28 Diffusion Equation: How irreversibil-
ity is captured

Our discussion on the diffusion equation in 1 relied very
heavily on our physics intuition. We wish to see whether
our intuition is correctly captured by the diffusion equation.
The maximum principle tells us that the diffusion equation
captures well irreversible nature of diffusion processes. This
in turn implies that the diffusion problems are well-posed in
Hadamard’s sense. Diffusion equations allow infinite speed
of propagation of signals and matter, but adding second or-
der time derivative terms cure this unphysical nature.

Key words: maximum principle, well-posedness, preser-
vation of order, infinite propagation speed, telegrapher’s
(Maxwell-Cattaneo) equation.

Summary:

(1) The solution to the diffusion equation evolves in time generally
toward the more ‘featureless’ function. This is guaranteed by the max-
imum principle (28.2).

(2) When the solution of a problem is unique and depends on the aux-
iliary conditions continuously, the problems is said to be well-posed
in the sense of Hadamard (28.3). Diffusion problems are well-posed
(28.4).

(3) Diffusion equations allow infinite speed of propagation (28.9). Only
the addition of higher order time derivatives can cure this (28.10).

28.1 Elementary summary. We have learned where diffusion equa-
tions appear (—1.2, 1.14, alB.2, alC.1, alF.17). Some Green’s
functions have been constructed (—16B), and we physically argued
that if it exists, it is unique in the bounded domain in particular, un-
der the following condition with a given initial field (—1.18):
(1) Dirichlet condition: At the boundary all the values of 1 are spec-
ified. For the heat conduction problem, this is the condition with the
given wall temperature (i.e., thermostated).
(2) Neumann condition: At the boundary the normal derivative of v is
given. For the heat conduction problem, this is the condition with the
given heat flux through the wall.

We heavily relied on the zeroth law of thermodynamics: there is
a unique equilibrium state if we wait long enough. Our argument is,
however, in a certain sense circular, because we have shown that if the
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diffusion equation is physically reasonable, then we can rely on physics
argument. To break this circle, we must demonstrate that indeed dif-
fusion equation reflects thermodynamics correctly. This is equibvalent
to demonstrating that our intuition and our mathematics could be in
harmony (at least for the diffusion equation).

Exercise.
Solve

Ju ¢ .

i Au+b-Vu+ e sin(z — byt), (28.1)
with the initial condition u(r,0) = |r|. Here b is a constant vector and b, is its

r-component,

28.2 Maximum principle. Let u be a solution3®? of the diffusion *
equation o
Up = Ugy (28.2)
on Q=1 x [0,T], where I is an interval on the z-axis. Then, its maxi- T
mum value is taken on the parabolic boundary I' = 01 x [0, T|U I x {0}. i
In particular, this means the maximum value of |u| on I is a decreasing porvbelrc
function of time. bouw/a?
[Demo] Let p be the maximum value of u on the parabolic boundary T, and define <
T y re
v=e Y u—p). (28.3) A rd

v satisfies
Vi + U= Vg (28.4)

in 9°.3% If we can prove that v < 0 on I' implies v < 0 in I° x (0,7, then we are
almost done. Suppose v has a maximum value v = vy > 0 at (2q,%) € Q°. At this
point vz, < 0 and v; = 0, so that (28.4) implies that vg < 0, a contradiction. If
there is a maximum at the boundary ¢t = T, then v; > and v,, <0, so v < 0. We
are done.

(1) This principle also holds in d-space. An analogous demonstration
works in any d-space, replacing I with a bounded region.

(2) As can be seen from the demonstration, if the solution may be as-
sumed to be bounded everywhere, then the principle holds even if the
problem is on an unbounded region.

Discussion.
(1) What can you say about the evolution of the number of peaks of a solution to
the diffusion equation (under, say, a time-independent Neumann condition)?

363 There are actually several kinds of solutions. A solution in the ordinary sense of
the calculus (requiring necessary differentiability, etc.), is called a classical solution.
364 4° denotes the open kernel of the set A. That is, A° is the largest open set in

A.
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Gevrey’s uniqueness theorem. Consider

Ou O%u

E —- 5";—2- + (l(l‘.t)u =0. (28'5)

Here a is positive and continuous in the closed space time domain in the figure.3%®
Let u be a solution to (28.5) that is continuous in the closed domain U considered
above, satisfying (28.5) on the region U’ = U subtracted its parabolic boundary, and
with continuous d;u and %u there. Then, w cannot have any positive maximum
nor negative minimum in U.o

[Demo]. Suppose we have a positive maximum inside DABC. Then, at the point

6_u 0%u

u>0 e =0,

7z S0, (28.6)

so that this contradicts ¢ > 0. If there is a positive maximum on the open segment
CD, then there,
Ou 6%y
>0 — >0, — <0, 28.7
"> ot ~ dx? — ( )
This also contradicts @ > 0. To show the statement about the minimum, consider
—u instead.

28.3 Well-posedness (in the sense of Hadamard).?® Even if
the unique solution exists, if the solution is extremely sensitive to the
auxiliary conditions such as boundary and initial data, then the PDE
may be useless for describing reproducible natural phenomena. A prob-
lem is said to be well-posed (in the sense of Hadamard), if

(1) there is a solution which is unique,

and

(2) the solution depends continuously on the data (initial and other
auxiliary conditions).

Otherwise, the problem is called ill-posed.3%” Physically reasonable
problems are often well-posed as we will see later. For example, the
Dirichlet problem for the Laplace equation is well-posed (—29.9).3%8

The existence of a solution implies that the problem is not overde-
termined. The uniqueness of the solution implies that the problem is

365 A and B can be coincident. Furthermore, the side curves can wiggle wildly so
long as they do not cross the upper and lower lines.

366 Jacque Salomon Hadamard, 1865-1963. Read J. Hadamard, The Psychology of
Invention in the Mathematical Field (Dover, 1945) on creativity.

367The condition (2) must be stated more precisely with the aid of some norm
(—3.3 footnote) to make the concept ‘continuous’ meaningful.

368 One might suggests that chaos is an example of the lack of well-posedness, but
most examples of chaos are well-posed, because the continuous dependence of the
solution on the initial condition is trivially satisfied for any finite time.
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not underdetermined.

28.4 Cauchy problem of diffusion equation with Dirichlet con-
dition is well-posed. That is, the solution is unique and depends
continuously on the initial and boundary data. [This theorem is proved
for a bounded region here. Also we will not discuss the existence of a
solution.|

[Demo] Let u; and us be two solutions of the same problem. Then, due to the lin-
earity of the problem, the difference u = u; — ug obeys the same diffusion equation
with a homogeneous Dirichlet boundary condition (i.e., u = 0 at the boundary of
the domain) and v = 0 initially as we have discussed (—1.18). From the maxi-
mum principle # cannot be larger than 0, and —u cannot be larger than 0. Hence,
u; = ug. That is, if there is a solution, it is unique. Now, we compare two different
problems 1 and 2 with the auxiliary conditions which are different slightly. Let
the solutions of 1 and 2 be uy and ug, respectively. Then, the maximum princi-
ple tells us that the maximum value of |u; — ug| in the region cannot be larger
than the differences in the initial and boundary data. Hence, the solution depends
on the auxiliary conditions continuously.?®® That is, the problem is well posed in
Hadamard’s sense.

Exercise.
Show that [ ulnudz is non-increasing, if u obeys a diffusion equation. Assume the
initial 4 > 0, and consider the problem in R?.

28.5 Anti-diffusion: violation of second law. Thermodynami-
cally destabilizing the world can produce ill-posed problems. A typical
example is the ‘anti’-diffusion equation.

ou  O%u
a—y + @ = 0 (28.8)

Notice that the amplitude of the mode e** is amplified as e™¥, so

unless the initial data decay faster than this factor in k—s&)ace, a kind
of Hadamard instability occurs for any finite ‘time’ y > 0.57°

Discussion.

ou  Bu
— + tw = f(z,t) (28.9)

cannot make a well-posed problem. The reason should be obvious. 37!

369That is, when the sup norm of the change in the auxiliary condition is made
small indefinitely, so does the sup norm of the corresponding change of the solution.

370 A5 we have seen, the ill-posedness of a problem is closely related to instability
in the ultraviolet limit (k — oo).

371Y, Kannai, Israel J. Math. 9, 306 (1971).
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28.6 Preservation of order, positivity. Let u; and uy be two solu-
tions of the diffusion equation on the domain 2 as in 28.2. If u; < uy
on the parabolic boundary (—28.2), then u; < us in 2°. Hence, for
example, if u; < uy at ¢ = 0, then this relation holds forever. In par-
ticular, if the initial condition is positive and the boundary value is
non-negative, then the solution is positive forever. This should be ob-
vious from the maximum principle.

28.7 Spatially inhomogeneous and /or anisotropic diffusion. Phys-
ically, the consequences of irreversibility should not be affected by
the existence of spatial inhomogeneity and/or anisotropy (with time-
dependence). We encounter the following equation in such a case (with
the summation convention):

ou 0%u ou

= s - ) - 1) .

5 aij(z,t) P2:07,; + bi(z,t) 9. + c(z, t)u (28.10)
or its divergence form (with different coefficient functions):

ou 5} Ju Ou

o= = A%l t) 57— + bz, t)— s t)u. :

o (%iaj(ﬁc )&’cj + by(z )8:[:1- + ¢(z, t)u (28.11)

The second law requires the positive definiteness of the matrix Matr(a;;).
Under this condition it is known that so long as ¢ < 0 the maximum

principle (—28.2) holds. Thus everything we can conclude intuitively

about diffusion based on thermodynamics should also be captured in

the spatially inhomogeneous diffusion equation. It is physically very

sensible that the existence of the advection (—2B.6) term b is irrele-

vant to the maximum principle.

28.8 Unbounded space. So far we have heavily relied on the bound-
edness of the domain of the problem. Note that the diffusion equation
can have a rapidly growing solution even if the initial data is zero
u(z,0) = 0 as Tikhonov demonstrated.3”> See also the warning in
1.18(5). In any case, this episode tells us a danger of mathematical
modeling: since diffusion equations are derived as a balance condition
of conserved quantities (—alB.2), it is physically unthinkable that ini-
tially everywhere 0 solution can grow (However, if the growth rate of
the solution as a function of z is not too rapid, then the initial value
problem can be solved uniquely. In particular, a bounded solution is
unique.)

28.9 Infinite propagation speed. For a very short time, the so-
lution of the diffusion equation is almost independent of the (bounded)

372F. John, p211-3.
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boundary condition away from the boundary, and is given by (3.6). In

particular, if the thermal energy is concentrated at the origin at ¢ = 0
(i.e., T(x,0) = §(x) —14.5):

T(2,8) = —— e~/ (28.12)
Vant

is an accurate solution of ;1" = AT for short time in d-space (—16B.1).
For any positive ¢, however small it may be, T'(z,t) > 0 for any z. Thus
we must conclude that heat can travel at infinite speed. This is true for
the diffusion equation for chemical species as well. This is physically
unrealistic. However, for most applications of diffusion equations, this
is good enough because the tail part of 7" is much smaller than exponen-
tially small quantities, and because significant error could occur only
for extremely short times (when a collective description like diffusion
is not applicable).

28.10 Short-time modification of diffusion equation: the Maxwell-
Cattaneo equation.?”® We must modify the diffusion equation, if we
wish to describe the short time behavior of the system more realisti-
cally. This is only possible by adding higher order time derivatives.3™
Hence, the following modification has been proposed:

o’T T
“on + T = Dp AT, (28.13)
where c is a positive constant. This is called, in the context of heat
conduction, the Mazwell-Cattaneo equation. We have already come
across this type of equation in conjunction to the propagation of electro-
magnetic wave in matter (e.g., the telegrapher’s equation —alF.17).
Therefore, obviously, infinite speed of propagation is eliminated.?™

373¢f. Compt. Rend. 247, 431 (1958).

374In Newton’s equation of motion, the inertial effect is described by the second
order time derivative, and the dissipative effect by the first order time derivative as
in & = —nz + f, where 7 is the friction constant, and f an external driving force.
If we pay our attention only to the very short time behavior of the system, we do
not see the dissipation term. The effect of dissipation sets in only later. Such an
observation is also important in hydrodynamics. The Euler equation (—alE.T)
accurately describes the initial motion of a body in a viscous fluid under impulsive
force.

375The equation now becomes a hyperbolic equation (—1.20). One of the impor-
tant properties of hyperbolic equations is the finiteness of the propagation speed
(—30.186).
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