
25 Asymptotic Expansion

A formal expansion of a solution of a linear ODE discussed
in the previous section around an irregular singular point
gives generally a divergent series, but the series may still be
useful as asymptotic series. Almost all the expansion series
obtained by perturbation calculations in physics are diver
gent but asymptotic series. The famous perturbation series
of QED are examples. We cannot uniquely reconstruct the
function from its asymptotic series expansion in general, but
we can with some auxiliary conditions. A famous example
is the Borel summability.
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Summary:
(1) If Frobenius' method is blindly applied around an irregular singu
lar point, we usually obtain divergent formal series, but they are often
asymptotic (25.1). Most perturbation series in physics are only asymp
totic (25.17).
(2) Divergence does not automatically mean asymptoticity; A series is
an asymptotic expansion of a function, if the truncation error at the
n-th order is smaller than the n-th order term (25.3). Therefore, its
optimal truncation (25.5) is practically very useful.
(3) Computation involving asymptotic series can be performed termwisely
except differentiation (25.10).
(4) There are several standard methods to obtain the asymptotic ex
pansion of functions and integrals (25.11-13, 25.15).
(5) The asymptotic expansion (in terms of a given asymptotic sequence)
of a function is unique (25.6), but an asymptotic series cannot uniquely
determine a function (25.7).
(6) However, if the function satisfies certain auxiliary conditions, then
it can be recovered from the asymptotic series. The most important
condition is the Borel summability (Nevanlinna's theorem 25.20). In
this case the Borel summation allows us to reconstruct the function
(25.18-20).

25.1 Irregular singularity and divergence. Try to solve (24.8)
following Frobenius (24B) blindly, assuming that x = a is an irregular
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(25.1 )

(25.2)

singular point (-+24B.2):

00

u(x) = x>' L Ck Xk .

k=O

Formally, we get a set of formulas for Ck and A as in 24B.3. If, fortu
nately, C/ = afor allllarger than some N, we can get a regular solution.
However, this is an accidental case, and usually we can prove that for
some k > °

. ICn-k Ihm -- =0,
n->oo Cn

that is, the series (25.1) is divergent. 348 However, the resultant diver
gent series may be used as an asymptotic series around x = O.

25.2 Asymptotic sequence. Let {<Pn(x)} be an infinite sequence
of continuous functions. If <Pn+l(x) = o[<Pn(x)] around Xo, i.e.,

(25.3)

for all n > 0, the sequence is called an asymptotic sequence (around xo).

25.3 Asymptotic series. Let {<Pn} be an asymptotic sequence around
Xo. Then, the following formal series

(25.4)

is called an asymptotic series for a function j at Xo, if for each fixed n

(25.5)

(25.6)

as x -+ Xo. That is, if

lim j(x) - 2:k=o an<pn(x) =a
X->Xo <Pn (x )

for all n, we say (25.5) is an asymptotic expansion of j around Xo in
terms of asymptotic function sequence {<Pi}, and write

Discussion.
(A) Let A a (O',;3) denote the angular region

Aa(O',,B) == {zlO' < Arg(z-a) < ,B},

(25.7)

(25.8)

348See E L Inee, Ordinary Differential Equations (Dover, 1956; original 1926),
p422. Also see W R Wasow, Asymptotic Expansions for Ordinary Differential Equa
tions (Inteseienee, 1965).
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where Arg is the principal argument (-+a4.7). We say a function f is expanded in
the (generalized) asymptotic power series around a in the angular region Aa(a, (3),
if (25.5) hold when z -+ a is taken inside the angular region. The boundary of the
maximal angular region where a given asymptotic expansion holds is called a Stokes
line (-+25.8).
(B) The Stirling formula 9.11 is admissible in the angular region Ao(-7f, 7f). This
can be shown with the aid of

( 1) ~ 1100

z ( 21rt)logf(z)= z-- logz-z+logv27f-- ~log 1-e- .
2 7f 0 .. +t

25.4 Example. A typical example is:

(25.9)

(25.10)1
00 e-t/x 00

F(x) = --dt", L)-ltn !x n
+l.

o 1 + t n=O

This is an asymptotic series around x = O. If x = 1/2, then the series
read

1 1 133---+---+-+ ...
2 4 4 8 4 .

(25.11)

This is hardly useful. However, if x is small, then the series should be
usable as a numerical tool:349

112 6
F(O.l) '" 10 - 100 + 1000 - 10000 + .... (25.12 )

25.5 Optimal truncation of asymptotic series. As is clear from the
definition 25.3, to evaluate f(€), if we truncate the asymptotic sequence
at the n-th order, then the error (i.e., the difference between the true
value and the estimate obtained from the truncated series) must be
smaller than an ¢n ( E). Hence, for a given Ewe can find an optimal n to
truncate the series by looking for n which minimizes an¢n (€).

For example, for (25.10), with the aid of Stirling's formula (-+9.11,
also see 25.14)

n!xn+1 '" e(n+l) Inx+nln(n/e).

Hence, n '" 1/ € gives the optimal truncation position.

Discussion: How to efficiently compute series.
(1) Euler transformation. Let

00

f(x) =L anxn

n=O

(25.13)

(25.14)

349Read a conversation between a numerical analyst and an asymptotic analyst on
p19 of N. G. de Bruijn, Asymptotic Methods in Analysis (Dover, 1958, 1981).

358



be a convergent series. Define the difference operator D as

Then,
00

f(x) = (1- x)-l ao + (1 - x)-l 2: Dan xn+1.
n=O

(25.15)

(25.16)

(25.17)

This transformation is called the Euler transformation. Practically it is wise to use
this beyond some finite terms.
(2) Subtraction trick. The above idea may be understood as subtracting the
expansion of (1- :r)-l ao from f(x). If we could find a function g which is close to
f and easily expandable analytically, then considering f - g may be a good idea to
compute the series for f. For example, to compute

00 1

f = ~ (1+n2 )'

it is advantageous to use the knowledge

00 1

~ n(n + 1) = 1.

Hence,

(3) We wish to compute
00 1

S-"
- ~ 1 +n2

n=l

(i) The remainder satisfies the following inequalities

(25.18)

(25.19)

(25.20)

(25.21 )
rOO dx 00 1 roo dx

} N 1 + x 2 < S N == l; 1 + n2 < JN -1 1+ x 2 .

Using this, find the necessary number of terms to obtain S within a 0.01% error.
(ii) Now we use the subtraction trick (--+D7.5) with the aid of

What N do you need to obtain the same accuracy?
(4) The same idea works for integrals as well. Consider

11 1
I(E) = ~dx.

o vE + X

In this case 1(0) = 2 is easy, so let us subtract l/-.IX:
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(25.25)

Introducing u = x / f. (rescaling trick), we realize that this integral is of order f.l/2.

The integration range may be replaced by [0, 00) to the lowest nontrivial order.

25.6 Uniqueness of asymptotic expansion. The asymptotic ex
pansion up to a given number of terms of a given function is unique if
an asymptotic sequence is specified. D
This follows from the explicit formula for the coefficients:

1
. f(x) - L:k:J ak<Pk(x)

an = 1m ).
X---+XQ <Pn(x

25.7 Warning. However, an asymptotic series cannot uniquely de
termine a function. (1 +xt 1

, (1 +e- X )/(1 +x) and (1 +e-y'X +x)-l all
have the same asymptotic expansion L:( _1)n-1 x-n (x ~ 00) (Demon
strate this statement). If we try to asymptotically expand e-1/ x in
terms of the asymptotic sequence {x n

} (x ~ 0), all the coefficients
vanish, but obviously the function is not equal to O. Hence, we can
not generally recover a function from its asymptotic expansion, because
transcendentally small terms are ignored by asymptotic expansion.

25.8 Stokes line. The transcendentally small term e-1/ x (x ~ +0)
cannot be seen through asymptotic expansions as seen in 25.7. How
ever, obviously this is no more small for x < O. Hence, if we consider
the function f (x) as a function f (z) of the complex variable z instead
of x, then its 'expandability into asymptotic series' should change dras
tically according to the sectors or regions on the complex plane. The
occurrence of this drastic change is called Stokes' phenomenon and the
boundary of these regions is called a Stokes line. The existence of this
phenomenon signifies nonconvergent asymptotic series.

25.9 Convergent power series is asymptotic. If f(x) is Taylor
expandable at x = a (Le., is analytic (~7.1) around a), then the Taylor
series is an asymptotic series. Conversely, if f(x) is holomorphic (~5.4)

and single valued in 0 < Ix - al < T for some positive T, then a is a
removable singularity (~8A.5(4)(i)), and the asymptotic series is the
Taylor series of f around a.350

25.10 Operations with asymptotic series.
(1) Termwise addition and subtraction of two asymptotic series (with
the same asymptotic sequence 25.2) is again an asymptotic series.
(2) In the case of power series f '" L: anxn and 9 '" L: bnxn, their prod
uct f 9 has the asymptotic power series L: cnxn with Cn = L:~=o an-rb,..

350 Encyclopedic Dictionary of Mathematics vol I p124-6.
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(3) Also for power series the asymptotic series of f(g) is obtained from
that of f and g by substitution.
(4) The termwise integration of the power asymptotic series is the
asymptotic series of the integral:

rx 00 ain f(x)dx"" 2: _n_xn +I
.

o n=O n + 1
(25.26)

(5) However, termwise differentiation may not be allowed. A famous
counter example is e- I / x sin(e l / x ), which has 0 as its asymptotic power
series as guessed easily from 25.7, but its derivative cannot be expanded
m powers.
(6) Termwise differentiation is allowed if the derivative of the function
also has an asymptotic expansion. See the Discussion below.

Discussion.
In this case, if f is holomorphic near a in the angular region and has an asymptotic
power series, then termwise differentiation is allowed so long as a is reached within
Aa(a:,P) (->25.3 Discussion (A)).

25.11 How to obtain expansion I: Integration by parts
(1) Let us estimate the tail of the normal distribution

1 100

2G(x) = -- e-Y /2dy.
V2K x

Integrating by parts, we get

rn= 1 2/ 100
2v 21fG(x) = _e-x 2 - e-Y /2dy.

x x

From this we easily get

(25.27)

(25.28)

(25.29)

(25.30)

This suggests that G(x) exp x2/2 can be asymptotically expanded in
powers of x-I. See also 25.12.
(2)

1
00 -8 -t 00-8

- Ei( -t) = ~d8 "" ~ -1 ~d8
t 8 t t 82

etc., gives an asymptotic expansion.
(3) The decay rate of the Fourier expansion coefficients of a Ck

_ func
tion discussed in 17.14 is an application of this method thanks to the
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Riemann-Lebesgue lemma (-+17.11).
(4) Fourier expansion of piecewise Ck-functions. To compute

J: f(x)eiwXdx (25.31)

we decompose the integration range into piecewise Ck sections, and
then estimate the integral asymptotically by integration by parts (again
thanks to the Riemann-Lebesgue lemma) in each section.

Exercise.
(A) Find the asymptotic expansion of Fresnel integrals

{X 7rU2 (X 7rU2

C(x) == io cos -2-du ; S(x) == io sin -2-du ;

[Hint. Use Jo= ---+8B.8.]
(B) Approximate estimation of integrals351

(1)

() 1x t2 dt
I x = e .

o yx2 - t 2

For x « 1, we may replace et2
~ 1. For x » 1, we introduce ~ = x - t, and

I(x) = ex2 ['" e-2ex+e2 d~ .
io J2~x - ~2

(25.32)

(25.33)

(25.34)

(25.35)

Plotting the exponent in the integrand, we realize that the exponential factor is the
largest when ~ = 0, so that

l
x d' x21= d x

2
I(x) ~ ex2 e-2ex __"_ ~ ~ e-z~ rv ~.

o V2x~ 2x 0 .fZ 2x

(2)

(25.36)

This can be rewritten as

I( b) 1 roo _Z2 • 2 (b )
a, = va io e sm va Z dz. (25.37)

If b » va, then the sine factor oscillates very rapidly, so we may replace it with its
average value 1/2. Therefore, ~ 1/va. Compare this with the exact value of I.

25.12 How to obtain asymptotic series II: Watson's lemma.
Consider the following Laplace integral352

F(s) = ~oo e-stf(t)dt.

351 Migdal
352 F is the Laplace transform of f (---+33).
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Assume that f (t) has a power series expansion

00

(25.39)

with the radius of convergence R. Replace f in the integral (25.38) with
its series expansion (25.39), and perform the integration termwisely.
Then we get the following formal result:

00 an
F(8)'=' '" .L 8 11 +1 '

71==0

(25.40)

Watson's Lemma. If there is a > 0 such that If(t)1 = G[eat
] for

sufficiently large t, then (25.40) is actually an asymptotic expansion of
F around 8 = 00. 0 353

Example. An asymptotic expansion of the error function may easily
be obtained with the help of Watson's lemma:

2 100 2 2 2100 2Erfc(x) = - e-t dt = _e-X e-2xt- t dt.
..fi x ..fi 0

(25.41)

Now introduce u = xt and expand e-u2
/

x2 in power series.

2e-
x2 1OO

( u
2

u
4

u
6

)Erfc(x) = -- e-2u 1- - + - - - + ... duo
x..fi 0 x2 2x4 6x6

(25.42)

This lemma can be used to estimate the asymptotic form of Fourier
transforms as well.

Exercise.
(1) Show for x > 0

(25.43)

(25.44)1
00 -xl ~

~dt'"2:
o 1 + t

VI :::-0

(3) The asymptotic expansion of Ci and si:

[Hint. Use s = xt as a new integration variable.]
(2) Show

. 100

cos t . 100
sin tCz(x) == -dt, Sl,(X) == -dt.

x txt
(25.45)

353 For a proof see B. Friedman, Lectures on Application-Oriented Mathematics
(Wiley, 1969), p78.
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This is the real and imaginary parts of

100 eit 100 ei(x+u)
J(x) = -dt = --duo

x t 0 x+u
(25.46)

(25.48)

Apply Watson's theorem to obtain the asymptotic expansions of these functions.
Of course, repeated integration by parts should also work as can be guessed from
the example in D25.11.
(4) (This problem need not be here.) Find the asymptotic expansion in the x ---+ 00

limit of

(25.47)

in powers of l/x For n = 1, what is the optimum truncation of the resultant asymp
totic series to compute E1 (N)?

25.13 How to obtain asymptotic series III: Laplace's method.
Consider

/

+00

F(O) = -00 eBh(x)dx,

where h is a real C2-function with the following properties:
(i) h(O) = 0 is an absolute maximum of h, and h < 0 for any nonzero
x.
(ii) There are positive constant a and b such that h ::; -a for Ixl 2: b.
We must of course assume that the integral converges for sufficiently
large O. Then, in the 0 -t 00 limit, we get

F(O) r"oJ ~(-Oh"(0))-1/2. (25.49)

(25.50)

25.14 Gamma function and Stirling's formula. Although we can
apply Watson's lemma to get the asymptotic expansion of Gamma
function (-t9.1), it is not very easy, so we use the Laplace method.
Substituting t = z(1 + x) in (9.3), we get

r(z + 1) = ezzz+l 17 [e-·1:(1 + x)r dx.

h in 25.13 reads -x+ln(1 +x), so it satisfies the condition of Laplace's
method, and h"(O) = -1. Hence, we get

(25.51 )

which is the famous Stirling's formula (-t9.11) obtained by Laplace in
this way.

25.15 How to obtain asymptotic series IV: Method of steepest
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descent. This is perhaps the most famous method to obtain asymp
totic expansions of integrals. The principle is explained as follows. We
wish to compute the following contour integral on the complex plane

1= fc G(z)etf(Z)dz, (25.52)

where C is a contour from infinity to infinity on the complex plane such
that on both ends the holomorphic function (-+5.4) f goes to -00. G
is also assumed to be holomorphic and t is a large positive constant.
Let us split f into its real and imaginary parts as f = ¢ + i'lj;. Since ¢
is a harmonic function (-+5.6), it can have a saddle point (-+29.6) z*,
which satisfies f'(z*) = O. Modify the contour C to C* so that it can
pass through z* and parallel to grad ¢ near z*. Along this pass

and 'Ij; must be almost constant, because the Cauchy-Riemann equation
(-+5.3) tells us that gradients of ¢ and 'Ij; are orthogonal. Hence the
second term in the above expansion along C* near z* must be real
non-positive. We may introduce a real coordinate ( such that f(z) =
f(z*) - (2/2 + .". Let 0: be the angle between the real axis and the
tangent of C* at z*. Then

f(z) = f(z*) + ~(z - z*? j"(z*) + ...
2

Changing the integration variable, we get

1 1

1/2
1= etf(z*)G(z*)e-iet 27r

tf"(z*)

(25.53)

(25.54)

(25.55)

25.16 Acceleration or improvement of asymptotic series. If we
could convert the asymptotic series around 0 in powers of x into an
other asymptotic sequence which is in terms of an asymptotic sequence
converging much more quickly to 0 than x n , then the asymptotic esti
mate should become much more accurate. An example is given here.354

Consider (25.10)
1 1 2

F(x)=---+-+ ....
X x 2 x 3

(25.56)

354See, for example, C. N. Moore, Summable Series and Convergence Factors

(Dover, 1966).
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F(x) =

We wish to convert this into the power series in y = ¢(x). We assume
yjx ~ 1 in the x ~ 00 limit, and the Taylor-expandability: xjy =
1 + ajy +bjy2 +.". Substituting this into (25.56), we get

1 1------,----- + ...
y+a+b/y (y+aF

~ (1 - ~ + :: - :2 + ...) - :2 (1 _2
y
a + ...) + ....

(25.57)

Hence, choosing a = -1, we can kill the 1/y2 term. That is, we get

1 [1]Fx =--+0 .() x+1 (x+1)3
(25.58)

This is much better than the original expansion for x » 1. Of course,
one should not believe that the improvement is increasingly better if we
continue this procedure indefinitely; the outcome is still an asymptotic
expansion.

Discussion.
Consider the summation

00

S=L!(r),
r=l

(25.59)

where! is well-behaved. Let Sen) be the partial sum up to the n-th term. Then,
often

B C'
Sen) = S + - + 2" + o[n-2

].
n n

(25.60)

This can be used to estimate S from partial sums.
A variant of this idea is the estimation of integral from numerical integration

with increment h. Let the integral be I and its approximately computed value with
the increment h be I(h). Then, often

I(h) = 1+ Bh + C'h2 + o[h2
]. (25.61 )

25.17 Most perturbation series in physics are at best asymp
totic. In field theory and statistical mechanics, in many cases we can
perform analytical work only with the aid of some sort of perturbation
techniques. The resultant perturbation series are usually divergent.
Physicists often claim that they are asymptotic, but divergence does
not automatically mean that the series is asymptotic. Hence, we have
two problems: (1) To show that the series is asymptotic and (2) To
recover the desired quantity from the asymptotic series. As we have
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seen in 25.7, (2) is impossible without some auxiliary knowledge about
the function. Read Fejer's theorem (---t17.10) for Fourier series. A
certain summation method may recover the original function from a
divergent series under an appropriate auxiliary conditions. (For Fejer's
theorem the needed auxiliary condition is the continuity of the func
tion.) Thus, we may expect that a function satisfying certain auxiliary
condition could be recovered from its asymptotic series by a particular
summation method. A representative method is the Borel summation
(---t25.18). Often the perturbation series in field theory are proved to
be Borel summable (i.e., the original quantity can be recovered from its
asymptotic series as a Borel sum).

25.18 Borel transform. Even if the RHS of

(25.62)

diverges, its "Borel sum"

00 tn
B(t) = l: an,

n=O n.
(25.63)

may converge. B(t) is called the Borel transform of the series (25.62).

25.19 Heuristics. Consider

(25.64)

Inserting this into (25.62), and formally changing the order of intergra
tion and summation, we obtain

1100 100

f(z) = - B(t)e-t/Zdt = B(Az)e->'dA.
zoo

(25.65)

Essentially, the Laplace transform (---t33) of B(t) is the desired func
tion.

(25.66)
(-1)n(2n)!

n!(2x)2n .

Exercise.
(1) Apply this to (1 + X)-l '" I:(_)nxn.
(2) We can asymptotically expand as ( ~~ if)

? 100 ? _",2 00
Erfc(x) = ~ e- t2 dt '" ~_e- L

y7r '" v7r X
h =-0

Apply the Borel summation method to this series and recover the error function.
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25.20 Nevanlinna's theorem. Let f(z) be analytic on the open
disc D in the figure 1 and its asymptotic expansion satisfies

(25.67)
n-1

f(z) = L ak zk + Rn(z)
k=O

~

with
D IRn(z)1 ~ const.O"nn!lzln (25.68)

uniformly for all n and all zED for some positive 0". Then (25.67)
is Borel summable (-+25.17). That is, the Borel transform B(t) of
the series converges for ItI < 0"-1 and can be analytically continued to
an analytical function B(t) (-+7.10) on the strip containing the entire
positive real axis. From this f can be recovered as355

lWi

1100

f(z) = - B(t)e-t/Zdt.
z 0

(25.69)

-- -------------------~

355 For an elegant proof see A D Sokal, J. Math. Phys. 21, 261-3 (1980). However,
this is not the general form given by the original author. For applications, see, for
example, Itzykson and Zuber, Quantum Field Theory (McGraw-Hill, 1980), Section
9.4. J. Zinn-Justin. Quantum Field Theory and Critical Phenomena (Clarendon
Press, 1989) Section 27.
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