
30 Wave Equation: Finiteness of propa­
gation speed

Wave equations are representative hyperbolic equations. With
the aid of energy conservation, we discuss the well-posedness
of wave equation problems. A general method to solve 3­
space wave equation is given (method of spherical means
due to Poisson), which clearly shows Huygens' principle.
Finally, the characterization of hyperbolic equation with
constant coefficients due to Garding is summarized.
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Summary:
(1) Wave equations have well-defined domains of dependence and in­
fluence: they are called the past and the future in relativity (30.3).
Huygens' principle is correctly captured by the wave equation (28.9).
(2) Wave equations allow propagation of a solution which is not smooth
along a special curve (characteristic curve) (30.2).
(3) Wave equations preserve energy. This implies well-posedness of
wave equation problems (30.4, 30.6).
(4) All the general methods to solve d-space wave equations are based on
reducing them to 1D wave equations (30.19. For another, see 32D.9).
In d(~ 2)-space, the time evolution due to wave equations may reduce
the smoothness in the initial waves (30.10).
(5) Garding conclusively characterized hyperbolicity (30.12-14), which
implies finiteness of propagation speed (30.15),

30.1 Elementary summary. We have learned where the wave equa­
tions appear (-~1.2, alD.9-11, alF.8), and physically argued what
auxiliary conditions can ensure the uniqueness ofthe solution (-+1.20),
We know how to obtain the unique solution to the initial value problem
in R as d'Alembert's formula (-+2BA) for the I-space problem

fPu EPu
8t2 - 8x2 ' (30.1)

We know from the telegrapher's equation (-+alF.17 or the Maxwell­
Cattaneo equation -+28.10) that the second order time derivative pro-
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hibits infinite speed propagation of the signal.

Exercise.
Solve

(30.2)

on R x R.

where A-D are the apices of any parallelogram ABCD in space-time
whose edges are parallel to the characteristic curves x ± ct = const.
This equality can be shown easily with the aid of d'Alembert's solution
(--+2B.4). We may characterize a 'generalized solution' to (30.1) as
any function u satisfying (30.3).

30.2 Characteristic curve. The solution method in 13C.6(l) re­
duces the I-wave equation (30.1) to two first order PDEs whose char­
acteristic curves (--+13A.4) are x ± ct = const. These curves (actually
lines) are called the characteristic curves of the wave equation (--+ (C)
below). If u is a solution to (30.1), then we can prove the following
general identity:t

B

A
-t-------::".­

X

u(A) + u( C) = u(B) + u(D), (30.3)

Discussion.
(A) Hyperbolic equations allow propagation of discontinuity without smoothing.
Rewrite the wave equation (3.1) in the following form:

av au au av
-=C-, -=C-.
at ax at ax

(30.4)

Is there any curve 9(X, t) = 0 on which u and v are continuous but their derivatives
jump? [We have already discussed this in detail in 1.2a Discussion.]
(B) Try the same thing as above for the telegrapher's equation.
(C) We have already discussed the meaning of the characteristic curve in D 2.2. Let
us continue the discussion for more general cases. Consider

(30.5)

where c(x) is a positive valued function. Suppose there is a discontinuity of the
solution of this equation along a curve 'P(x, t) = O. We assume the solution is
smooth except on this curve. We rewrite the equation with the new coordinate
X = 'P(x, t) and Y = 7/;(x, t), where ¢ is chosen to make (X, Y) a well-behaved
coordinate system.
(1) Show that the result can be written as
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where

L(ep)

(30.7)

(30.8)

(2) Suppose ou/oX has a discontinuity across ep(x, t) = O. Then, show that

Q(<p,ep) =0 (30.9)

must be satisfied. This equation is called the characteristic equation, and ep = const.
is called a characteristic curve.
(3) See that x = ±ct = const. are characteristic curves for the ordinary wave equa­
tion.
(4) There are two characteristic curves passing through a given point. The singu­
larity we are discussing is constrained on them, so its propagating speed should be
given by

dx _ oep(x, t) / oep(x, t) _
- - - - ±c(x). (30.10)
dt ot ox

(5) Notice that to solve the equation Q = 0 is equivalent to solving (30.10).

30.3 Domain of dependence, finite propagation speed. D'Alembert '8

solution (~2B.3) clearly shows that 'u at x at time t is completely de­
termined by the initial data in the interval [x - ct, x + ctJ. This interval
is called the domain of dependence. Conversely, the initial data at (
can influence the interval [( - ct, ( + ct] of the space at time t. This of
course means that the disturbance can propagate at fastest with speed
c in contradistinction to parabolic equations (~28.9).

Discussion: Characteristic initial value problem.
The light cone is a characteristic surface. If u is given on a characteristic surface
as is shown in figure, then the solution is uniquely determined within its domain
of influence. Hence, generally no boundary value problem in a closed domain has a
solution for wave equations.

30.4 Energy conservation. The energy integral

E(t) = H{(:)' + c
2 (~~n (30.11)

is time independent for classical solutions (~alD.12).

A formal calculation exchanging the order of differentiation with re­
spect to time and integration is justifiable (~19.17).

Discussion.
Suppose that a vibrating string of length L with a fixed end condition is subjected
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to a damping force -a~. Discuss how the energy conservation is violated.

30.5 Uniqueness revisited. Although we already know the unique
existence of the solution to the initial value problem of (30.1) in R,
let us reconsider the problem in terms of the energy integral. Since
the equation is linear, to prove the uniqueness, we have only to con­
sider that the homogeneous problem has only the zero solution: if v
satisfies (30.1) and the auxiliary conditions v(:r,O) = 0 for XED, and
v(x, t) = a for x E DD for t 2:: 0, then v(x, t) = 0 in D x [0, t]. For this
initial condition the total energy (30.11) is zero, so that the constancy
of energy integral implies that Dtv(x, t) = D,rv(x, t) = O. This implies
(with the aid of the mean value theorem) v is a constant. Since v is
continuous, this implies that v == 0.

Discussion.
(1) Riemann's method. Let

fJ2 fJ2
L=:p(x)otZ - OxZ' (30.12)

Lv

v It=to ,x=xo

0,

1,
(30.13)

(30.14)

2Vp(x) ~: +o~v = 0 on characteristic curves.

-t (30.15)

«f-t" The solution v is called the Riemann function (fundamental solution). In terms of
this function, the solution to the initial value problem can be obtained as

r::t:::\ 1 [ r::t:::\ ] 11xB (OU ov)(yp(x)u)(P) = 2" (yp(x)uv)(A) + (Vp(x)uv)(B) +? p(x) -v - u- dx,
JL ~ XA ot ot

(30.16)
where A, B, P are the points in the figure. The formula is called Riemann's formula,
and d'Alembert's formula is its sp:cial case.
(2) How can we determine Riemann's function? The problem is to solve v for which
the auxiliary conditions are given on the characteristic curves. Such a problem is
called a Goursa's problem or characteristic boundary value problem. \Ve change the
independent variables from x, t to 'P+ and 'P- (characteristic curves (--+30.2). The
problem now reads

OZv ov ov
-,------,,-- - a-- - b-- = 0
o'P-o'P+ 0'P- 0'P+

with the boundary conditions

Here a, b andf± are given functions. If we define

ov
'l1± = --,

0'P±
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then, the PDE can be cast in the following simultaneous Volterra integral equation:

(30.20)

(30.21)

This can be solved by an interative replacement method with the starting choice of

\If_ = f'-, \If+ = f!t-.

30.6 Well-posedness. We consider two problems (30.1) with u(x, 0) =
fi(X) and Otu(x, 0) = gi(X) in R (i = 1,2). Denoting each solution as
Ui, we can easily get

(30.22)

(30.23)

from d'Alembert's formula (-t2B.4). Hence, the solution depends on
the data continuously. That is, small changes of the data cause a small
change in the solution for any finite time.

30.7 Inhomogeneous wave equation. Consider

o2,u 02u
ot2 - c

2
ox2 = F(x, t)

in R x R with the initial condition u(x,O) = f(x) and Otu(x,O) =
g(x), where f is C2 and 9 is C1. The problem is a superposition of
the homogeneous equation with the inhomogeneous initial conditions
studied in 2B.4 and the following problem of inhomogeneous equation
with homogeneous initial conditions:

(30.24)

(30.25)

(30.26)

with v(x,O) = 0 and Otv(x, O) = O. The problem can be solved easily
with the introduction of the new variables (a standard trick -t2B.3)
x ± ct as in

1 ht l x +c
(t-r)v(x,t)=- dr F(IJ,r)dIJ.

2c 0 x-c(t-r)

Notice that if F(x, t) is an odd function of x, then so is v for all t.

30.8 Wave equation in 3-space, Huygens' principle. The ini­
tial value problem
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with the initial condition

u = f(x), 8t u = g(x) for t = 0 (30.27)

in 3-space has the following solution:

u(x, t) = 4?r~2t jy-xl=ct g(y)da-(y) + ~ (4?r~2t jy-xl=ct f(y)da-(y)) .
(30.28)

This is an explicit expression of Huygens' principle. This equation can
be a starting point of a numerical scheme. A demonstration of the
equation follows.

Exercise.
Solve the following 3-wave equation:

Utt = 6.u (30.29)

with the initial condition U = x 2 + y2 + Z2 and Ut = z.
Needless to say, an inhomogeneous problem Du = q can be solved by linear

decomposition. The inhomogeneous problem with a homogeneous auxiliary condi­
tions can be solved easily in terms of Green's functions (---+40).

30.9 Method of spherical means [Poisson]. Define

Mh(x,r)=~ r h(X+Ty)da-(y),
41f- J1yl=1

(30.30)

where h is a C2-function, and a- is the area element of the sphere. Mh
is an even function of T. Using Gauss' theorem (---;.2C.13), we get the
following Darboux's equation

(::2 + ~ :1' ) Mh(x,r) = ~Mh(X, 1'). (30.31)

Here ~ is the Laplacian acting on the function of x. (30.26) is converted
to

82 82

8t2(rMu) = c
2 01'2 (1' Mu), (30.32)

where Mu is interpreted as a function of x, T and t as Mr'lt(x, 1', t), and
the initial condition becomes

Mu = M f , OtMu = Mg for t = O. (30.33)

Notice that Mu(x, 0, t) = u(x, t). (30.32) can be solved as (---;.2B.4):

1 . 1 l r+ct
l' Mu(x, T, t) = -[(r+ct)Mf(x, r+ct)+(r-ct)Mf(x, r-ct)1+-

2
yMg(x, y)dy.

2 c r-ct
(30.34)
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Using the fact that Mrf and Mrg are even functions of r, we can rewrite
this as

Mu(x, r, t) = (ct + r)Mf(x, ct + r) ; (ct - r)Mf(x, ct - r) +21 jCHr yMg(x, y)dy.
r cr ct-r

(30.35)
Now, take the r -+ 0 limit (l'Hospital's rule is used) and we finally
arrive at (30.28). See 32C.14.

30.10 Focusing effect. (30.28) implies that the smoothness of the
solution u can be less than that of the initial data due to the derivative
in the formula. This effect is called the focusing effect. This can happen
when the initial condition is focussed into a small set, making caustics.
This does not happen in I-space.

30.11 What is the mathematical essence of the wave equation?
Physically, that the singularity can be propagated without smoothing
(propagation of shock waves, for example) is a remarkable distinction
from the diffusion equation (parabolic equation). Also the finiteness of
the speed of propagation is in striking contrast to the diffusion equation
(-+28.9). Since the wave equation is nothing but Newton's equation
of motion of an idealized elastic body (-+alD.9), the Newton-Laplace
determinacy should apply. That is, the Cauchy problem must be well­
posed (-+28.3). Garding384 answered the question decisively at least
for the constant coefficient linear partial differential equations (of any
order).

30.12 Hyperbolicity in Garding's sense. Let L.,-L(at , \7) be a N­
th order linear PDE operator with constant coefficients. If L contains
aN /atN385 and if the real parts of the zeros ..\i(e) of the characteristic
equation L(..\, i~) = 0386 considered as an equation for ..\ are bounded as
a function of~, then we say Du = 0 is a hyperbolic equation in Garding's
sense.

30.13 Example.
(1) Wave equation (a;- c26.)u = O. L(..\, i~) = ..\2 + c2e. Therefore,
..\(~) = ±icl~l. That is, the characteristic roots are purely imaginary,
so obviously the equation is hyperbolic in Garding's sense.
(2) Diffusion equation (at - D6.)u = O. L(..\,i~) = ..\ + D~2, so that
..\(~) = - De is real and is not bounded as a function of (

384Garding wrote a nice book on mathematics: L. Garding, Encounter with Math­
ematics (Springer, 1977). Those who are interested in mathematics as a part of the
modern culture will enjoy the book.

385If the highest order derivative is not at, then 30.15 below does not hold. That
is, the propagation of front has infinite speed.

386Here not only the highest order terms but all the derivatives are taken into
account. Furthermore i accompanies with ~'
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(3) However, if we add a second order time derivative term with a small
positive coefficient as (€fit +at - D~)u = 0, which is called the telegra­
pher's equation or Maxwell-Cattaneo equation (-+alF.17, 28.10), the
situation is drastically different from the diffusion equation. For this
L(>.., ie) = E>..2 + >.. +De, so that >..(e) = (-1 ± VI - 4EDe)/2E. Hence
its real part is bounded as a function of e. That is, the telegrapher's
equation is hyperbolic in Garding's sense.
(4) Certainly, the Laplace equation ~u = 0 is not hyperbolic.

Discussion.
The equation for transversal oscillations of a beam is given by

(30.36)

where f is essentially the external load. This equation is hyperbolic.

30.14 Theorem [Garding]. The Cauchy problem Lu = 0 under
the Cauchy condition akffatk(O,x) = Uk(X) (0:::; k:::; N -1) is well­
posed in the sense of Hadamard (-+28.3) if and only if L is hyperbolic
in Garding's sense. 0 387

Hence, the determinacy (and more) for the wave equation is vindicated.

30.15 Theorem [Finiteness of the propagation speed]. Let n
be the support of the Cauchy data for Lu = 0, where L is a linear par­
tial differential operator with constant coefficients, and is hyperbolic in
the sense of Garding (---t30.12). Then the support of the solution at
time t > 0 is included in the set {x : U~Enlx - el :::; ct}, where c is a
finite number such that

(30.37)

Here "Xi are zeros of the symbol of the principal part of the differential
operator (and are real for hyperbolic equations). 0 388

387 See John, Section 5.2.
388S. Mizohata, Partial Differential Equations (Iwanami, 1965), Theorem 4.9.
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