
26 Spherical Harmonics

Separation of variables of the Laplace equation in the spher­
ical coordinates requires the spherical harmonic functions
which make a complete orthonormal set of functions of spa­
tial directions (i.e., functions on a unit sphere). Derivation
offunctional forms, the orthonormal relation, addition theo­
rem related to the multipole expansion, and the application
to PDE boundary value problems (potential problems) are
discussed.

Key words: spherical harmonics, spherical harmonic func­
tion, addition theorem, multipole expansion, interior prob­
lem, exterior problem, annular problem

Summary:
(1) The angular part of the Laplacian in the spherical coordinates
have the orthonormal eigenfunctions called spherical harmonics ynm
(26A.8-9). They are simultaneous eigenfunctions of the total and the
z-component of the quantum mechanical angular momentum (26A.I0).
(2) The addition theorem is used to decouple two spatial directions
(26A.12), and applied to the multipole expansion of the electrostatic
potential (26A.14-15).
(3) Spherical potential problems have different general expansion forms
depending on the domain of the problem (26B.2-5).

26.A Basic Theory

26A.l Separating variables in spherical coordinates. In the polar
coordinate system, the 3-Laplacian reads (-+2D.I0)

1 a2 1
.6 = -a 2 r + 2 L , (26.1)r r r

where
1 a. a 1 a2

L= ---S1110-+---
sin e ae ae sin2 e acp2'

Separating the solution as u(r,e,cp) = R(r)Y(O,cp), we get

d2 R(r)
-2rR(r) l(l + 1)-,
dr r
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LY(B,cp) = -l(l + l)Y(B,cp). (26.4)

L is essentially the Laplacian on the unit sphere, and is a negative def­
inite operator.

26A.2 Further separation of angular variables. Let us further
assume Y(B, cp) = 8(B)<p(cp). The cp-direction must be the periodic di­
rection, so the equation for <P must be an eigenvalue problem (cf. 23.9
or 18.2). Hence,

(26.5)

and the rest is

1 d( de) ( m
2

)-.- - sin0- + l(l + 1) - ~B e = O.
sm BdB dB 8m

(26.6)

26A.3 Legendre's equation. If we introduce x = cos B, the (26.6)
reads

d ( d8) ( m
2

)dx (1-x
2
)dx + l(l+1)-1_x2 8=0,

which is called (modified) Legendre '8 equation.

26A.4 m = O. For m = 0 Legendre's equation reads (---+24C.l)

The general solution to this can be written as (---+24C.3)

e = API(x) + BQI(X),

(26.7)

(26.8)

(26.9)

where PI and QI are Legendre functions of first and second kind, re­
spectively. QI is divergent at x = ±1, so that for a sphere problem this
function should not appear. Furthermore, PI is not finite at x = 1 if I is
not an integer. Hence, we need Pn (n EN), the Legendre polynomials
(---+21B.2, 24C.2(3)). That is, I must be a nonnegative integer (the
eigenvalue problem has been solved).

26A.5 m i=- O. For convenience 24C.5 is repeated here. If we de­
fine Z(x) by

(26.10)
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(26.7) becomes

? d2 Z dZ
(1 - x-) dx2 - 2(m + l)x dx + (n - m)(n + m + l)Z = O. (26.11)

This equation can be obtained by differentiating (26.7) m times. There­
fore, the general solution of (26.7) is given by (~24C.5)

dm dm

P:(x) = (1 - x2 )m/2 dxmPn(x), Q~(x) = (1 - x2r /2 dxmQn(x).
(26.12)

These functions are called associate functions of Pn and Qn' If we re­
quire that the solution is finite at x = 1, then P;; is the functions
appearing in the solution.
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26A.6 Associate Legendre functions. If m is odd, then Pnm is
not a polynomial:

pl(x)

pi(x)

pi(x)

Pj(x)

(1 - x2 ?12 = sinO,

3(1- X
2

)1 / 2X = 3sinOcosO = ~sinO,

- 3(1 - x2 ) = 3sin2 a~(1- cos20),

~(1 - x2?/2(5x2 -1) = ~(sine + 5sin30),
2 8

(26.13)

(26.14)

(26.15)

(26.16)
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pi(x)

p](x)

15
15(1- x2 )x = 4(cosO - cos30), (26.17)

15(1- x2?/2 = 15sin3 0 = 15(3sinO - sin30),
4

(26.18)

etc., where x = cos O.

26A.7 Orthonormalization of associate Legendre functions. We
have

J1 (l +m)! 2
-1 PJ:l(x)Pl

m
(x)dx = (l _ m)! 2l + 10k,l. (26.19)

[Demo]. The LHS is, for 1 > m, k > m

f(m) (26.20)

(26.21)

On the other hand, replacing m with m -1 and n with 1 in (26.11) and multiplying
(1 - x 2)m-l, we get

Hence, (26.21) implies

(l+m)!
f(m) = (1 + m)(l- m + l)f(m - 1) = ... = (1- m)!f(O).

f(O) = 2/(21 + 1) is obtained from 21A.5.

(26.22)

(26.23)

26A.8 Spherical harmonics. Now we can construct a complete or­
thonormal set of £2(52, sinO) (52 is the unit 2-sphere) (-+20.19). Let
us define the kets {Il, m)} by (-+20.21-)

((), epll, m)

2l + 2 (l-lml)!p1m l ( LJ)_l_ im<.p
2 (l + ImI)! I cos (7 -/2ife ,

(26.24)

where the ket \8, ep) satisfies (-+20.23, 20.25)

{271' rio dep io d8\O, ep) sinO(O,ep\ = 1.
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and
(0, cplo', cp') = 6(0 - 0')6(cp - cp')/ sinO. (26.26)

26A.9 Orthonormal relation for spherical harmonics. The de­
composition of unity (-+20.15) reads

00 1

1 = 2: 2: 11, m)(l, ml
1=0 m=-I

with the normalization

(l,mll',m') = 81•1,8m ,m"

In the ordinary notation these formulas read (-+20.26-27)

and

(26.27)

(26.28)

(26.29)

(26.30)

26A.10 Angular momentum. Quantum mechanically, _1i2L 2 is the
total angular momentum operator. 11, m) is the simultaneous eigenket
of the total angular momentum operator and the z-component of the
momentum M z :

(i1i)2LI1,m)

Mzll,m)

1i21(l + 1)11, m),
mll,m).

(26.31)

(26.32)

26A.11 Spherical harmonic function. A function X of angular
coordinates 0 and cp is called a spherical harmonic function of order n,
if rnX becomes a harmonic function (-+2C.11). X satisfies

LX + n(n + 1)X = 0, (26.33)

where L is in 26A.1. Because of the completeness (-+17.3) of the
spherical harmonics (essentially, its proof is in 37.1), any spherical
harmonic function of order n can be written as

n

X(O, cp) = L AmY~(O, cp).
m=-n
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26A.12 Addition theorem. Let, be the angle between the directions
specified by the angular coordinates ((}, rp) and ((}', rp').356 Then,

Pn(cos,) = 47f t ynm(B', rp,)ynm(B, rp). (26.35)
2n + 1 m=-n

This theorem allows us to decouple two directions.
[Demo]. Notice that Pn(COS'f) is a spherical harmonic function of order n (due to
spherical symmetry), so that we can expand it as

n

Pn(COS'f) = L Ynm(8,!p)Am(fj',if")'
m=-n

(26.36)

The coefficients are fixed immediately from the following formula and the orthogo­
nality of {Y;,}.

26A.13 Lemma. Let X be a spherical harmonic function of order
n, and, is the angle in 26A.12. Then,

1
27r 17r 47fdrp d(}sin(}X((},rp)Pn(cos,) = X(O',rp').

o 0 2n + 1
(26.37)

[Demo]. The integration is all over the sphere, so we can freely choose the 8 = 0
direction. Let us choose it to be the direction of (8', !p'), and write the new angular
coordinates as h, t,b). The integral we wish to compute becomes

(26.38)

where .\:" is X in new variables. X is again a spherical harmonic function of order
n (look at the spherical symmetry of (26.33)), so that it can be expanded as

Hence,

n

Xh, t,b) = L Bnyn
mh, t,b).

m=-n

(26.39)

1= J2n
4
: 1B o. (26.40)

To calculate Bo note the fact th'at ym 0, if') = 0 if m i= 0 (see the definition of P;:'
in 26A.5), and Y~(O, if') = (2n + 1)/41r (Pn(l) = 1 -+21B.5(1)). Hence, from
(26.39) we obtain

356 We have

, ){;!f;1r , '){;!f;1rBo = Xn(O,t,b -21 = X(8 ,!p -2l'n+ n+

cos'f = cos () cos ()' + sin () sin ()' cos(!p - !p').
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26A.14 Multipole expansion. Let p(x) be the charge distribution.
Then the potential due to this charge distribution with respect to the
zero potential at infinity is given by

J p(y)
V(x)= dY4 I I'

1l"Eo X - Y

If p(x) vanishes for Ix I 2:: R, then

V(x) = to EO~n+1 Ctn 2m\ 1q;;'V,:"(B, 'I'l] ,
where

q: = lR dr l7r dBsinB l27r d<prn~r:(B,<p)p(r,B,<p).

The expansion (26.43) is called the multipole expansion. 0
[Demo], Let the angle between x and y be T' R = Ixl and r = Iyl. Then

Ix - yl = RJ1- 2(cosi' + (2,

(26.42)

(26.43)

(26.44)

(26.45)

where ( = r/R « 1). With the aid of the generating function of the Legendre
polynomials (-+21A.9), we get

(26.46)

Now we use the addition theorem 26A.12 to separate the x and y directions as

(26.47)

Putting this into (26.42) and exchanging the order of summation and integration
(-+19.11), we get the desired formula.

26A.15 Lower order multipole expansion coefficients. For low
order expansions, the Cartesian expression is much more popular. It
reads

q P ·R lL:· ·Q··RR-V(R) = - +-- + - ~,J ~J ~ J +... (26.48)
R r 3 2 R5 '

where R is the position vector from the center of the charge distribu­
tion, q is the total charge, p is the dipole moment

p = Jdxp(x)x,
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and Qij is the quadrupole moment tensor

Qij =Jdx( 3xix j - X20ij )p(x). (26.50)

In terms of these more familiar moments, we can write

qg
1

(26.51)V41r q,

qi -J8
3
1r (Px - ipy), (26.52)

q~ {f;pz, (26.53)

-1 {[;(px + ipy), (26.54)q1

q~ 11
2
~(Ql1 - 2iQ12 - Q22), (26.55)

q~ -~ff;(Q13 - iQ23), (26.56)

qg 1ff (26.57)- "2 41r Q33,

-1 1ff;q2 3 81r (Q13 + iQ23), (26.58)

-2 1/* . (26.59)q2 12 21r (Ql1 + 2ZQ12 - Q22)'

Note that, generally
qln = q-m (26.60)n 11·

26.B Application to PDE

26B.l Formal expansion of harmonic function in 3-space. 26A.l­
3 and 26A.9 tell us that a harmonic function 1/J (---+2C.ll) can have
the following (formal)357 expansion in 3-space in terms of spherical har-

357If we wish, we could sayan expansion as a generalized function (-+14).
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monic functions:

00 I

'l/J = L L Rlm(r)Yzm(O, cp),
1=0 m=-I

where Rlm(r) obeys (-t26A.l)

d2 R
dr2rRIm = l(l + 1);.

Hence, Rim has the following general solution (-tllB.14)

Rlm(r) = Almrl + Blmr-I-l.

That is, we get the following formal expansion:

00 1

'ljJ = L L (A1mrl + Blmr-l-l)Yim(o, cp).
1=0 m=-I

(26.61 )

(26.62)

(26.63)

(26.64)

26B.2 Interior problem. A harmonic function on 3-ball of radius a
centered at the origin must be finite at the origin, so its general form
must be

00 I

'l/J = l: l: Almr1Yim(B, cp).
1=0 m=-I

(26.65)

for r E [0, a].
(1) Dirichlet condition on the sphere. The solution to the Lapalce
equation on the sphere with the boundary condition at the surface

'l/J(a,O,cp) = V(B,cp)

must have the form of (26.65). Hence we must have

00 1

V(B, cp) = l: l: A1malYim(O, cp).
1=0 m=-l

With the aid of the orthonormality in 26A.9, we obtain

7r 27r

Almal = fa dO sinO fa dcpY~(B, cp)V(O, cp).

(26.66)

(26.67)

(26.68)

(2) Neumann condition on the sphere. The solution to the Lapalce
equation on the sphere with the boundary condition at the surface

a'ljJ\ar r=a = E(O, cp).
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Differentiating (26.65), we obtain

(26.70)

Hence, it is easy to obtain an explicit formula analogous to (1).

26B.3 Exterior problem. If the harmonic function outside of a
sphere is bounded, then the solution must have the following form

00 I

'I/J = 2: 2: Blmr-l-lYzm(o, rp).
1=0 m=-I

(26.71)

Blm are determined with the aid of orthonormality of spherical har­
monics just as the interior problem.

26B.4 Uniqueness condition for exterior problem. We have dis­
cussed that if the domain D is not bounded, then the uniqueness con­
dition is not trivial (~1.19, 29.9). To study this, first we study the
problem in the domain DnV, where V is a sphere of radius R. Suppose
'l/JI and 'l/J2 are solutions to a given Dirichlet problem. Let 'I/J = 'WI - 'l/J2.
Then, it is a solution to a homogeneous Dirichlet problem. Green's
formula tells us that

r (grad'I/J?dr = r 'I/J grad 'ljJ . dB = r 'I/J grad 4' . dB.
JDnv Ja(DnV) JavnD

(26.72)
Hence. for the integral to vanish a sufficient condition is

j'I/Jl < const.R-1/ 2
-€ (26.73)

Boundedness of 'I/J is generally not enough to guarantee the unique so­
lution.

26B.5 Annular problem. If the domain is a concentric sphere. the
problem is called an annular problem. In this case both terms in RIm in
26B.l are needed. The boundary conditions on two spherical bound­
ary surfaces allow us to determine the coefficients uniquely.

Exercise.
Find the harmonic function on the annular region r E [a,3a] with the boundary
conditions u = cos ¢ on r = a and u = cos 3¢ on r = 3a.

26B.6 Cylindrically symmetric case. If the system under con­
sideration is independent of rp (~24C.l), then the general solution

378



has the following formal expansion:

00

'I/J(r,(),<p) = 2)Alr
l +Blr-I-1)pl(COS()).

1=0

(26.74)

This is certainly a solution of the Laplace equation as can be seen from
the result in 26B.l (also 26B.8). The uniqueness of the solution tells
us that this is the general solution.

26B.7 Examples.
(1) A conducting sphere of radius a is separated into the upper and
the lower halves. The upper halfis maintained at potential V1, and the
lower at va. The electric potential outside the sphere is given by

v+V1 - va a -(V1_ Vo) L (-1 )(1_1)/2 2l + 1 (~) 1+1 (l - 2);; PI(cos ()).
2 r oddl J2 r (l + 1)..

(26.75)
(2) The electric potential due to uniformly charged disk of radius a.
For r > a

Q 00 n-1 (2n - 3)!! (a) 2n
V = -- L(-l) ()1I - P2n-1(cos()).

21rEor n=l 2n .. r
(26.76)

Here Q is the total charge on the disk. For r < a there is an extra
complication, because () = 1r/2 is in the disk. However, for 0 E [0, 1r/2)
there is no problem, and the solution is

Q [r 00 (-It-1(2n - 2)! (r)2n ]
V=-- 1--P1(cos())+L 2n-1( )1' - P2n-1(cos()).

21rEor a n=l 2 n - 1 .n. a
(26.77)

For () > 1r/2 we use the symmetry V(r,(),<p) = V(r,1r - O,rp).
(3) The equilibrium temperature distribution of a half ball of radius a
with the surface temperature specified as T = f( cos 0) and the bottom
disk is maintained at T = a. In this case we use the reflection principle
(-716A.I0) to extend the problem to the whole ball. The boundary
condition for the extended problems is given by Tr=a = g(cos 0), where
g(x) = sgn(x)f(x). From the symmetry, the boundary condition on
the bottom surface is automatically satisfied. The formal expansion of
the interior problem with cylindrical symmetry (-726B.6) is given by
26B.3, so the answer reads

00

T = L AlrlYz0 ((), rp)
1=0
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with

(26.79)

Exercise.
(1) Find the gravitational potential due to a sphere of radius R with the density
distribution given by

p = rk X m (8, ',0),

where X m is a spherical harmonics of order m (--+26A.ll).
In this case due to the superposition principle, the potential V is given by

(26.80)

(26.81)

Use (26.46) in 26A.14 to expand the Green's function. Then, use 26A.13 to
perform the angular integral. In this way, we arrive at

411" R m +k+3 1
V(x) - -- --X (8 'rJ)

- 2m + 1 m + k + 3lxlm+l m 'T'
(26.82)

(2) Discuss the waves in a thin spherical layer of radius R. The equation of motion is
the wave equation written in the spherical coordinates with r suppressed (r = R).
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