
33 Laplace Transformation

Laplace transformation is a disguised Fourier transforma­
tion for causal functions (the functions that are zero in the
past), and is a very useful tool to study transient phenom­
ena. The inverse transformation is often not easy, but clever
numerical tricks may be used to invert the transforms. Ap­
pendix a33 discusses a disguised Laplace transformation,
Mellin transformation, which is useful when we wish to solve
problems on fan shaped domains.

Key words: Laplace transform, fundamental theorem, con­
volution, time-delay, fast inverse Laplace transform.

Summary:
(1) Laplace transformation 33.2 allows one to solve many ODE alge­
braically with the aid of tables (33.14).
(2) Basic formulas like the convolution theorem, delay theorem, etc
should be known to this end (33.7-10).

33.1 Motivation. Due to causality, we often encounter functions of
time t that are zero for t < 0 (or often so for t ::; 0 due to continuity).
Then, the so-called one-sided Fourier transform

(33.1)

appears naturally. However, if f(t) grows as eat (a> 0), then this does
not make sense even in the sense of generalized functions (---t14.4).
Even in this case, if we choose sufficiently large c > 0, the one-sided
Fourier transform of e-ct f(t) exists in the ordinary sense. If f(t)e- ct 8(t)
(8(t) is the Heaviside step function ---t14.15(3») is absolutely inte­
grable, and l' is piecewise continuous for t > 0, then from the Fourier
transform of this function, f (t) for t > 0 can be recovered.

33.2 Definition of Laplace transform. The following transforma­
tion £'8 is called the Laplace transformation:

(33.2)

455



where s = c - iw and c is chosen sufficiently large so that the integral
exists. .cs [u] is called the Laplace transform of U.

411

Discussion.
(A) A discrete counterpart is the so-called z-transformation: The z-transform A(z)
of {an} is defined by

00

A(z) = L anzn.
n=O

(33.3)

This is also called the generating function of the sequence {an}. The inverse trans­
form is given by

an = -2
1

. r dz ~n~; , (33.4)
11'1 laD "-

where D is a disc containing the origin but excluding all the singularities of A(z).
(B) z-transform is a convenient way to solve linear difference equation:

(33.5 )

For example, let us solve
X n+2 - 2Xn+1 + X n = 0 (33.6)

with the 'initial conditions' Xo = 1, and Xl = O. The z-transform X(z) obeys

X(z) - 1 + 2z(X(z) - 1) + z2 X(z) = O.

From this we can solve X(z). The inverse transform gives X n = 1 - n.
(C) An inhomogeneous linear difference equation is given by

(33.7)

(33.8)

The general solution to this equation is given by the sum of the general solution of
(33.5) and a special solution to (33.8) just as the linear differential equation. If we
can compute the z-transform of {in}, then at least X(z) can be obtained. However,
to obtain X n from X may not be very easy.

33.3 Who was Laplace (1749-1827) ? The 'Newton of France'
was born into a cultivated provincial bourgeois family in Normandy
(Beaumont-en-Auge) in 1749. After his secondary school education he
attended University of Caen n 1766 to study the liberal arts, but two
of his professors (Gadbled and LeCanu) urged this gifted student to
pursue mathematics. With LeCanu's letter to d'Alembert (-+2B.5) he
left for Paris at age 18 in 1768. He impressed d'Alembert, who secured
a position for him at the Ecole Militaire. In 1773 he demonstrated that
the acceleration observed in Jupiter and Saturn was not cumulative but
periodic. This was the principal advance in dynamical astronomy since

411 For a history, see M. F. Gardner and J. L. Barnes, Transients in Linear Systems
voLl (Wiley, 1942) Appendix C.
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Newton toward establishing the stability of the solar system. This work
won him election to the Paris Academy in 1773.

Between 1778 and 1789 he was at his scientific prime. Laplace in­
troduced his transformation in 1779, which was related to Euler's work.
In 1780 he worked together with Lavoisier to make a calorimeter to es­
tablish that respiration is a form of combustion. Although he played
a decisive role to design the metric system in 1790, he wisely avoided
Paris when the Jacobins dominated until 1794. In the late 1790s with
three well received books (one of which, Systeme du Mande, was not
only a fine science popularizer but also a model of French prose), he
became a European celebrity.

Laplace advanced applied mathematics and theory of probability
substantially. He based his theory on generating functions, and ex­
tended Jakobi Bernoulli's work on the law of large numbers. He was
amply honored by Napoleon and by Louis XVIII. During his final years
he lived at his country home in Arceuil, next to his friend chemist
Berthollet, surrounded by the adopted children of his thoughts, Arago,
Poisson, Biot, Gay-Lussac, von Humboldt and others.

33.4 Fundamental theorem of Laplace transform.
(1) The Laplace transform of f (33.2) exists for s such that e-(Res)t f(t) E
£1([0,00)).
(2) There is a one-to-one correspondence between f(t) and its Laplace
transform Ls[J]. More explicitly, we have

1 l c
+

ioo

f(t) = -2. estLs[J]ds,
1[2 c-ioo

(33.9)

where c is a real number larger than the convergence coordinate c* such
that all the singularities of L s [J] lie on the left side of z = c* in C .412

[Demo] (1) is obvious. At least formally, (2) follows from the motivation 33.1.
Fourier inverse transform of Ls[j] gives

Since dw = ids, (33.10) becomes

1 rc+ioo

jet) = 27ri }c-ioo £s[j(t)]estds.

For this integral to be meaningful, we need the following theorem:

(33.10)

(33.11)

412This was formally shown by Riemann by 1859. Mellin proved this in Acta Soc.
Sci. Fenn. 21, 115 (1896). Hence, there is absolutely no justification to call this
integral the 'Bromwitch integral.' History must not be distorted due to national
interests.
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Discussion.
(1) f(t) = exp(t lT

) with (1 > 1 does not have Laplace transforms.
(2) The minimum real number r making f(t)e- rt E L2([0, +00)) is called the con­
vergence coordinate.
Exercise.
Although practically, there is almost no need (-+33.14) of calculating the integral
(33.9), still it is a good exercise of complex integration. Demonstrate the following
inverse transform relations with the aid of the residue theorem (-+8B).
(1)

£-1 1 t"-l -od

s (s + a)" = (n _ 1)!e , (33.12)

where a > 0 and n is a positive integer.
(2) How can we do a similar thing, if n is not an integer? In this case, s = °is
a branch point (-+8A.2-4). If n E (0,1), then a straightforward contour integra­
tion along the contour in the figure works. The contribution from the small circle

~~*=~rt-+--7 vanishes in the small radius limit, and the contribution from the large circle is zero
, ~ thanks to the Jordan lemma 8B.7. We need 9.5 to streamline the formula. If n is

larger, then probaly the cleverest way is to use 33.7(5) and reduce the problem to
the case of n E (0,1).

33.5 Theorem. £s[l] is holomorphic (~5.4) where £s[l] exists. 0 413

Therefore, if £s [I] exists for c > c*, then £s [I] has no singularity on
the half plane Re z ~ c.

This implies that
(1) £s [I] is differentiable with respect to 8,

(2) £s[l] is determined by its behavior on the portion of the real axis
x > c* through analytic continuation (~7.8).

33.6 Theorem. If 8 goes to 80 along a curve lying inside the con­
vergence domain, then

Especially,

lim £s [I] = £so [I]·
S-+So

lim £s [I] = o.
s-+oo

(33.13)

(33.14)

[Demo] (33.14) follows from (33.13), which follows trivially from an elementary
property of the Lebesgue integral.

413 To prove this we need the following elementary theorem about Lebesgue inte­
gration
Theorem. Suppose
(1) f(x, s) is integrable (-+19.8) for each s as a function of x,
(2) f (x, s) is holomorphic for almost all x as a function of s,
(3) There is an integrable function <I> such that If(x,s)1 :::; <I>(x).
Then, Jelxf (x, s) is holomorphic as a function of s. 0
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33.7 Some properties of Laplace transform.
(1) a.cs[J(at)] = .cs/a[J(t)], where a is a positive constant. This can be
shown by a straightforward calculation.
(2) .cs[e-btf(t)] = .cs+b[J(t)]. This is straightforward, too.
(3) .cs[tnf(t)] = (-l)n(d/ds)n.cs[f(t)]. In particular, .cs[tf(t)] = -d/ds.cs[f(t)].
(4) .cs[J(n)(t)] = sn .cs[J(t)] _sn-1 f(O) - sn-2f'(0) - ... - sn-k f(k-1l(0)-
... - sf(n-2)(0) - f(n-1)(0). In particular,

.cs[J'(t)] = s.cs[f(t)] - f(O). (33.15)

This is due to integration by parts.
(5) .cs [1~ f( t')dt'] = S-l.cs[J(t)].
(6) .cs[r1f(t)] = 1soo ds.cs[J(t)].
(3) - (6) imply that calculus becomes algebra through the Laplace trans­
formation. This is the most important and useful property facilitating
the solution of linear ODE.

Discussion
The following equation is called the Airy equation (->27A.23 Exercise (3))

(33.16)

Since the coefficient is only a linear function of t, Laplace transformation is advan­
tageous. Let z be a function of s that is the Laplace transform of y with respect to
t. Then,

Here C can be a path as shown in the figure. The integral is called the Airy integral

dz 2
- - S Z = 0,
ds

which can be solved easily as

Hence, a solution can be written as

Ai(t) = ~1exp (st - ~.~3) ds.
27rz C 3

(33.17)

(33.18)

(33.19)

Show that
Ai(O) = 3-1

/
6 r(1/3)/27r. (33.20)

33.8 Convolution. If we adapt the ordinary definition of convolu­
tion 14.22 to functions that are zero for t < 0, we get

(ft * h)(t) = I t

ft(t - 'U)h('U)d'U.
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A straightforward calculation gives

Exercise.

1" sin(x - y)u(y)dy +u(x) = cosx,

33.9 Time-delay,

1
.cs[J(at - b)8(at - b)] = -e-bs/a.cs/a[J(t)]

a

(33.22)

(33.23)

(33.24)

This is also demonstrated by a simple calculation. e-TS is often called
a delay factor.

33.10 Periodic functions. If f is a function with period T, then

[Demo] Thanks to the periodicity, we get

100

e-stf(t)dt=100

e-stf(t +T)dt =Loo

e-STf(r)dreST ,

where t = r - T. This implies that

Solving this equation for £s[f], we get the desired formula.

(33.25 )

(33.26)

(33.27)

(33.28)

(33.29)

33.11 Examples.
(1) .cs [l] = l/s is obvious by definition.
(2) This with (2) of 33.7 implies .cs[e-bt ] = l/(s + b).
(3) Linearity of the Laplace transformation and (2) give, for example,

1 . t . t s
.cs[coswt] = -2 (.cs[e1W

] + .cs[e-1W
]) = ? + ?'

s- w-

Analogously, we get .cs[coshat] = S/(S2 - a2), .cs[sinwt] = W/(S2 +w2),
etc.
(4) (3) with (2) of 33.7 gives for example

-bt s + b
.cs[e coswt] = ( b)2 2's+ +w

460



(5) (1) and (3) of 33.7 imply

(33.30)

More generally, for v > -1

(33.31)

This can be shown immediately by the definition of the Gamma func­
tion (-9).
(6) Combining (33.30) and (2) of 33.7 gives

,
[

-bt n] n.
[,se t = (s+b)n+l'

(7) An application of 33.10 is

Ls[l sin til = -2-
1
- coth 1fS.

S + 1 2

(33.32)

(33.33)

(8) Applying the convolution theorem 33.8 we can demonstrate

fat Jo(T)JO(t - T)dT = sin t

This follows from (-27A.15)

Exercise.
(A) Show

(B) Find
(1) L s cos2 wt.
(2) For r > 0 and a > 0 Ls(t - h)E-a(t- t2 8(t - r).

(33.34)

(33.35)

(33.36)

33.12 Laplace transform of delta function. We can define Laplace
transforms of generalized functions. We will not discuss this, since the
relation between Fourier and Laplace transformations 33.1 explains
virtually everything we need practically. A subtlety may remain in
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the definition of the Laplace transformation of 8(x), since the defini­
tion 33.2 requires an integration from O. That is, we must consider the
product of 8(x) and 8(x), which is meaningless (-+14.6) as generalized
functions. Without any ambiguity for a> 0

(33.37)

This means the Laplace transform of the weak limit lim€-+o+ 8(t - E) is
1. Hence, as a generalized function it is sensible to define (-+14.18)

(33.38)

From this (33.37) is obtained with the aid of the time delay formula
33.9.

33.13 Short time limit.

lim f (t) = lim sL:s [j(t )] .
t-+O+ s-+oo

(33.39)

[Demo] 33.7(4) with n = 1 reads Ls[J'(t)] = sLs[f(t)] - f(O). Apply 33.6 to 1',
and we get lims_= Ls[j'(t)] = o.

33.14 Practical calculation of Laplace inverse transformation:
Use of tables. Although the fundamental theorem 33.4(2) gives
a method to compute the inverse transforms, practically, an easier
method is to use a table of Laplace transforms of representative func­
tions. The uniqueness of the transforms (-33.4(2)) guarantees that
once we can find an inverse transform, that is the inverse transform of
a given function of s. Also numerical fast Laplace inverse transform is
available.
Exercise.
(1) Solve the following differential equation with the aid of Laplace transformation

Here a and b are positive constants, and the initial condition is y(O) = y'(O) = O.
(2) Using Laplace transformation, solve the following integrodifferential equation

y(t) = y'(t) + t + 21t

(t - u)y(u)du

with the initial condition y(O) = O.

33.15 Heaviside's expansion formula. 414 Let F(s) be a rational

414 Heaviside (1850-1925) introduced an algebraic method to solve ODEs, which
can be understood as the Laplace transform method explained below. The method,
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function415 F(s) = P(s)/Q(s), where P and Q are mutually prime
polynomials, and the order of Q is higher than that of P. If Q(s) =
A(s - a1) ... (s - an) and aI, ... ,an are all distinct, then

P(s) __ ~ Ck
LJ (33.40)

Q(s) 8==1 s - ak

with Ck = P(ak)/Q'(ak). D
This is obvious, and implies that

n

.c:;l[p(s)/Q(s)] = I: P(ak)eakt/Q'(ak).
k==l

(33.41 )

(33.42)

(33.43)

33.16 Examples.

1 [S2 + s + 1] 1 . 1 oJ.c:; ? )3 =-(4+t)smt--(4t+t-)cost.
(s- + 1 8 8

.c-1 [ 2s + 3 ] = _~ _ ~e-2t + ~et/2
8 2s3 + 3s2 - 2s 2 10 5

-1 [ S2 +1] VS [ t/2 (VS 1r) -t/2 (VS 1r)]£- = 1- - e cos -t + - + e cos -t - - .
8 2( s4 + S2 + 1) 3 2 6 2 6

(33.44)

Exercise.
(1) Find the inverse transform of

8 2 - W8 + w2

g(8) = (2 2)'
88 +W

(Answer: 8(t) - sinwt).
1+ e7rS

g(8) - ---,----;,------,­
- 8(82 + 1)'

(33.45)

(33.46)

33.17 Fast inverse Laplace transform. T. Rosono, "Numerical
inversion of Laplace transform and some applications to wave optics,"
Radio Science 16, 1015 (1981); Fast Laplace transform in Basic, (Ky­
oritsu Publ., 1984)

which requires generalized functions like the Heaviside step function, and even the
delta function, was never accepted by mathematicians of his day. According to an
anecdote, he said that we could eat even though we did not know the mechanism of
digestion. This story is often told as a story of a triumph of a self-educated genius.
However, the method was actually invented by Cauchy long ago. Therefore the
story must be quoted as a failure of premature ossification of mathematics due to
mediocre mathematicians.

415 A rational function is a ratio of two polynomials.
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(33.47)

Appendix a33 Mellin Transformation

a33.1 Mellin transformation. The Mellin transform Jof f (1') is defined as

J(p) = 100

f(r)rP- 1dr.

This is well-defined for p satisfying 0"1 < Re p < 0"2, where

i 1

rUl
-

1 If(r)ldr < +00, 100

rUZ
-

1 If(r)ldr < +00.

a33.2 Theorem [Fundamental theorem of Mellin transformation].
(1)

J(p) = i oo

f(r)r P- 1dr

is analytic in the strip 0"1 < Re p < 0"2.

(2) Inverse transformation:

1 1~f(r) = -2' f(p)r-Pdp,
1ft r

(33.48)

(33.49)

(33.50)

where r is a straight line in the above strip.D
[Demo] (1) is shown just as the counterpart for the Laplace transformation (-+). (2)
is also a disguised version of the inversion formula for the Laplace transformation
(-+33.2). Introduce t as l' = e- t . Then (33.47) reads

J(p) = 100

e-ptf(e-t)dt (33.51)

This is the Laplace transformation (-+33.3). Therefore, we can apply the inverse
transformation formula to obtain

(33.52)

In terms of r, this is just what we wanted.

a33.3 Applications to PDE. If the region of the problem is fan-shaped, then
the Mellin transformation is particularly useful. 2-Laplace problem in the cylindri­
cal coordinates is

(
fJ2 1 fJ) fJ2

1'2 fJr 2 + ;: fJr U+ fJcp2 U = O.

Melling transforming this, we get

2 ~ d
2

~ 0
P u + dcp2 U = ,

(33.53)

(33.54)

which can be solved easily. The rest is to compute the inverse transform. To
calculate it as the Laplace transform (33.52) may be advantageous, since there is
the so-called fast Laplace transform algorithm (-+33.17).
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