
29 Laplace Equation: Consequence of spa­
tial moving average

A solution of the Laplace equation is called a harmonic
function. This must be a function invariant under spatial
moving averaging as we discussed in 1.13. This property
almost determines the important features of the solutions of
the Laplace equation and guarantees its well-posedness, etc.

key words: harmonic function, Green's formula, mean­
value theorem, its converse, maximum principle, analyticity
of solution, Liouville's theorem

Summary:
(1) Solutions to the Laplace equation must be invariant under spatial
moving average; a precise statement is the spherical mean-value theo­
rem and its converse (29.4-5). The resulting smoothness can also be
stated precisely (29.10).
(2) From this, we immediately know that harmonic functions cannot
have any local extremum inside the domain (29.6, 29.8). This denies
the existence of any stable electrostatic structure (29.7).
(3) Typical potential problems are well-posed (29.9).

29.1 Elementary summary. We have learned where the Laplace
equation appears (---+1.2, 1.14, a1B.3, a1F.6), and physically argued
what auxiliary conditions can ensure the uniqueness of the solution
(---+1.19). The most important boundary conditions are Dirichlet con­
ditions in which the value of the function 'IjJ on the boundary of the
domain is fixed, and Neumann conditions in which the normal deriva­
tive of'IjJ on the boundary is given.

Discussion.
The Cauchy problem of the Laplace equation is not well-posed. This was seen
in Discussion 2B.4(7). Physically, this is not surprising. To obtain the Laplace
equation instead of the wave equation for electromagnetic wave, we must change
the sign of Faraday's law (-+alF.8). This implies that we replace Lenz's law with
'anti-Lenz's' law'. Lenz's law is a manifestation of the stability of the world, so
there is no surprise that the Laplace equation does not describe the well-behaved
time evolution in our world.

29.2 Laplace equation and harmonic functions. Any classical
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solution to the Laplace equation is called a harmonic function. The
electric potential due to point charges is a harmonic function where
there is no charge (---+alF.6), and charges correspond to the singu­
larities of the functions. The equilibrium drumhead is described by a
harmonic function. The real and imaginary parts of an analytic func­
tion are harmonic functions (---+5.6).

Discussion.
(1) There is no solution to the 3-Laplace equation on the unit ball centered at the
origin with the origin removed with the boundary condition u = 1 on the Ixl = 1
and u(O) = O.
(2) Consider the 2D Laplace equation 6.u = 0 on the half plane x > 0 with the
'initial condition' u(O,y) = 0 and o",u(O,y) = f(y). If f is analytic, then there is a
local analytic solution, but if it is not, then there is not even a local solution.

29.3 Green's formula. Let D c R n be a bounded region, and u
and v be C 2-functions defined on the closure of D. Here, we record the
formulas again for convenience (---+16A.19).

and

{ (v~u + gradu· gradv)dT = { v gradu· dB,k hn

r (v~u - U~V)dT = r (vgradu - ugradv)· dB.in hn

(29.1 )

(29.2)

29.4 Spherical Mean-value theorem. Let u be harmonic on a re­
gion D eRn, and Br(x) be a ball of radius r centered at x such that
Br(x) C D. Then, we have

u(x) = S 1 ( ) r u(y)d(J(Y),
n-l r iaBr(x)

(29.3)

where d(J(Y) = IdB(y)l, the area of the surface element, and Sn-l(r) is
the surface area of (n - 1)-sphere (i.e., the skin of the n-ball) of radius
r. 376 0

This should be intuitively expected from the interpretation of the
Laplacian (---+ 1.13).
[Demo] Set v(y) = l/lx - yln-2 (n > 2) or In Ix - yl (n = 2) in (29.2), and
D = Br(x) \ B.(x) (r > €).377 Since v is harmonic in R n

\ {x} as a function of

376Sn_l(r) = 2rrn / 2r n - 1 /f(n/2).
377 A \ B is the set of all the points in A but not in B: A \ B == {xix E .4.,:l.' ¢ B}.
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y, v(y) is harmonic on D. To calculate the RHS of (29.2) we need the normal
derivatives on oBr(x):

OV = (2 _ n)r1- n . (29.4)an
Since both u(y) and v(y) are harmonic on D, (29.2) reads

o = f (vonu - uonv)da"(y)
JeiD
f (vonu - uonv)da"(y) - f (vonu - uonv)da-(y). (29.5)

J8B r (x) JaB,(x)

Using (29.4) and (16.35), we can rewrite this as

0= -(2 - n) [r1 - n fud(}'(y) - E1
-

n f Ud(}'(y)] , (29.6)
J8B r (x) JaB,(x)

which implies

limE1-
n f ud(}'(y) = Sn-l(r)u(x).

,->0 JaB,(x)

The converse of this theorem is also true:

(29.7)

29.5 Theorem [Converse of mean-value theorem]. Let u be a
continuous function on a region D. If the mean value theorem 29.4
holds for any r > 0 and x such that Br(x) C D, then u is Coo and
harmonic on D. 0 378

29.6 Maximum principle. Let D be an open region and u be har­
monic (~29.2) there. Suppose SUPXED u(x) =A < 00. If it t. A for
'7x E D, then 'u(x) < A for '7x E D. 0
This should be obvious from the mean-value theorem 29.4. Also, since
a harmonic function is a steady solution of a diffusion equation, from
the maximum principle for the diffusion equation (~28.2), this should
be physically sensible. Changing u to -u gives the minimum counter­
part. This theorem implies:
Corollary. Let D be a compact set, and u be a harmonic function on
the open kernel of D and continuous on D, then the extremum of u on
D is achieved on aD. 0
This implies that static electric potential cannot have its extreme val­
ues where there is no charge. A grave consequence is the collapse of
classical physics.

Discussion.
Consider

(29.8)

in 3-space on a bounded region n. Assume u = 0 on 8n. Show that -1 S; U S; 1.

378 For a proof, see Folland p91 (2.5).
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29.7 Classical physics cannot explain atoms: Earnshaw's the­
orem. It is impossible to have a stable static configuration of charges
in any static electric field. 0
Unstable stationary configurations are not impossible (give an exam­
pIe). This theorem and electromagnetic radiation inevitable from ac­
celerated charges conclusively killed the possibility of explaining atoms
within classical physics.

29.8 Strong maximum principle. Let n be a bounded region in
R n , and u be harmonic there. If u attains its maximum value M at an
inner point of 0, then u is constant on n.

This is obvious from the mean value theorem.

29.9 Uniqueness and well-posedness. The solution of the Laplace
equation on a bounded domain D, if exists,379 is unique and depends
continuously on the boundary data (---+29.11).0
The proof is quite parallel to that for the diffusion equation (---+28.4).
[Demo] Let UI and U2 be two solutions of the same problem. Then, due to the
linearity of the problem, the difference U = UI - U2 obeys the Laplace equation
with the homogeneous Dirichlet boundary condition (i.e., U = 0 at the boundary
of the domain). From the maximum principle (---.29.6) U cannot be larger than 0,
and -u cannot be larger than O. Hence, UI = U2. That is, if there is a solution,
it is unique. Now, we compare two different problems 1 and 2 with the auxiliary
conditions different slightly. Let the solutions of 1 and 2 be UI and U2, respectively.
Then, the maximum principle tells us that the maximum value of lUI - u21 in the
region cannot be larger than the differences in the boundary data.

Discussion.
The existence of a solution in a domain in 3 or higher dimensional space is a very
difficult problem, even if the boundary condition is continuous.

29.10 Smoothness of the solution. Since a harmonic function is,
roughly speaking, invariant under spatial moving average, it must be
smooth. Actually,
Theorem. All the solutions of the Laplace equation are real analytic
(---+13C.6(2) for d = 2. Here the assertion is for all d ~ 2. Analyticity
means the convergence of the Taylor series.). 0

Discussion.
(1) A solution to ~U = f is analytic if f is analytic (Courant-Hilbert).
(2) Hadamard's example
Let D be a bounded region. There exists a continuous function F aD ---. R

379\Ve have not yet constructed the solution!
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such that it becomes the boundary value of a harmonic function IjJ on D for which
JD IgradljJ12dO" is not bounded. In this case although IjJ is Coo, its derivatives behave
wilder and wilder as the point approaches the boundary of the domain.

If the boundary value is continuous, then the corresponding Dirichlet problem
of the Laplace equation on a bounded domain has at most one solution.

29.11 Well-posedness of Poisson's equation. The general Pois­
son problem has the following form

~u = F in D, 1.1, = f on aD. (29.9)

Here D is a bounded region. If we are interested in smooth solution
(for example, C2 ), then

(29.10)

where II liD is the L2-norm on D, and Cl, C2 are positive constants. This
inequality clearly implies the well-posedness of our problem.

It is a good occasion to learn something about the so-called a priori
estimate.
The inequality can be demonstrated as follows.
(1) First, the problem is split into v and w: ~v = F in n, v = 0 on an and
~w = 0 in n, w = f on an.
(2) From the properties of the algebraic and geometric averages we get

(29.11)

(29.12)

for any positive E.

(3) Therefore,

That is, we have only to find bounds for v and w, respectively.
(4) With the aid of the variational problem (-+34C.13) for the eigenvalue of the
Laplacian -~:

, If) v(-~)vdx
0< Al = Illf

vl/>o=o If) v 2dx

Hence, with the aid of the Schwarz inequality (-+20.7)

Hence,

(29.13)

(29.14)

II v l12:::; :2 ( F 2 dJ:. (29.15)
1 if)

(5) Introduce an auxiliary function 'P such that ~'P = w on n and the homogeneous
Dirichlet condition on on (the existence of the solutions wand 'P is a prerequisite
of our argument). With the aid of Green's formula (-+29.3)

r w o'P dO" - { 'P °aw dO"1w~'Pdx -1 'Pf::.wdx. (29.16)Jan an Jan n n n
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Hence,

(29.17)

We have used the Schwarz inequality.
(6) For a function vanishing on the boundary

(29.18)

Hence, IIwl12 is bounded by 11F112. 380

Discussion.
Partial derivatives of a harmonic function with respce to the Cartesian coordinates
are again harmonic. However, the partial derivatives with respect to curvilinear
coordinates are not necessarily so.

29.12 Comparison theorem. Let u and v be harmonic functions
on a bounded domain n, and 1l ~ V on an. Then, u ~ v throughout
n.

29.13 Liouville's theorem.381 If 'u is a bounded harmonic function
on the whole space R n

, then u is a constant. 0 382

29.14 More general elliptic equation. The essence of the Laplacian
is that it is an operator giving the deviation of the value of the function
from its local average. The Laplacian is obtained when we assume that
the weight for the average is everywhere uniform (-1.13). We should
be able to choose a weighted average. Then, a more general equation

380 The following theorem is also relevant.
Aleksandrov's theorem. The solution to Poisson's equation smoothly depends on
the charge distribution. Or, more precisely: Let D be a bounded domain and u be a
solution of ~u = f in D with a homogeneous Dirichlet condition and is continuous
up to the boundary of D. Then,

supu::; C1lflld,
D

(29.19)

where C is a constant dependent on the spatial dimensionality and the radius of
D, and II· lid is the Ld-norm. [LP-norm for any positive p is defined by Ilfllp ==
(J IfIPdx)l/P, where the integral is the Lebesgue integral (-.19).] See Egorov­
Shubin, p93.

381Joseph Liouville, 1809-1882.
382 Folland p94 (2.11).
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(29.20)
a2u au

aij-- +bi- +c(x)u = 0
aXiXj aXi

with the positive definite matrix M atr(aij) appears. We may expect
that the key properties of the Laplacian should be true even for aij 8i a j ,

because they are due to the averaging principle. Indeed the maximum
principle is true if c :::; 0 as intuitively expected. (The most statements
above hold if c :::; 0383).

like

383 See, Yu. V. Egorov and M. A. Shubin (eds) Partial Differential Equations III,
Chapter 2 (Springer, 1991)
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