31 Numerical Solution of PDE

Although we have been discussing analytical methods to
solve PDE, most problems are intractable by exact meth-
ods. In this section elementary numerical methods to solve
PDE are outlined. We require a numerical scheme to be
stable and consistent (i.e., converging to the original prob-
lem in the continuum limit). This is a section for ABC of
numerical analysis.

Key words: discretization, consistency, stability, conver-
gence, von Neumann condition, Courant-Friedrichs-Lewy
condition

Summary:

(1) There are two major methods to discretize a continuum problem:
the Galerkin method and sampling at space-time lattice points (31.2).
There can be many unconventional discretization schemes (31.4).

(2) Any discrete scheme must recover the original problem in the con-
tinuum limit (consistency of the scheme). If the solution to a scheme
is bounded, then the scheme is said to be stable. For linear problems
Consistency and stability imply convergence of the scheme (i.e., the
solution to the scheme converges to the true solution in the continuum
limit) (31.7).

(3) Stability conditions for a scheme may be understood, roughly, by
the condition that physical propagation speed of the signal does not
outrun the numerical propagation speed (31.9, 31.11).

31.1 Discretization. To use computers to solve a differential equa-
tion, unless we use symbolic manipulation, we must discretize every-
thing and express quantities in a finite number of rational numbers.
Thus the fundamental question of numerical computations of differen-
tial equations is how faithful this map to the discrete world is.
Numerical analysis is a discipline to analyze numerical algorithms and
is as old as analysis itself. Already Newton discussed a series expansion
method to solve ODE in his first calculus paper (1669). Euler intro-
duced discretization methods in 1743.

Discussion.
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Consider38?

du
& = i), (1)

where f satisfies f(0) = f(1) =0, f(u) > 0foru € (0,1) and f(u) <Oforl <u <=~
for some positive x > 1. Then, its Euler differencing result

Uns1 = Up + Atf(uy) (31.2)

exhibits chaos for At > ¢; for some positive ¢;. Here ‘exhibiting chaos’ means that
the solution has a ‘natural’ relation to random numbers (or the outcome of coin-
tossing).39°

(B) Consider the following logistic equation

d
= =u(l-u). (31.3)
(1) Solve this equation with the initial condition u = uo € (0,1) analytically.
(2) Get the following type of difference equation with the aid of the center differ-
encing scheme:

Unt1 = Vn +0up(l — wn), Uny1 = Up, (31.4)

where o = 2A¢t, v, = u(nAt) and v, = up-1.

(3) The equation (31.4) defines a map from R? into itself. The map exhibits chaos
irrespective of the size of At.3%1 A more careful statement is as follows. Let time T
be fixed and N = T/At. If At — 0, then up to V there is no pathological behavior.
However, if At is fixed, then for sufliciently large N (consequently for large T'),
pathological behavior will show up.

(4) The equation (31.4) converges to (more generally, see 31.3 Discussion)

du dv

— = (1~ = = —u). .

o v(1 - v), % u(l —u) (31.5)
This equation does not exhibit chaos, but is unstable near u = v = 1.

31.2 Two major methods of discretization. There are two major
methods to map a continuous problem to a discrete problem. One is
the sampling method (recall Green’s approach —1.8), and the other is
the Fourier expansion method.

The sampling method tries to represent a function f(z) by a set of
function values sampled at appropriately located sampling points, and
is usually called “the discrete variable method.” We have already used
its primitive version in 1 (1.15, 1.18, 1.20).

The Fourier expansion method tries to describe a function f(z) as
a truncated generalized Fourier expansion fy(z) (—20.14). A typical

method is the one called the Galerkin method: Put fy(z) = T2_1 apdn(z),

339M. Yamaguti and H. Matano, Euler’s finite difference scheme and chaos, Proc.
Japan Acad. 55 Ser.A, 78-80 (1979).

390Y. Qono, Period # 2" implies chaos, Prog. Theor. Phys. 59, 1029-1030 (1978).

391G, Ushiki, Central differencing scheme and chaos, Physica D 4, 407-424 (1982).
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where ¢, denotes orthonormal functions (—20.10), into the original
equation. Then, multiply ¢,(z) and integrate over z. This will give
a set of equations for the Fourier coefficients. This is a finite set of
algebraic equations, so there are many ways to solve it.392

31.3 Consistency, stability and convergence. If the discretiza-
tion scheme recovers the original equation in the limit which recovers a
function from its discretized version, we say the method is consistent.
If the discretized solution is bounded in terms of the input data (initial
condition, etc), we say the method is stable. Consistency and stability
imply the convergence of the scheme. That is, if a numerical scheme
is consistent and stable, then the scheme gives the solution which con-
verges to the true solution of the original continuous problem in the
limit recovering a function from its discretized version. There are con-
sistent but unstable schemes.3%3

Discussion.

Probably the most famous example is the center differencing scheme:
Since dz/dt ~ [x(tn+1) — @(tn—1)]/2h, where h is the time increment t,41 —t, = h
for all n, we might be able to rewrite dz/dt = f(x) as

394

T(tni1) — 2(tn—1) _
+ 5T = = f((ta)). (31.6)

The scheme is called the center differencing scheme. It is known that this equation
converges to the following simultaneous equation:

L) L= s (31.7)

If x = y is stable, then there is no problem, but often this is not the case. The
method doubles the dimensionality of the phase space (= the space where the tra-
jectories are). Hence, even a two dimensional ODE could produce chaos as artifact
after center differencing discretization.

31.4 Discretization of PDE. The simplest method to discretize a
PDE is to use a regular mesh on its domain and use the values of
the functions sampled at the mesh points.3% As explained in 31.2 we

392The Galerkin method is often used to solve PDE. In this case the resultant set of
equations become a simultaneous set of ODEs. The method is also very important
as a tool to prove the existence of the solutions to PDEs like the Navier-Stokes
equation. See Ladyzhenskaya quoted in 1.21 Discussion.

3930ne might think that if a scheme is not consistent, then the scheme is useless.
However, the situation is not this simple, because we do not take the h — 0 limit in
practice. Hence, even if the limit may be different from the original equation, still
the numerical solution for a finite 2 may be a good solution.

394M. Mizutani, T. Niwa and T. Ohno, Chaos and bifurcation phenomena in lim-
iting central difference scheme, J. Math. Kyoto Univ. 23, 39-54 (1983).

395 A Iserles, A First Course in the Numerical Analysis of Differential Equations
(Cambridge UP, 1996) is an excellent introdution to the mathematical side of nu-
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can also use the Galerkin method to discretize the PDE with the aid
of generalized Fourier expansion (in terms of an appropriate complete
set). Always the consistency and stability of the scheme are crucial.
An important point recognized explicitly in recent years is that good
modeling of physics on a discrete space can motivate a useful numerical
solver for PDE.

Discussion.

A typical example is the numerical schemes for the simple equation
Ou Ou
—4+c¢—=0, 31.8
ot oz (318)

where ¢ is a constant. We can solve this equation analytically easily (—1.2B Dis-
cussion(2), 2B.6, 13A.4), e.g., for the initial condition u(z,0) = 1 for > 0 and
0, otherwise. Ordinary discretization methods give miserable results (Try to solve
this with the simple Euler scheme). However, we know the essence of the equation
is the translational symmetry of space:

u(x, t + 6t) = u{x — cbt,t) (31.9)

for any &6t (this is the equation for weak solutions, cf. 2B.3). The problem is that
if we discretize u, then we know only u(z;) at sampling points {x;}. Therefore, it
is very hard to describe the translational symmetry. The most natural idea is: (i)
first reconstruct the continuous « from the discrete sampled values by interpolation,
(il) then translate the reconstructed continuous function according to (31.9), (iii)
Finally sample the values of the shifted function at the grid points (see Figure).
Actually, this reconstruction-resampling scheme is used in one of the best schemes
for (31.8). Thus, the reader should keep in mind that there is still an ample room
to devise unconventional numerical schemes for PDE.

31.5 Discretization of Poisson’s equation. Practically useful nu-
merical schemes use simple discretization to solve a Poisson’s equation:396

Au=f (31.10)

on a region D with the boundary condition u = ¢ on dD. Let us
consider this in 2-space. To discretize this, we follow Euler: Let h be
the lattice spacing of the sampling regular square lattice; the sampling
points are (ih, 7h), where ¢ and j are integers. Let us denote the value
of a function f at (ih,jh) as f[t,j]. The simplest scheme is

ult + 1,7] + wf[d, 7 + 1]+ u[¢ — 1, 5] + u[t, 7 — 1] — 4u[i, 5]

Ahu[i,j] = ) = f[7'7]]

(31.11)

merical analysis. Although, as the author explicitly says, it is not for practitioners,
still the comments in the end of each chapter contain updated information and are
useful.

3961f the domain is regular, say, a square, then, Fourier transform methods are
practical.
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with [z, 5] = g[i, 5] if (¢h, jh) is on the discretized boundary. Let us
denote the set of grid points in the domain by D, and the discretized
boundary by I'.

31.6 Solvability of (31.11). (31.11) is a linear algebraic equation,
so that if the matrix defined by Ay is non-singular, then we can solve
it. The non-singularity of the matrix can be shown with the aid of
the maximum principle (—29.6) which is still true after discretization,
because the mean value theorem is correct as can be seen from the form
of Ay (—1.13). More precisely, we can show easily that if

Apv>0on Dy and v > 0 on 'y, (31.12)

then v > 0 on Dy UT',. This implies that if v and —v both satisfy
(31.12), then v = 0 on Dy UT. That is, if Ayv =0 on Dy and v =0
on I'y, then its unique solution is v = 0 everywhere. Hence, the matrix
defining the simultaneous linear equation (31.11) is regular, and (31.11)
has a unique solution. The matrix is very sparse, so many sparse marix
solvers can be used.

31.7 Consistency and stability = convergence. Is this discretiza-
tion scheme consistent? That is, in the A — 0 limit can we claim that
the discretized version converges to the original equation? If u is C2 on
the domain, we can demonstrate

o
oy

o

0z3

bl

h
max |Apu — Au| < ——max{
z€Dy, 3 zeD

}. (31.13)

Since we know the solution to Poisson’s equation is very smooth (—29.10)
this is enough to demonstrate that indeed our scheme is consistent.

Our scheme is also stable: the solution to (31.11) is bounded by
the ‘magnitudes’ of f and g in the problem as

<
(pax |u(z)| < c(max|f| + max]|g]), (31.14)

where c is a positive constant independent of h, f and ¢.397

Now we have

Theorem. The solution up to (31.11) converges uniformly to the so- °
lution to the original problem. More precisely,

o
oy3

ox3

@
oz

ou

9 9 9 a_y

- <
Jnax lun(z) — u(z)| < ch I&aﬁc{

}. (31.15)

397Tn this case, we need not restrict the size of k, but usually the stability holds for
h up to some upper bound as we will see in the case of diffusion equation (—31.8).

425



O

We thus know that up converges to the true solution, but actually this
is shown only on the dense set that are limit points of the lattice points.
Since we know from the general theory that the true solution is very
smooth, this should be enough.

31.8 Discretizing diffusion equation: #-method. Let us consider
1-space diffusion equation

ou_
ot  0x2

on Qr = {(z,t);z € (0,1),t € (0,T)}. We impose the initial condition
u(z,0) = a(z) for z € (0,1). We must also specify a boundary condition
at z = 0 and 1, but we will not explicitly write it down. The 1-space
version of Ay, is given by

+f (31.16)

uft + 1] + ufi — 1] — 2ulf]
h2

Apali] = . (31.17)

We must discretize the time axis with the spacing 7. We introduce the
following notation

up[t] = u(zh, nt), (31.18)
and
Untolt] = Oupir[d] + (1 — 0)u,[d]. (31.19)
We introduce the following scheme called the #-method:

nsafi] = wali]

= = Aptntoli] + faoldl. (31.20)

For # = 0 this is the standard Euler method; for # = 1/2 it is called
the Cranck-Nicholson method; for 6 = 1 it is called the backward Euler
method. The latter two methods are called implicit methods, because
we cannot immediately read off the updated data.

31.9 Stability analysis. A standard method to analyze the stability
of a scheme is to compute the so-called amplification factorA:

upll] = Ame™, (31.21)
The basic idea is that we prepare spatially bounded ‘initial condition’

that is Why eikl and study its time evolution. If |A| > 1, we are in
trouble.
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31.10 Von Neumann’s stability condition.3*® In our case the

scheme is stable if u,[7] is bounded for all z and n by a number propor-
tional to the ‘magnitude’ of the initial condition a. Let us measure the
‘magnitude’ with the following ‘normalized #y-norm’:

1/2

1 N-1
|v]]n = {7\,— 3 v[i]2} : (31.22)
i=0
The stability is defined by the inequality
|unlln < cllalln (31.23)

for all n with some positive constant ¢ independent of a, h and 7(< 1).
Theorem [von Neumann]. A necessary and sufficient condition for the
scheme (31.20) to be stable is that there is a nonnegative constant b
such that for any &

h% — 4(1 — §)sin® Z£
L= 0)S 4x | 1 1y (31.24)

2 rk
h? + 407 sin v

for any £ € Z. In particular, the scheme is stable for § € [1/2,1]
unconditionally and for 8 € [0, 1/2] under the condition

P 31.25
R = 2(1-20) (31.25)

which is called the stability condition.39? O

Generally speaking, implicit schemes are more stable as seen here. How-
ever, implicit schemes are usually computationally more time consum-
ing. The reader might think that exploiting the stability, we can choose
a large 7 to compensate the complexity. Sometimes, this indeed works,
but stability does not mean that the obtained solution is accurate, so
that choosing a large 7 is not usually wise.

Discussion.
(A) In (31.20) put § = 0 and f = 0. Assume

Un,j = A(k) etk GP) (31.26)
Then, this is a solution to (31.20), if

Ak)=1- 4% sin?(kh/2). (31.27)

398 John von Neumann, 1903-1957.
399The stability condition may depend on the norm used. If we use the £o-norm,
then the RHS of (31.25) reads 1/2(1 — 6) for 6 € [0,1].
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This A(k) is the amplification factor for the mode k. From this we conclude that

T 1
—};2- < —2' (31.28)

is required for the scheme to be stable. The condition can be rewritten as

h2
—. 1.2
D< oy (31.29)
This may be interpreted as a condition for the numerical diffusion constant to be
larger than the physical diffusion constant.
If 7/h? = 1/2, the scheme may violate the maximum principle.
(B) In 31.8 try the same and derive the formula for the amplification factor for the
6 method: )
1—4(1 - 6)(r/h?)sin®(kh/2)
Alk) = — .
1+ 46(7/h?)sin(kh/2)

From this the stability condition is given by (the von Neumann stability condition
31.9)

(31.30)

T 1

For 8 = 1/2, the method is called the Cranck-Nicolson scheme. In this case, if
7/h?* = 1, the scheme is stable, but does not satisfy the maximum principle (the
number of peaks may increase).

(C) Consider the following diffusion-advection equation:

ou _ 0%u Gu

5 = 3~ ba (31.32)

where b is a continuous function of 2 and ¢ with boundedness: |b] < B. Apply a
discretization scheme (not complicated one, please) and study its stability.

31.11 Consistency and convergence of §-method. If u is smooth
enough,?® then we can show that the #-method is consistent. Under
the stability condition discussed in 31.10, the solution wu; to (31.20)
converges to the solution to the original PDE in the h — 0 limit. More
precisely,

max |[up, —tn||p < T |0 = T max u + 72 Ou + i O

n—Un||n < - = — |+ s max ||+ — max |—| ¢ .

e ([ Enll 2 oz | T 12 el | T 12 | e
(31.33)

31.12 Courant-Friedrichs-Lewy condition. Let us return to the
simple advection problem (31.8). Consider the following simple Euler

scheme ) . . ;
U (2] —Tun—ﬂl] + c“n[zl - Zn[l —1 _ 0. (31.34)

4004 in space and C? in time, for example.

428



This is called the upstream approzimation, because if ¢ is interpreted
as the stream velocity, the scheme uses the upstream information only.
The scheme satisfies the stability condition, if

h

T< - (31.35)

The condition is called the Courant-Friedrichs-Lewy condition'®! (CFL
condition). This implies that the numerical propagation speed h/T
must not be smaller than the physical propagation speed c. In other
words, if physics outruns computation, the scheme becomes unstable.
A similar interpretation may be possible for 31.10.

Exercise.

(1) Compute the amplification factor for (13.28) and derive the Courant-Friedrichs-
Lewy condition.

(2) Show that the down stream scheme, which replaces un[i] — un[i — 1] in the up-
stream scheme with u,[i + 1| ~ u,[i] is always unstable.

31.13 Wave equation. A standard differencing practice to solve 1-
space wave equation u; — c*ug, = 0 is the simple Euler scheme:

Uny1(t) = 2un(8) — up_1(2)
cAt

2
+ (E) {wa(i + 1) + up(i — 1) — 2u,(6)}. (31.36)

It is easy to generalize this to d-space (The stability limit due to the

CFL condition is cAt/Az < 1/+/d). This is a very stable and simple
scheme, and is widely used. However, it suffers from the dispersion
error (The scheme conserves energy very well, but distorts initial con-
ditions with steep wave fronts.)

Exercise.

Study the stability condition of this simple scheme and demonstrate that we indeed
need the Courant-Friedrichs-Lewy condition (the numerical propagation speed must
be faster than the physical speed).

401Richard Courant, 1888-1972; Kurt Otto Friedrichs, 1901-1983.
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