32 Fourier Transformation

Basics of Fourier transform including the principle of FFT,
major qualitative features like the uncertainty principle,
sampling theorem, Wiener-Khinchine theorem are discussed
in the first two subsections. Then, Fourier analysis of gen-
eralized functions and related topics such as Poisson’s sum
formula, the Plemelj formula are treated in the third sub-
section. As a related topic, Radon transform is discussed
in the last subsection, which underlies many tomographic
techniques.

32.A Basics

Fourier analysis is reviewed. The relation between smooth-
ness of the function and the decay rate of its Fourier trans-
form is important. As theoretical applications, uncertainty
principle, sampling theorem and the Wiener-Khinchin the-
orem about spectral analysis are discussed.

Key words: Fourier transform, deconvolution, inverse Fourier
transform, sine (cosine) transform, bra-ket notation, Plancherel’s
theorem, Riemann-Lebesgue lemma

Summary:

(1) Fix your convention of Fourier transform (32A.1, 32A.7). De-
convolution is often the place where Fourier transformation is effective
(32A.2). Linear differential operators become multiplicative operators
(32A.3).

(2) The decay rate of the Fourier transform and the smoothness of its
original function are closely related just as in the Fourier expansion
cases (32A.11).

32A.1 Fourier transform. Let f be an integrable function (—19.8)
on R. If the following integral exists

fioy=F(Hym = [

o0

dz f(z)e %=, (32.1)

it is called the Fourier transform of f. Multidimensional cases can be
treated similarly.
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Exercise.
(A) Consider the Fourier transform of a wave train of finite duration. Or, more
concretely, compute the Fourier transform of

f(t)=[0(t+T)-0O(t - T)]cosat, (32.2)
Sketch the Fourier transform.

(B)

(1) Demonstrate the Fourier transform of the following triangular function

—> t
~T T
is given by
4sin®*(wT/2)
(2) Demonstrate
< sin? ax
dr = 1. .
/_ = (32.4)

for any @ # 0 with the aid of (1).

32A.2 Deconvolution. As can be demonstrated with the aid of Fu-
bini’s theorem (—19.14).

F(fxg)=F()F(g), (32.5)
This is a very useful relation.
Exercise.

In the following a and b are positive real numbers.
(i) Fourier transform

x(z) = ©(b — |z{). (32.6)
(ii) Fourier transform e~%l®l,
(iii) Fourier transform
flz) = e-alflﬂ;x-. (32.7)

32A.3 Differentiation becomes multiplication. We have an im-
portant relation

Fr = +ikf. (32.8)
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The sign in front of the formula depends on our choice of the definition
32A.1. We have the following formulas (—2C.7, 2C.9, 2C.11):

F(divv) = +ik-vyg (32.9)
Fleurlv) = +ik X vp, (32.10)
F(-Af) = Kfg. (32.11)

The last formula explains why —A is a natural combination — it is a
positive definite operator.

32A.4 Theorem. If f : R — C is continuous (and bounded), and
both f and f are absolutely integrable, then the inversion formula holds

f(z) = % /_Z Fk)et* e dk = F7(f). (32.12)

O

The formula could be guessed from the Fourier expansion formula 17.1;
actually Fourier reached this result in this way. (32.12) appears so often
that we have fairly a standard abbreviation

/kz 2—17r-/_°; /k = (%)d/dk. (32.13)

32A.5 Theorem [Inversion formula for piecewise C'-function).
Let f be piecewise C'-function on R. Then (cf. 17.7)

%[f(iﬁo —0) + f(zo +0)] = 2—17;P/_: dke f(k). (32.14)

P denotes the Cauchy principal value (—8B.10, 14.17). O
We can write the formula as

sin[A(zg — £)]
zo — &

-;-[f(xo = 0)+ f(zo + 0)] = lim /_: dé F(€). (32.15)

|
32A.6 More general convergence conditions. As can easily be

imagined from 17.8 for a pointwise convergence of the Fourier trans-
form, we need some conditions. For example, if f is of bounded variation*?

4027f & function can be written as a difference of two monotonically increasing
functions, we say the function is of bounded variation.
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near z, then (32.12) holds with f(z) being replaced by [f(z+0)+ f(z—
0)/2. T f is continuous and of bounded variation in (a, b), then (32.12)
holds uniformly there.

32A.7 Remark
(1) Mathematicians often multiply 1/+/27 to the definition of Fourier
transform as

= dz f(z)e™™*?, 32.16
feoe [ dafla (32.16)
to symmetrize the formulas (as we will see in 32A.9 or 32B.1 some-
times this is very convenient), because

flz) = # /_ °:o Flk)e* = dk. (32.17)

However, this makes the convolution formula (32.5) awkward. For
physicists and practitioners, the definition in 32A.1 (the sign choice
may be different) is the most convenient, because we wish to compute
actual numbers.

(2) The integral over k may be interpreted as a sum over n such that
k = 2mn/L, where L is the size of the space. The following approxima-
tion is very useful in solid-state physics

1 1 _
v%fk o ﬁ/fkdk = /kfk:- (32.18)

32A.8 Sine and cosine transforms. If the space is limited to z > 0,

then Fourier sine and Fourier cosine transformations may be useful
(cf. 17.16). If f(0) = f(0+), then

g(k) = /000 f(z)coskzdz, fl(z)= %/Ooo g(k)coskzdk.  (32.19)

If f(0) =0, then

o) 2 o0
= /0 f(z)sinkadz, f(z)=— /0 g(k)sinkzdk.  (32.20)
These can also be written concisely as
2 o ! !
;/0 coskzxcosk'zdz = 6(k -k, (32.21)
2 /Oo sinkzsink'zdz = 6(k —K'). (32.22)
w Jo
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They can be shown easily with the aid of the Fourier transform of 1
(—382C.8); Put coskz = (e** 4+ e7%*)/2, etc. into (32.21) or (32.22).

Exercise.

There is an infinite medium whose thermal diffusivity is D. Its initial temperature
distribution is given by T|i=¢ = T(x), Find the physically meaningful solution
(—1.18(5) Warning). There are many ways to solve this. For example, we can use
the free space Green’s function (—16B.1 and the initial condition trick 16B.5. We
can also use the Fourier transformation as follows.

(1) Show that for any*°? function g on R

g9(z,y,2) = }13 /0 /0 /0 dadBdy / / / dadbdc

g(a,b,c) cosa(z — a)cos By — B)cosy(z — c). (32.23)

(2) The integrands are linearly independent (no mode coupling, or super posi-
tion principle), so that each term must satisfy the diffusion equation. Introducing
A(t) cosa(z — a) cos B(y — B0 cosy(z — ¢) into the diffusion equation, show that

A(t) = f(a,b,c)e” P’ +8%+)t, (32.24)

(3) Combining (1) and (2), obtain the following formula, which can be obtained
directly with the use of the free space Greeen’s function.

T(z,y,z,t) =7 3/? / / / dndédce™ T ¢(p 49/ DT, y+2VDTE, 2+2v/DTC).
—-00 J—00 J -0

(32.25)
[Perform the integration over Greek letters.]

32A.9 Bra-ket notation of Fourier transform or momentum
(wave-vector) kets. 32A.7 has the following symbolic representa-
tion (—20.21-23 for notations).

f@) = (@lf) = [ (alk)
1

(z|k) = \/Q—We"“", (32.27)

f) = (klf) = [ (alk)d(hlf) =

6|, (32.26)

\/_/ e £(1)(32.28)

(k|f) is the Fourier transform of f in this bra-ket symmetrized version
(32A.7), and the normalization is different from that given in 32A.1.
Notice that

(aly) = oz —y) = [ (alk)dk(kly) = 51; [T eeman, (32.29)

493Tf you wish to be within the ordinary calculus, it must be integrable, but we
may proceed formally.
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To rationalize this, we need the theory of Fourier transform of general-
ized functions (—32C.8).

32A.10 Plancherel’s theorem.

15y = [(FIR)dk(ELS) (32.30)

is called Plancherel’s formula. In our normalization (for physicists) in
32A.1 this reads

[ i@pds =5 [T 1fw)Pa (32.31)

The theorem tells us that if f is square integrable (that is, the total
energy of the wave is finite), then the total energy is equal to the energy
carried by individual harmonic modes. This is of course the counter-
part of Parseval’s equality (—20.12).

32A.11 Theorem [Riemann-Lebesgue Lemma]. For an integrable
function f
lim f(k)=0. (32.32)

If all the n-th derivatives are integrable, then f(k) = of|k|™"].0
There is an analogue of 17.11. There we have already discussed its
physical meaning.*0*

32.B Applications of Fourier Transform

Fundamental applications of Fourier transformation impor-
tant in practice are summarized: uncertainty principle, sam-
pling theorem, the Wiener-Khinchine theorem (the relation
between power spectrum and correlation function). Also
the principle of FFT is outlined.

Key words: uncertainty principle, coherent state, band-
limited function, sampling theorem, sampling function, alias-

ing, time-correlation function, power spectrum, Wiener-Khinchine
theorem, fast Fourier transform

404ge0e Katznelson pl123.
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Summary:

(1) The uncertainty principle is a basic property of Fourier transforma-
tion. Its essence is the elementary Cauchy-Schwarz inequality (32B.1).
(2) If the band width of a signal (function) is finite, then discrete sam-
pling with sufficiently frequent sampling points perfectly captures the
signal. This is the essence of the sampling theorem (32B.5).

(3) Spectral analysis is a fundamental tool of experimental physics. Its
theoretical basis is the Wiener-Khinchine theorem — Fourier transform
of the time-correlation function is the power spectrum (32B.10).

(4) Spectral analysis becomes practical after the popularization of fast
Fourier transform (FFT) (32B.11-13).

32B.1 Theorem [Uncertainty principle]. Let f bein Ly(R) (—20.19).
Define the following averages

(@) = [alf@)Pds/ [|f(@)ds, (32.33)
(k) = 2ak/ [ 1F(k)2dk, (32.34)
8t = [(@— (@)PIf)Pde/ [1f@)Pd,  (32.35)
AR = [tk= WP WP [1fEPdk (3236)

Then,
AzAk > 1/2. (32.37)

[Demo] Without loss of generality, we may assume (z) = 0, and also assume that f
is already normalized. Define

. 1 ,
= —— tkx ;. .
f(k) Wors / dze™ f(z) (32.38)
Using Plancherel’s theorem (—32A.10), we get (cf. 32A.3)
/ dz)f'(z)|” / |k £ (k) [Pk, / dz|f(e)]* = / |f (k)|2dE, (32.39)

so that

/ |f'(z) = (k) f(2)|*dz. (32.40)

The Cauchy-Schwarz inequality (—20.7) implies

AR AG? = / 17'(@) - (W @Pdo [ a?1f(x)Pde > \ [ - <k>f<x>1zmdx\ ,
(32.41)
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but since (z) = 0, the last formula reads

| (2)cF(@)dal? > |Re / f(2)af@al = 1/4. (32.42)
The last number comes from the following integration by parts

/ fl(@)zf(z)dz = — / F@)zf(z)de — / |f(z)|*dz. (32.43)

32B.2 Remark. As can be seen from the proof of 32B.1, the un-
certainty principle is a disguised Cauchy-Schwarz inequality (—20.7)
which says that the modulus of cosine cannot be larger than 1. Note
that obvious mathematical theorems can have profound implication in
real life.

32B.3 Coherent state. The equality in the uncertainty principle
is realized if the wave function f is Gaussian

]. —1‘2 20.2

Check indeed AzAk = 1/2. A state with this equality is called a co-
herent state.

32B.4 Band-limited function. If a function has a Fourier trans-
form which has a compact support (i.e., f(k) is zero if |k| > ko for
some ko > 0), then f is called a band-limited function.

32B.5 Theorem [Sampling theorem]. Let f be a band-limited
function such that f(k) be zero if |k| > ko > 0. Then,

flz) = }ofj f(m/ko)m]i’“"x—_m). (32.45)
0r

o T —nw

That is, f can be reconstructed from the discrete sample values { f(n7 /ko)}, . 7.0
The sampling theorem is extremely important in communication (mul-
tichannel communication, bandwidth compression, etc.), and informa-

tion storage (digitization as in CD).

[Demo] Since f(k) is non-zero only on [—ko, ko, we can Fourier expand this as a

function of period 2kg (—17.2)

fk)y =" cpettnn/ko (32.46)
nEZ
with
1 fhe . ;
i / F(k)e i/ kodl = ¢,,. (32.47)
0 —k()
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On the other hand due to the band-limitedness

ko )
f@):% 9 f(k)e th=dk, (32.48)

Comparing (32.47) and (32.48), we get

n = Z—O F(nm/ko). (32.49)

(32.46), (32.48) and (32.49) give the desired result.

Exercise.
Determine the minimum sampling rate (or frequency) for the signal 10coswt +
2 cos 3wt. This is a trivial question, so do not think too much.

32B.6 Sampling function. The function

__ sin(koz — n7)

pn(z) = (32.50)

kox — nmw

appearing in (32.45) is called the sampling function. {‘P"}ne 7 is an
orthogonal system. There is an orthogonality relation:

/oo Pn(T)pm(z)ds = LS. (32.51)
—co ko

Exercise.
Demonstrate that the sampling functions {¢,} make an orthogonal system. 7heet /¥ shor (32477,

32B.7 Band-limited periodic function. The sampling theorem
would naturally tell us the following. A band-limited periodic function
with no harmonics of order higher than N can be uniquely specified by
its values sampled at appropriate 2N + 1 points in a single period.

32B.8 Aliasing. If the function we sample is strictly band-limited,
then the above theorem of course works perfectly. However, often
the function has higher frequency components beyond the sample fre-
quency. Then, just as we watch fast rotating wheel in the movie, what
we sample is the actual frequency modulo the sample frequency (that
is, the beat between these frequencies). This phenomenon is called
aliasing. To avoid unwanted aliasing, often we filter the original signal
(through a low-pass filter) and remove excessively high frequency com-
ponents.

32B.9 Time-correlation function. Let z(t) be a stochastic process
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or time-dependent data which is statistically stationary. Here ‘stochas-
tic’ means that we have an ensemble of such signals (more precisely,
we have a set of signals {z(t;w)}, where w is the probability parameter
specifying each sample signal. That is, if the reader wishes to start an
observation, one w is given (by God) and she will observe z(¢;w). The
word ‘stationary’ implies that the ensemble average of z(t,w) does not
depend on t.%%% Let us denote the ensemble average by ( ),. The time
correlation function is defined by

C(t) = (z(t)z(0)). (32.52)

and is a fundamental observable in many practical cases.
The ensemble average of

a(v) = (|zy*)e (32.53)

is called the power spectrum of the signal z(t), where z, is the Fourier
transform of z(¢). Thanks to the advent of FFT (—32B.12), it is easy
to obtain the power spectrum experimentally (easier than the correla-
tion function).

32B.10 Theorem [Wiener-Khinchin]. The Fourier transform of
the power spectrum of a stationary stochastic process is its power spec-
trum. That is, 406

C(t) « /_Oo e o (v)dv. (32.54)

Its demonstration is a straightforward calculation. We compute (—32C.8)

(va-y) = < /_ h dtz(t)et? / = dsx(s)e—ius>

/—: o;t /:: dseiut;ioiﬂs(x(t — 5)z(0))

il

= 2mé(v—p) /°° dte™'C(t). (32.55)
That is, (z,2_,) = 6(v — p)o(v) so that
o(v) = 2r / - dte’V'C(t). (32.56)

405 Actually, in this case we only need the absolute time independence of the cor-
relation function. A process with this property is called a weak stationary process.

#08 Actually, if we normalize C(t) so that C(0) = 1 (simply regard C(t)/C(0) as
C(t)), then we have probability measure o (—a19.19) such that

Clt) = = /w e~ da(v).

I% e

However, in practice, the numerical constant and normalization are not crucial.
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32B.11 Discrete Fourier transformation. Let X = {X,}1-] be a
sequence of complex numbers, and

e(z) = exp(—2miz). (32.57)

The following sequence X = {X"} is called the discrete Fourier trans-
form of X:

=l (kn
XF=>e (—) X, (32.58)
n=0 N
Its inverse transform is given by
1 & [(~kn
Xn=— — | X*. 32.59
vz () w2

Notice that a straightforward calculation of these sums (N of them)
costs O[N?] operations and is costly.

Exercise.

Demonstrate the above inverse transform formula by showing
1 v
— 2, ekm—n/N 5 . (32.60)
N izp

32B.12 Principle of fast Fourier transform.” Let N = N;N..

n,k € {0,1,---,N — 1} can be uniquely written as*0®
n=mny+n3Ny, k=kNy+k,, (32.61)
where n;, k; € {0,1,---,N; — 1} (¢ = 1 or 2). Notice that
e(kn/N) = e(kin1/N1)e(kana/Na)e(kani /N). (32.62)

n; and k; are uniquely determined, so we may write, e.g., (nins) instead
of n. Then, (32.58) can be calculated as

NyNa—1
Xk = S e(kyny /Ny )e(kana/N2)e(kons /N) X (ning)s
n=_0
Ni-1 Na—1

= Z 6(]()1711/]\[1) {e(kgnl/N) |: Z e(kQTLg/Ng)anz] } .

n1=0 n2=0
(32.63)

407The algorithm, known sometimes as the Cooley-Tukey algorithm (J W Cooley
and J W Tukey, Math. Comp. 19, 297 (1965)), was actually known to Gauss, but
the importance was widely recognized after this paper.

408 This is an example of the so-called Chinese remainder theorem.
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Consequently, the calculation of discrete Fourier transfrom can be de-
composed into the following three steps:
(1) Compute for any ks

No—1

X" = 3 e(kona/No) Xy, (32.64)
na=0
(2) Then, rotate the phase:
X, % = e(kany /N) X, ™. (32.65)

(3) Finally compute for any k;
~ Nl—l ~
Xkkz = N e(kyng /N) X, P (32.66)
n1=0
Now the number of necessary operations is O[N; x N2]+ O[N? x Ny; if

Ny = Ny = /N, then O[2N?3/?]. If we can decompose N into m factors
of similar order, then the number of necessary operations is roughly
N1-UmpN2/m = N x NY™, Hence, asymptotically, we can guess Nln N
is the best possibility for the discrete Fourier transform of N numbers.

Exercise.
Find the autocorrelation function of the signal
fO)=0@+T)-0@-T). (32.67)

Then illustrate the Wiener-Khinchine theorem with the example.

32.C Fourier Analysis of Generalized Function

Generalized functions can be Fourier transformed and physi-
cists’ favorite formulas like [ e**dk = 276(x) or the Plemelj
formula 1/(z+140) = P(1/z)—iné(z) can be demonstrated.
Fourier expansion of §-function gives us the Poisson sum
formula which may be used to accelerate the convergence of
series.

Key words: Fourier expansion of unity, Poisson sum for-
mula, Euler-MacLaurin sum formula, Plemelj formula

Summary:
(1) Not convergent Fourier series may be interpreted as a generalized
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function. A typical example is Poisson’s sum formula (32C.2).

(2) Formal calculation of Fourier transform of generalized functions of-
ten works, but whenever there is some doubt, return to the definition
(32C.6, 32C.8).

32C.1 Delta function.

§(z) = i 'nre (32.68)

n=-oo

forz € (—1,1).
[Demo] We know as an ordinary Fourier series
1 _2238 = Z sin(2nnz)/nw (32.69)
n=1

forz € (0, / ). Wemay use the RHS to extend the LHS periodically for all R.
Differentiate this termwisely, interpreting this as a formula for generalized functions
(—14.14). We get

—1+6(z)=2)  cos2nmz (32.70)
n=1
for z € (—1/2,1/2).
The decomposition of unity (—20.27) can also be used to obtain (32.68).

32C.2 Poisson’s sum formula.
o bz—k)= ), 2 (32.71)

forx € R.
This can be obtained easily from (32.68) by ‘tessellating’ the for-
mula for (—1/2,1/2) over the whole range of R. From (32.71) we get

o0

Al D bz —rk) = Y et/ (32.72)

k=—o0 n=-0oo

(cf. 14.11). Applying a test function ¢ to this, we get the following
Poisson sum formula:

AL S k) = S B(2nT/). (32.73)

k=—00 n=-—00
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(Be careful with the normalization constant.) Also we can make a
cosine version of the Poisson sum formula

i bz —k)y=1+2 i cos(2nmz). (32.74)

k=—o0 n=1

If f(z) is a gently decaying function, then its Fourier transform decays
rapidly, and vice versa. The Poisson sum formula is useful because it
may help accelerating the convergence of the series.

Exercise.
Demonstrate

E cosna _ mcosh(m —a)
2

1
sinh 7 2°

32C.3 Applications of Poisson sum formula.
(1)

1 T T
ne

The key formulas are

. 1

‘s
= — ——— = —e2ml2l/a )

(2)

X cosna _ wceosh(mr —a) 1
; 14+n2 2 sinh7 2 (82.77)

32C.4 Euler-MacLaurin sum formula.

o0 1 1,
= | f@)do+5£(0) 55 F (0)+

o]

f(B)( )—30—240f(5)( )+
(32.78)

[Demo] Let f be a function defined on the positive real axis. Extend it to the whole
R as an even function (f(z) = f(—z)). Apply the cosine version of the Poisson sum
formula (32.74) and integrate from 0 to co. Using the evenness of the function, we
get

720

- —f( f(k) = / f(z)de + 22/ f(z) cos(2nmz)dz. (32.79)
Integrating by parts the last integrals containing cosines, we get
sin 2n7r:c

Zf(k) = 250 / f(w)de - / PP g (32.80)
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Keep applying integration by parts to get

> [, . sin2nwz 1. cos2n7ra: n costr:L
:;1/0 f(@) e da;_—;[f( TCIE ] Z/ £(
- (32 81)
Thus
ST fk) = %f(0)+/ f(@)de - £(0)Y zn%ﬂzﬂu (32.82)
k=0 0 n=1

This gives the f/(0) term of the formula.

32C.5 Mulholland’s formula for the canonical partition func-
tion for the rotational motion of a heteronuclear diatomic
molecule. The rotational partition function r(T") at temperature T
is given by

& B2+ 1)

where I is the moment of inertia of the molecule, and kz is the Boltz-
mann constant. Introduce o = h*/2IkpT, and let

f(z) = (22 + 1) exp[—z(z + 1)o]. (32.84)

Apply (32.78) to this function, we get the following Mulholland’s for-

mula

11 40?
PT) = —+ 3+ + 322 + O[], (32.85)

The first term on the RHS is the classical value.

32C.6 Fourier transform of generalized functions. The crucial
observation is (for " see 32A.1): if f and ¢ both have well-defined
Fourier transforms,

:/dk

The Fourier transform 7 = F[7] of a generalized function 7 is defined
by

[ dut@e] o(k) = (£.0) (32.86)

(7,¢) = (1,8), or (F7],9) = (7, Flel]), (32.87)
where ¢ € D, a test function.
Exercise.
Demonstrate .
li 2T~ nb(). (32.88)
-+00 T
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lim [ sinde =0. (32.89)

32C.7 Convenient test function space. For this definition it is
desirable that the set of test functions D (—14.8) and the set of their
Fourier transforms D are identical. For the set of Schwartz class func-
tions (—14.8 footnote) this holds (—32A.11). [If we choose D to be
the set of all the functions with compact supports, then D becomes very
large, so that the class of generalized functions (for which (7, @) must
be meaningful) must be severely restricted, and is not very convenient.]

32C.8 Fourier transform of unity = delta function.

1 =2né(k). (32.90)
This is the true meaning of the physicists’ favorite
1 +oo
g/_w e** dk = §(x). (32.91)

Obviously, § = 1 (direct calculation). That is, 2 implies multiplication
of 2 as we know in 32A.10.

[Demo] (1,¢) = (1,¢) = [@(k)dk = F?[¢](0). Here Fly] is a function on the
configuration space (that is, a function of z) and is equal to 2rp(z). Therefore we
have obtained

(i,¢) = 27mp(0) = / 2n8(x)p(2)dz = (276, ¢). (32.92)
Exercise.
Show ~
6(t) = l/ cos wtdw. (32.93)
T Jo
Cf. 32A.8.

32C.9 Translation. The following formulas should be obvious
Flé(z — a)] = e7"*,  Fle"®] = 2n6(a — k). (32.94)

30C.10 Fourier transform of z, d/dx < +ik. (—32A.3)
& = +2mid (k). (32.95)
In other words, since F? = 2,

§ = +ik. (32.96)
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[Demo] Start with the definition (£, ¢) = (2, ¢) (—32C.6) which is equal to

/ dzz(z) = / dr [ / e—"“<p(k)dk] = / dz / dk (-%e-“ﬂ) o(k). (32.97)

Integrating this by parts, taking into account that the test function ¢ decays suffi-
ciently quickly, we get

—/dm/dkie”ik”¢'(k) = —i/dki(k)go’(k) = —2m/dk5(k)¢'(k) = 27ri/dk6’(k)<p(k),
(32.98)

where we have used (32.90) in 32C.8, and the definition of §' (—14.14).
A more formal and direct ‘demonstration’ is

. d , d
s L —tkx _ . —tkz — . . .
i= /@e dz = / (z—dk) e~ dz = 2mi—-6(k) (32.99)

Convolution of the derivative of delta function is differentiation (—14.23(2)), and
the Fourier transform of a convolution is the product of the Fourier transforms, i.e.,
F(f*xg)=F(f)F(g) (—32A.2), so that we easily get )cf. 32A.3)

f = +ikf. (32.100)

32C.11 Fourier transform of z".

. d\"
n=2 — | 6(k). .
T T <+de) (k) (32.101)
In other words, )
8 = (+ik)™. (32.102)

Since §'* f = f/, 6™ = § 6"~V = § 8 %--- 6 %6 (n § are convoluted)
(this is well defined —14.23(2)). This and (32.96) immediately imply
(32.102).

32C.12 Fourier transform of sign function.

21

where P denotes the Cauchy principal value (—14.17).
[Demo] We have demonstrated (—14.15)

%sgn(x) = 25(x). (32.104)

Fourier-transforming this, we get (—(32.100) and § = 1)

+ ik F(sgn)(k) = 2. (32.105)
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With the aid of (2) in 14.17, we can solve this equation for sgn as
1 R
sgn(k) = QiPE + cb(k), (32.106)

where ¢ is a constant not yet determlned To fix this constant we apply this equality
to an even test function, say e~ Since sgn is an odd generalized function, and
since the Fourier transform of a Gaussm.n function is again Gaussian,

(sgn,e™*") « (sgn,e™*") = 0. (32.107)

P(1/k) is also an odd function, so that this implies ¢ = 0.

32C.13 Plemelj formula.

1
w- lim
e—+0 1 + €2

1
= P Finb(z). (32.108)

where w-lim,_, ¢ is the weak limit, that is, the limit is taken after
integration in which the function appears is completed (—8B.12).
[Demo] Obviously,

lim e~ “*6(z) = O(z), (32.109)

€e—0+4

If we interpret this equation as an equation for generalized functions, then integra-
tion and the limit can be freely exchanged. Therefore, we get

R & 1
— - I —(zk e _
Ok)=w el—lgl-q- A 61_1)0+ Fre (32.110)
Since sgn(z) = 20(x) — 1, (32.103), (32.90) and (32.110) imply
2iP— = lim - 2m6(k). (32.111)

k e—0+ 1k — €

32C.14 Initial value problem for wave equation. Thie is the
second method to solve the wave equation in d-space (—30.9, 32D.9).
Consider

Ou = 0?u — Au =0 (32.112)

with the intial condition u(x,0) = f(x) and d;u(z,0) = g(z) on R%.
Here we assume f and g are with compact supports (i.e., vanish far
from the origin). Applying spatial Fourier transformation, we get

20 (k,t) = —k*a(k,t), (32.113)

so that we obtain

sin kt

u(k,t) = coskt+g (32.114)
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Therefore,

u(x,t) =

K\
(fcoskt—f—gsu;c )e—”"'“’. (32.115)

If we introduce the following Fourier transform (in the generalized func-
tion sense)

1 sin kt -
K(m,t):(zw)d/ddk - k- (32.116)

We obtain (c¢f G0-28))

u(e, t) = %/ddyK(w - y,t)f(y) +/ddyK(w —y,t)g(y). (32.117)

Discussion.
We can further transform the result with the aid of (d > 2)

1 g2 rh
/ddyK(.)( —y.t)f(y) = mm/o dr(t® — r?) =2 My (@, 1),

(32.118)
where My is the same as in 30.9 (the spherical average).

Exercise.
Demonstrate that the solution to a wave equation can be written as a superposition
of plane waves. Or, demonstrate the following statement. If we introduce

ha(k) = % ( (k)% i gl(:l)> (32.119)

Then, (32.115) can be written as

u(e, t) =

/ddkei(k'w‘kt)fz+(k)+ = /d"ke""“”“)ﬁ_(k) (32.120)

(2m) (2m)d

32.D Radon Transformation

Radon transformation is a theoretical basis of various to-
mographies. Its inverse transformation is constructed with
the aid of Fourier transformation. Radon transformation
allows us to solve the Cauchy problem of the wave equa-
tion in any dimensional space. The explicit formula clearly
demonstrates the marked difference of even and odd dimen-
sional spaces.
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Key words: Radon’s problem, Radon transform, modified
Radon transform, tomography, wave equation, afterglow.

Summary:

(1) The mathematical principle of tomography is Radon transforma-
tion (832D.3) whose inverse transformation is essentially calculable by
Fourier transformation (32D.4-5).

(2) Radon transform gives a general method to solve d-wave equation
(32D.9). The resultant solution clearly exhibits the afterglow effect in
even dimensional spaces (32D.10).

32D.1 Radon’s problem. Radon (1917) considered the following
problem: Reconstruct a function f(z,y) on the plane from its integral
along all lines in the plane. That is, the problem is to reconstruct the
shape of a hill from the areas of all its vertical cross-sections.

322D.2 Radon transform. Let f be a function defined on a region in
R2.409

Rf(s,w)= /RZ dzb(z - w — s)f () (32.121)

is called the Radon transform of f, where w is the directional vector
|w| = 1 specifying a line normal to it, and s € R is the (signed) dis-
tance between the line and the origin. The Radon problem 32D.1 is
to find f from Rf.

That (32.121) is the integral of f along the line specified by w-z = s
can easily be seen if we introduce the rotated Cartesian coordinate sys-
tem O-z1z9 such that the z, axis is parallel to the line and z; per-
pendicular to it. The integral now reads [é(z1 — s)f(x1, z2)dx1dze =

f f(sa x?)d:EQ-

32D.3 Some properties of Radon transform. Note that
(1) Rf(s.w) is an even homogeneous function (—13B.1) of s and w
of degree —1:

RE(As, dw) = |AT'Rf(s,w). (32.122)

409The definition given here can easily be extended to general d-space. See 32D.7-
8. A good introduction to the topic may be found in I. M. Gel’fand, M. 1. Graev and
N. Ya. Vilenkin, Generalized Functions, vol.5 Integral Geometry and Representation
Theory (Academic Press, 1966). See also R. S. Strichartz, Am. Math. Month. 1982

June-July.
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(2) The Radon transform of a convolution (—14.22) is a convolution
of Radon transforms:

(R| [ AW fle - w)dy] ) (s.0) = [ dt[RA(Lw) [Rols ~ 1)
(32.123)

32D.4 Fourier transform of Radon transform.

flow) = FRIpw) = [ Rf(s,w)e™ds. (32.124)

That is, the Fourier transform of Rf(s,w) with respect to s is the
Fourier transform of the function f itself with the ‘k-vector’ parallel to
w.

[Demo] Using the definition (32.121), we have only to perform a straightforward
calculation:

/-0:0 Rf(sw)e—iPSds = /_Z ds/dwf(w)é(s —zwle = /da:f(a:)e_ipw‘“’_

(32.125)
Thus f can be reconstructed by

f(r) = ﬁ/f(pw)ei”w'rdpdw. (32.126)

32D.5 Theorem [Radon inversion formula]. Let f be a piecewise
C1-function defined on a region in R?. Then

f(z) = /R”f(w - w,w)do(w), (32.127)

where do is the arc length element of the unit circle, and Rf is the
modified Radon transform defined by

- 1 o0 . ~
Rf(s,w)E@/_w dpe=** pR f(p, w). (32.128)

32D.6 X-ray tomography. The Radon transformation is the the-
oretical underpinning of the particle beam tomographies. These are
applied not only medically, but also, e.g., to the anatomical study of
fossils such as trilobites.

32D.7 d-space version. In d-space the Radon transform is defined

as
Rf(s,w) = /Rd f(2)é(s — w - x)dzx, (32.129)
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where w is the position vector on the unit d — 1-sphere $9=! (the skin
of the d-unit ball). The d-dimensional version of 32D.5 reads:

32D.8 Theorem.

flz) = /S do(w)Rf(z - w,w), (32.130)
where
Rf(s.w) = 5o [ ™Il R (o w)dp, (32131

A~

Rf(pw) = [ Rf(s.)eds(=flow)) (32132
with ¢ being the area element of S41.

32D.9 Solving d-wave equation using Radon transform. Con-
sider a wave equation in the whole d-space

(0} —Au=0 (32.133)

with the initial condition ©v = f and d,u = ¢ at t = 0. If the initial
data are constant on all the hyperplanes perpendicular to the direction
w, ie., f(z) = F(z - w) and g(z) = G(x - w), where F' and G are
functions defined on R, then we can apply the method to solve the
1-space problem (—2B.4) to get the solution as

1 ]_ T+t
u(x,t) = —2-[F(a: wHt)+ Fle-w—t)]+ 3 /1134(.0-1 G(s)ds. (32.134)

Therefore, if we can decompose the initial data into a superposition
of data depending only on @ - w, the superposition principle (—1.4)
allows us to reconstruct the solution from the pieces like (32.134). As
can be seen from (32.130), d-dimensional Radon transformation is the
very tool to accomplish the desired decomposition.

The strategy is as follows:

(1) Calculate the modified Radon transform (32.132) for f and g,

(2) Solve the wave equation for Ru.

(3) Use (32.130) to reconstruct u:

w(z,t) = %/Sd_l do(w) {%[’}éf(w wHtw +Rf(z-w—t,w)] + % /:ww:t ﬁg(s,w)} ds.
(32.135)

32D.10 Waves in odd and even dimensional spaces behave very
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differently. Let us calculate the modified Radon transform (32.132)
explicitly. If d is odd, then |p|¢! = p?~!, so that multiplying p can be
interpreted as differentiation with respect to s as

d-1 ad——l

an_l

1

Rf(s,w) = %(—1)@—1)/2 (_)

Rf(s,w). (32.136)
2m

In contrast, if d is even then the non-analyticity of |p| must be dealt
with as [p|*~! = sgn(p)p?~?, so that

d—1 d—1
ﬁf(s,w)zé(—l)w—l)/?(-;;) H[%Rf(s,w)], (32.137)

where H is the Hilbert transform (—8B.15) defined by

HONFN

r—38

Hf(z) = P/ (32.138)

where P denotes the Cauchy principal value (—14.17). This can be
obtained from the convolution formula and the Fourier transform of
sgn (—32C.12).

Look at the use of the modified Radon transform in the solution
(32.135) when the initial velocity is everywhere zero. This applies to
the case of an instantaneous flash of light emitted from a point (that
is, f = 6(z)). If Rf(sw) is determined by Rf(s,w) only, then the
observer at distance sees only a flash of light. That is, the wave is
localized in time in odd-dimensional (> 3) spaces. On the other hand,
if the spatial dimensionality is even, then the Hilbert transform implies
that the wave is not localized in time. Thus, after watching a flash,
the observer must feel that the world becomes brighter (the afterglow
effect in even dimensional spaces) (—16C.4).
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APPENDIX a32 Bessel Transform

a32.1 Theorem [Hankel]. Let f € L;([0,00),7) and be piecewise
continuous. Then

%[f(r +0)+ f(r—0)] = /Ooo J, (or)odo /Ooo f(p)J,(op)pdp (32.139)

for v > 1/2. This may also be expressed as
/0 J(ar) ], (ar)ada = &(r — r')/T. (32.140)

Notice that the RHS is the delta function adapted to the weight r (i.e.,
6-(r — ') —18.25).4100
[Demo] Here (32.139) is proved for continuous L; (—19.8) functions and integer

v =n. Let .
F(z,y) = f(r)e™?, (32.141)

where z = rcosp and y = rsing. With the aid of the Fourier expression of the
delta function (—32C.8), we can write

F(z,y) = ﬁ/dkz/dky/d{/an(f,n)eik’(z_§)+ik”(y'"). (32.142)
Introduce polar coordinates as

£ = r'cosy, n=r'siny, (32.143)
kz = kcosf, ky = ksind. (32.144)

(32.142) is rewritten as (F(€,n) = f(r')e'™¥)

X o> o0 1 Ky i s . A ,
f(r)emga = / dkk/ dTI’I'If(TI) {%/ deezkrcos(o—ga)%/ dl[)@mlpe—lkr cos(w—0)} .
0 0 FLy -

{32.145)
Setting ¥ — 8 = t, we get

K

IR o 1 ot :
% ezm{)e—zkr “°5("’“9)d¢ — %/ e—zkr costem(t+9)dt (32146)
T

eim/zemajn(_kr/) — einr/?-l—z‘na(_l)n‘]n(kr/)‘ (32'147)

-7

Here the generating function of Bessels functions (—27A.5) has been used. Anal-
ogously, we have

1 ™

2_ eikrcos(ﬂ—-ga)eirwde — ei""/2+i"‘PJn(kr). (32.148)
T J_n

410More generally, f may be of bounded variation. See G. N. Watson, A Treatise
on the Theory of Bessel Punction (Cambridge UP, 1962) p456—.
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Hence, (32.145)—(32.148) implies (32.139) for v = n.
A more convenient formulas may be

a32.2 Bessel transform and its inverse.
g(r) = f h(r")Jy (r'r)r'dr’, (32.149)
0

hr) = /Ooog(r')J,,(r'r)r’dT'. (32.150)

Note that these are the formulas for the Fourier sine (or cosine) trans-
form (—32A.8) for v = £1/2 (—27A.19).

a32.3 Examples. See 27A.15.

oo 1 co y e_‘aw
T dr = ——— / —J dy = .
/0 e o(zy)dx o <) TEroe oy olzy)dy =
(32.151)
oo 1 o0 1 cos ax
/o cosazJo(zy)dz = g <= ﬁjo(xy)dy =—
(32.152
/oo e—a2z2wy+lj (zy)dz = y” e_y2/4a2 - /°° ?/VH e;y2/4a2J)( )d a2
y v\ ZY = (2a2)+1 0 (2a2)+1 \TYJay = ¢ - I
(32.153)
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