)u(y), (34.24)

where we assume u E L2([a,b],w) (---+20.19), and K is an integrable
function. f is often called a Fredholm operator, and K is called its
kernel.

u = fu + f (34.25)

for some function f E L2([a, b], w) is called a Fredholm integral equation.

34C.11 Theorem [Hilbert-Schmidt]. f in 34C.10 is a compact
operator, if

l b

dx w(x) l b

dyw(y)IK(x, y)1 2 < 00. (34.26)

Exercise.
The inverse operator of the regular Sturm-Liouville operator is compact. Demon­
strate this statement. Cf. 15.6.

34C.12 Spectral theorem for compact self-adjoint operator
[Hilbert-Schmidt]. Let A be a compact self-adjoint operator (---+34C.4)
on a Hilbert space V. Then,
(1) V has an orthonormal basis {I en)} consisting of eigenvectors of A.
(2) Let Alen) = Anjen ). Then An ---+ 0 as n ---+ 00.

(3) If Ix) = 2: cn/en), then Alx) = 2: cnAnlen). 0

427 A linear operator B is said to be finite dimensional, if its non-zero spectrum is
point (-+34C.4) and the total dimension of its eigenspaces is finite.

428 with respect to the operator norm.
429Mathematicians introduce a measure dfl instead of w. Cf. a19.
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Thus, almost everything true for a finite dimensional Hermitian matrix
is true. The only caution we need is that we cannot freely change the
order of the vectors in the basis (--+20.17). D
Compactness implies A ,....., 'Ef=1 Ik)>'k(kl, so intuitively, the theorem is
plausible.

34C.13 Variational Principle for compact self-adjoint opera­
tor. Let A be a compact (--+32C.9: do not forget that the theorem
is NOT for any self-adjoint operator) self-adjoint linear operator on a
Hilbert space V. The unit vector If) which maximizes UIAIf) is an
eigenvector of A belonging to the eigenvalue with the largest modulus
which is identical to IUIAIf)I. D

34C.14 Finding eigenvalues with the aid of variational prin­
ciple. With the aid of 34C.13 we can determine the largest modulus
eigenvalue >'1 of a compact self-adjoint linear operator A, and a vector
maximizing F(x) to be denoted by 1>'1)' Let VI be the perpendicular
subspace to \>'1)' Since

(34.27)

if Iy) E VI, so is Aly) E Vi. Hence we can apply the same argument
to A restricted to VI. In this way we can construct the nonincreasing
sequence (in modulus) of eigenvalues >'1, >'2," '.
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