
24 General Linear ODE

The theory of general linear ODE is summarized, and then
a constructive solution method (Frobenius' method) is out­
lined. This series method is best implemented with the aid
of symbol manipulation programs. The reader should prac­
tice the method for one or two representative examples by
hand or a step by step application of mathematics softwares.

Key words: analyticity of solution, fundamental system
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Summary:
(1) First-order n-vector continuous ODE preserves the linear indepen­
dence of the initial condition vectors (the existence of fundamental
systems 24A.4, 24A.11).
(2) If the coefficient functions are holomorphic around x, then the so­
lution around x is Taylor-expandable, so a series form fundamental
system can be constructed (24B.1). Even if the coefficients are not
holomorphic, if their singularities are not very bad (regular 24B.2),
then still a series form fundamental system can be constructed (Frobe­
nius'theory) (24B.3-7).
(3) The Frobenius method is best implemented by a computer. See
24B.8 for a 'practical Frobenius.'
(4) Separation of variables of the Laplace equation in the spherical co­
ordinates requires Legendre polynomials (24C.1-2) and associate Leg­
endre functions (24C.5, examples in 26B).

24.A General Theory

24A.1 The problem. We must be able to solve separated equations
(---t23) which are usually ODE. They are linear but with nonconstant
coefficients. We know we have only to consider (---tllA.5)

du(x) = A(x)u(x),
dx
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where A(x) IS a n x n matrix which is cOlltinuous339 on an interval
feR.

24A.2 Theorem [Unique existence of solution]. IfA(x) is continuous34o

in an open interval feR, then for any Uo E R n and Xo E I, there is
a unique solution u(x) passing through (uo, xo) whose domain is f. 0
This follows directly from the Cauchy-Peano and Cauchy-Lipschitz the­
orems (-+IIA.8, lIA.10).

24A.3 Analyticity of solution. A(x) may be considered to be a
matrix consisting of functions on C as A(z).
Theorem. Assume A(z) to be analytic (i.e., all the components are
analytic functions -+7.1, 7.10) in Dee. Then, a solution analytic
around a E D can be analytically continued (-+ 7) to any point in D
along any curve in D. 0

This implies that the singular points of a solution, if any, appear
where there are singularities (-+8A.2-7) of A(z).

Discussion.
For ID Schrodinger equation, the wave function is finite at a point which is not a
singularity of the potential. For example, the wave function of the harmonic oscil­
lator is finite for finite x. For the Coulomb potential, the singularity can exist only
at the origin.

24AA Theorem [Fundamental system of solutions]. The to­
tality of solutions of (24.1) makes a n-vector space. Any basis set of
this space is called the fundamental system of solutions. 0
[Demo] Let VI, V2,' .. ,Vn be linearly independent vectors and Xo E f.
Write the solution passing through (Vj, xo) as <Pj(x) (j = 1, ... , n). Let
Uo = Cl VI + C2V2 + ... + CnV n, and

(24.2)

It is obvious that the space cannot have a dimension larger than n. If
there is x such that u(x) = 0, then due to the uniqueness of the solu­
tion (-+24A.2) it must agree with the solution starting from 0, which
is obviously identically zero, so that u(x) can never be 0. Hence, the
dimension of the solution space cannot be less than n. 0
Notice that this theorem implies that <Pl(x), <P2(X),···, <Pn(x) are func­
tionally independent: the identity for x E f

(24.3)

339We say that A(x) is continuous, analytic, etc., if all its components are, as
functions, continuous, analytic, etc.

340 Our problem is a linear problem, so this is enough. A related discussion is in
llA.10 Discussion (B).
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implies Cj = 0 for all j. 341

24A.5 Fundamental matrix. The matrix <I> (x ) = (<PI (x), <P2(x), ... , <Pn(x))
is called a fundamental matrix of (24.1), if {<PI (xJ' <P2 (x), ... , <Pn (x)) is
a fundamental system of solutions (_24A.4).34

24A.6 Wronskian. Let Ul(X), U2(X), ... ,un(x) be n solutions to
(24.1). The determinant of the matrix (Ul(X), U2(X),"', un(x)) is
called the Wronskian of the set of solutions {Ul(X),U2(X),··· ,un(x)}.

If the Wronskian of the set {Ul(X), U2(X),'" ,un(x)} is nonzero,
then this set is a fundamental system of solutions.

The converse is also true according to 24A.4. In other words:

24A.7 Theorem. A regular matrix X (x) satisfying

dX(x) = A(x)X(x)
dx

is a fundamental matrix of (24.1).

(24.4)

24A.8 Theorem. Let W(x) be the Wronskian of the set of (any)
n solutions to (24.1). Then,

d:;X) = [Tr A(x)]W(x).

This should be obvious from

det[(l + At)X] = detX + tTrAdetX + O[t2
].

This formula follows from

detX = exp[Tr lnX],

(24.5 )

(24.6)

(24.7)

which is a very important formula and essentially follows from detX =
TI .Ai, where .Ai are eigenvalues of X.

24A.9 Theorem. Let <I> (x ) be a fundamental matrix (-24A.5) of
(24.1). Then, for any non-singular matrix P, <I>(x)P is again a funda­
mental matrix of (24.1). Conversely, if <I>(x) and 'lJ(x) are two funda­
mental matrices of (24.1), then there is a constant non-singular matrix
P such that 'lJ(x) = <I>(x)P. 0

341This is of course a stronger condition that u i= O.
342The evolution operator T(x,y) such that u(x) = T(x,y)u(y) is given by

T(x, y) = <I>(x)<I>(y)-l.

342



[Demo] Obviously, ~(x)P satisfies (24.4) and non-singular, so it is a fundamen­
tal matrix. Next, let P = ~(X)-l,¥(x), then a straightforward calculation shows
dP/ dx = O. Hence, P must be a constant matrix, and non-singular by definition.

d2u du
dx2 + P(x) dx + Q(x)u = 0, (24.8)

where P and Q are functions of x E R. This can be transformed into
the first order ODE of the form discussed in 24A.l:

24A.I0 Second order linear ODE. Separation of variables (-~23)

of linear second order PDE often gives second order linear ODE of the
following type:

du
dx = A(x)u (24.9)

with u(x) = (U,d'lljdx)T and

(24.10)

24A.ll Fundamental system of solutions. Let Ul and U2 be two
solutions for (24.8). The Wronskian W(x) (-t24A.6) for these solu­
tions is defined as

W() I Ul U2 Ix = u~(x) 'u~(x) . (24.11)

Tha is, W is the Wronskian of (24.9). If we can find Ul and U2 with
W (x) =j:. 0, then the set {Ul' U2} is called a fundamental system of
solutions. The general solution to (24.8) is Cl Ul + C2U2 for arbitrary
constants Cl and C2 (cf. 24A.4).

24A.12 Theorem [Separation theorem]. Let U and v make a fun­
damental system of solutions of (24.8). Then
(1) The zeros of U and v are all of multiplicity one.
(2) The zeros of u and v separate each other. D
[Demo] Suppose u has a zero of multiplicity larger than one. Then u andu' can
vanish simultaneously, so that the Wronskian W (-+24A.6) of u and v can vanish.
This contradicts the assumption. Thus (1) must be true. To prove (2) note that
u and v cannot have a common zero, since W -=I O. Let al and az (> ad be two
adjacent zeros of u, and assume that v does not vanish in the interval J = (aI, az ).
Then ulv is well defined in J, and is differentiable:

d(ulv) W(x)
=dx ----;2' (24.12)

This cannot vanish. However, u/v = 0 at the both ends of J, so Rolle's theorem
asserts that (24.12) must vanish in J, a contradiction. We can exchange u and v to
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complete the proof.

Exercise.
Consider the following l-Schrodinger problem

(-~ + V)1P = E1P, (24.13)

where V vanishes at infinity. If this equation has a bound state, it cannot be de­
generate. In particular, the lowest energy bound state (ground state) cannot be
degenerate. Prove this showing or answering the following:
(1) Degeneracy implies that there are two independent solutions for a given energy.
What must be their Wronskian?
(2) The Wronskian for localized state is zero.

24A.13 Making a partner. Suppose we have found one solution v
to (24.8). We wish to make u (a partner of v) so that {u, 'v} becomes a
fundamental system of solutions (~24A.ll). We use (24.12). To com­
pute the Wronskian W we can use (24.5) (~24A.8) with Tr A = -P
for (24.8). W can be solved as

W = Woexp (- fl' P(v)dv).

From (24.12) we obtain

where c is a constant.

Exercise.
One solution of

d
2

y (1 ) dy 1- - - + 1 - + -y = 0
dx 2 X dx x

is eX. Find its partner.

(24.14)

(24.15)

(24.16)

24.B Frobenius' theory

24B.l Analiticity of solutions. 24A.3 implies that if P and Q are
analytic in a region D, then the solution to (24.8) is unique and ana­
lytic in D. Hence, a local solution can be assumed to be in the power
series form around a point where P and Q are holomorphic.

24B.2 Singular points. If P or Q becomes singular (~8A.2) at
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a point a, a is called a singular point of the ODE (24.8).
(1) At a singular point a, if the singularity of P is at worst a pole of
order one, and that of Q is at worst a pole of order two (~8A.5(4)(ii)),
then a is called a regular singular point of the ODE.
(2) Otherwise, a is called an irregular singular point of the ODE.

Discussion.343

In general (in more standard pure math literatures) the definition of a regular sin­
gular point is as follows. Let u be any solution of (24.8).
Definition. Zo is a regular singular point of (24.8), if there is a positive number p
such that for any of its solution u satisfies

lim (z - zoYu(z) = 0
z--+zo

(24.17)

That is, if the singularity of the solution (remember 24A.3, 24B.l) is at worst
algebraic at zo, we say Zo is a regular singular point.
Theorem [Fuchs]. A necessary and sufficient condition for Zo to be a regular sin­
gular point of (24.8) is that Zo is a regular singular point in the sense of 24B.2. 0
Its proof is not very simple (elementary but lengthy). An intuitive understand­
ing is the 'balance condition' of the singularities (divergences) around Zo in (24.8).
Consider only the most singular terms in (24.8) near zoo If the 'aggravation' by
differentiation of the singularity in the solution is balanced by the singularities in
the coefficients, then we say the singularity is regular.

24B.3 Expansion around regular singular point. Frobenius showed
that power series expansion can give a local solution around a regular
singular point as well. Around a regular singular point a, which we
may set to be 0 without any loss of generality, we expect the following
form

00

u(z) = zJl L akzk, (24.18)
k=O

where f-l is an appropriate complex constant. We may expand P and Q
as (Laurent expansion ~8A.8)

00

zP(z) = LPkZk, (24.19)
k=O

00

z2Q(z) = L qkZk. (24.20)
k=O

Formally substituting these expansions into the differential equation
(24.8), we get conditions for the equation to be satisfied identically:

343 Yosida p86

aO¢(f-l) 0,

al¢(f-l + 1) + ao(h (f-l) = 0
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and generally for n = 1, 2, ...
n

4J(/-1 + n )an +~ an-kfh(/-1 + n - k) = 0,
k=l

where

/-12 + (pO - 1)/-1 + qo,

/-1Pi + qi·

(24.23)

(24.24)

(24.25)

24B.4 Indicial equation. We may assume ao = 1 without any loss
of generality. However, if (24.23) couples only even coefficients {a2n
with each other (or only odd coefficients), then even and odd coeffi­
cients are decoupled. Therefore, the choice ao = 1, a1 = 0 and that
ao = 0, a1 = 1 both give different solutions (cf. 24C.2). (24.21) or
4J(/-1) = 0 is called the indicial equation. It determines two (possibly
identical) values of /-1, /-11 and /-12 (Henceforth, we assume Re/-11 2 Re/-12)'

Exercise.
Find the indicial equation for

.!!- {(I - z2).!!-u} + {Z(l + 1) - ~} u= O.
dz dz 1 - Z2

(24.26)

24B.5 Use of symbol manipulation programs. Expanding and
regrouping expanded terms is performed by symbol manipulating pro­
grams very efficiently. In practice, Frobenius' method will not be used
often, but if needed, the best way is to use computers to compute the
senes.

24B.6 Theorem. Assume that z = 0 is a regular singular point
(--*24B.2(1)) of (24.8) and /-11, /-12 are the roots of the indicial equation
4J(/-1) = 0 (cf.(24.24)). Then
[1] If /-11-/-12 (j. N, there is a fundamental system of solutions (--*24A.11)
in the form of (24.18) converging in some neighborhood of O.
[2] If /-11 - /-12 E N, generally only one solution in the form of (24.18) is
uniquely determined by the expansion method. See 24B.7 for further
classification. 0
[Demo] Choose It = Itl. Then, ¢(It + n) cannot be zero for any n = 1,2, .. " so that
an can be uniquely determined from (24.23). The resultant series is convergent in
some small neighborhood of z = O. This can be demonstrated by constructing a
majorizing series.344 If Itl - 1t2 is not in N, then It = 1t2 also allows us to deter­
mine an uniquely, and the resultant solution is distinct from the one obtained for

344See, for example, H. S. Wilf, Mathematics for the Physical Sciences (Dover,
1962), or E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cam­
bridge UP, 1927), Sect. 10.31 for an explicit demonstration.
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Pl' However, if PI - P2 E N, then there is mEN such that P2 + m = PI or
<P(P2 +m) = O. Therefore, we may not generally determine am for this P2'

24B.7 Theorem [For J.LI - J.L2 EN]. In case [2] of Theorem 24B.6.
[21] If PI = P2, then any partner u (to make a fundamental system)
of the solution v constructed for PI in the form (24.18) must contain a
logarithmic term and has the following general form

u(z) = Av(z) In z + zJ-l l 1/J(z), (24.27)

where A is a nonzero constant, and 1/J is analytic around z = O. This
function can be determined by substituting the series expansion form
of (24.27) into (24.8).
[22] If PI - P2 E N\ {O}, then a partner u of the solution v constructed
for PI in the form (24.18) has the following general form

u(z) = Av(z)lnz+zJ-l2 1/J(z), (24.28)

(24.30)

where v is again the solution constructed for PI in the form (24.18),
A is a constant (can be zero), and 1/J is analytic around z = O. This
function can be determined by substituting the series expansion form
of (24.28) into (24.8).
D
[Demo] According to (24.15) (~24A.13) the ratio q(z) = ulv of v and its partner
u is given by (Cl and Co are integration constants)

q(z) = CI + Co JZ d(v(()-2 exp [- J( P((')d(']

= CI + Co JZ d( [(1'1(1 + a~( + ... )]2 exp [- J( (~~ + PI + ...) d(']

= cl + Co JZ C(po+2I'Ilh(Od(, (24.29)

where h( z) is analytic around z = 0 as can be seen from

h(z) = exp [- JZ d((PI - P2( + ...)] 1(1 + al( + .. f.

Since from the indicia! equation (~24B.4) or <P(p) = 0 (cf.(24.24)) -Po + 1 =
PI + P2, we know Po + 2PI = 1 + PI - P2 E N \ {O}. Therefore, (24.29) has the
following form

(24.31)

where A is a constant and 'P is a function analytic around z = O. Hence, u must
have the form (24.28). For PI = /12 A cannot be zero to make u functionally inde­
pendent of v.O.
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24B.8 Practical Frobenius.

~
Ol Check the expansion center is at worst regularly singular (--t24B.2).
1 Compute the indices f-Ll and f-L2 according to 24B.4.
2 Choose the index with the larger real part f.-Ll and construct the

series solution following Frobenius (24B.3).
(3) If f.-L2 is not equal to f.-L1, try to construct the second solution just as
before. If the obtained solution is different (functionally independent345

from the first one, we are done.
(4) If we obtain the same solution or f.-L1 = /-l2, assume the form with
logarithm as in 24B.7, and determine v in a power series form.

Exercise.346

(1) Show that a fundamental system of solutions of the equation

consists of

1 4
Uj = x- 12x +"',

1 3
U2 = 1 - 6'<: + ....

(2) Show that a fundamental system of solutions of the equation

consists of

Ul = X 1/ 2 {I + ~X2 + _1_x4 +... }
16 1024 '

1 3/2
U2 = Ul (x) log x - 16 x +....

(24.32)

(24.33)

(24.34)

(24.35)

(24.36)

(24.37)

24B.9 Construction of the second solution by differentiation.
Let us write the solution obtained by Frobenius' method with the index
A as u(x; A). If u(x, Ad and u(x, A2) are functionally independent, then
we can use u(x, Ad and a linear combination of the two as a fundamen­
tal system of solutions. Consider

(A1 - A2)u(x, Ad - m 'u(x, A2)
A1 - A2 - m

(24.38)

345That is, their Wronskian (-+24A.6) is not identically zero. Often, without
checking the Wronskian, we can recognize the independence by inspection.

346 Watson-Whittaker p209.
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(24.39)

For the case [21]' we choose m = 0 and compute the limit of A1 --+ A2

with the aid of I'Hospital's rule. That is, we compute

:>.u(x; >.)I,~"
Computing this explicitly, we obtain the general form given in 24B.7[21].
When Al - A2 = mEN, we perform a similar calculation:

Again we recover the form asserted in 24B.7.

24B.10 Examples.347

(1) Case [1]: f-i1 - f-i2 -::J N.

x2
y" + (x2 + 3

5
6) y = 0

with

(24.40)

(24.41)

v

u

5/6 ( 3 2 9 4 )x 1- -x + -x + ...
16 896 '

1/6 ( 3 2 )x 1 - gX + ....

(24.42)

(24.43)

(2) Case [21]: f-i1 = f-i2

x(x -1)y" + (3x -l)y' +y = 0

with
v = 1/(1 - x), u = lnx/(1 - x).

(3) Case [22]: f-i1 - f-i2 E N \ {O} with a logarithmic term.

(x 2
- 1)x2y" - (x 2 + l)xy' + (x 2 + l)y = 0

with

(24.44)

(24.45 )

(24.46)

v=x, u=xlnx+1/2x. (24.47)

(4) Case [22] f-i1 - f-i2 E N \ {O} without any logarithmic term (cf.
27A.19, 27A.25).

(24.48 )

347They are taken from E. Kreyszig, Advanced Engineering Mathematics (Wiley,
1983 Fifth edition) p163.
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with
v = sinxjJX, u = cosxjJX.

See 27A.2 also, for example.

(24.49)

24B.ll Singularity at infinity. To study the singularity of the
equation (24.8) at infinity, we introduce ( = z-l as usual in complex
function theory. The equation reads in terms of (

(24.50)

(24.51 )

Therefore (---t24B.2),
(1) If 2z - z2 P(z) and z4Q(z) is regular at 00, z = 00 is a non-singular
point.
(2) If zP(z) and z2Q(z) are regular at 00, then z = 00 is a regular
singular point.
(3) Otherwise, z = 00 is an irregular singular point.

24B.12 How to solve inhomogeneous problem. To solve the in­
homogeneous version of (24.8)

d2u d'u
dx2 + P(x) dx + Q(x)u = f(x),

where f is a piecewise continuous function, we have only to find one
special solution to this inhomogeneous equation; the general solution
is the sum of that for (24.8) and this special solution. If one cannot
get it by inspection, then perhaps the most systematic way is to use
Lagrange's method of variation of constants described in 11B.13.

24.C Representative ExaIllples

24C.1 Legendre equation. If the method of separation of variables is
used in the spherical coordinates for the Laplace equation (---t2D.I0),
the angular part can further be split into the parts 8(B) and <1>( cp) as
(cf.26A.2)

d2 1I> 2
dcp2 + m II> = 0,

1 d ( de) ( 1n
2

)-.-- sin8-
B

+ f(f + 1) - ~ e = O.
smB de d sm 0
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If there is no cp dependence, then m = 0, and (24.53) simplifies to
(~26B.6)

d2P _ 2z dP £(£+1) P = 0
d 2 ?d + ? ,z 1 - z- z 1 - z-

where z = cosO and P(z) = 8(0). Or, we get

d d
dz(1- z2)dz P +£(f+ l)P = 0,

(24.54)

(24.55)

(2) This implies that an can be expressed in terms of ao and al. The
choice ao = 1, al = 0 gives an even power series

which is called the Legendre equation. z = ±l are regular singular
points (~24B.2) of (24.54). (z = 00 is also a regular singular point.
See 24B.ll.)

24C.2 Series expansion method applied to Legendre's equa­
tion; around z = o. Since z = 0 is a regular point, solutions can
be obtained in the series form P(z) = L:k=O akzk with the radius of
convergence at least unity (~24B.l, 7.3).
(1) Introducing this into (24.55), we get

(24.56)(n + l)(n + 2)an +2 + (£ - n)(£ + n + l)an = O.

P. -1 £(£+1) 2 £(£+1)(£-2)(£+3)
even - - 2! z + 4! - ... ,

(2~·57 )
and ao = 0, al = 1 gives an odd power series

P dd = z _ (£ - 1)(£ + 2) z3 + (£ - 1)(£ + 2)(£ - 3)(£ + 4) z5 _ •••
o 3! 5! .

(24.58)
(3) Notice that these two solutions make a fundamental system of solu­
tions (~24A.ll). If £ = n E N \ {O}, then they become polynomials
called the Legendre polynomials Pn(z) (~21B.2).

24C.3 Series expansion method applied to Legendre's equa­
tion; around z = 1. The indicial equation (24.24) is ¢(J-L) = J-L2 = 0,
so this is the case [21.] of Theorem 24B.7. One solution in the series
form is

_ 00 (£+1)(f+2) ... (f+k)(-f)(-f+l) ... (-£+k-l) (l-Z)k
Pe(z) - E k!2 2

(24.59)
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u I I I J," J ..'

-- Q,(JI) Q.(JI) 0., , I I A
K I... "< r-... P,r.-t-t- ~'l:o/J...... ,1<1:/ ~ I):..!!

1-,,-, ,~ V ~ \ ~
I\. v / ".......

k: ...... ~rn

I=~i)
~'(") b.t~ ...~ I

Q\(JI)
1"--i--" """) A<o...I'I.

I Q,(JI)

1.

0.8
0.6
0.4
0.2
o

-0.2
-0.4
.,..0.6
-0.8

-1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This is called the Legendre function of degree l of the first kind. Its
partner in the fundamental system is obtained in the form of (24.28)
(~24B.1). For a positive integer e= n

1 1 + z n 2n - 4k + 3
Qn(z) = 2Pn (z) In 1 _ z - {; (2k _ l)(n _ k + 1) Pn- 2k+1(Z). (24.60)

This is called the Legendre function of degree eof the second kind. Since
Pn and Qn make a fundamental system of solutions (-t24A.ll), their
zeros separate each other (~24A.12(2)).

(24.61)

24C.4 Gauss' hypergeometric equation. The following equation
is called Gauss' hypergeometric equation

~u du
z(l - z)-d? + b - (a + f3 + l)z]-d - af3u = 0,z- z

where a, f3 and 'Yare constants. z = 0, 1 and 00 are the regular singular
points (-t24B.2(1)). The indicialequation (~24B.4) around z = 0 is

</>(p,) = P,(,£ - 1 + 'Y) = O.

For 1£ = 0 we can get (-t24B.6) for -, ¢ N

(24.62)

( . ) _ ~ (a)k({3)k k
F a,{3",z = L...J k'() Z,

k=O • I k
(24.63)

where
(A)k = A(A + 1)··· (A + k - 1). (24.64)

F is called the hypergeometric function. For p, = 1 - " if I - 2 ¢ N,
we get a partner of the above solution as

Zl-'Y F(a + 1 - " (3 +1 - 1,2 - ,; z).

Notice that from (24.59)

PAz) = F(v + 1, -v, 1; (1 - z)j2).

(24.65)

(24.66)

Discussion.
If we scale z as kz in Gauss's equation, we obtain the equation of the following
form:

z(1 - kz)u" + (c - bz)u' - au = O. (24.67)

Its regular singular points are at 0, 11k and 00. There is no other singularities.
Take the k -+ 0 limit to make 11k confluent to 00. Then, we obtain

zu" + (c - bz)u' - au =O. (24.68)

352



If we set b = 0, the equation is Bessel's equation (......27A.1). Indeed, replacing az
with -t2/4, c = v + 1, and v = tVu, then we have

(24.69)

It is obvious that 00 is its irregular singularity (......24B.2).

24C.5 Associate Legendre functions. Consider the case with m =I­
ofor (24.53) (~24C.l). Using the same transformation of the variable
z = cos (), (24.53) becomes

d( de) ( m
2

)dz (1-z
2

)--;[; + f(f+1)-1_z2 8=0. (24.70)

z = ±1 are regular singular points (~24B.2). Instead of solving this
with the aid of the series expansion, introduce Z as

(24.71)

Then, we have

d2 Z dZ
(1 - z2) dz2 - 2(m + 1)z dz + (f - m)(f + m + 1)Z = O. (24.72)

Differentiate Legendre's equation (24.55) m times, we get

Therefore, in terms of Legendre functions Pe and Qf (~24C.3)

dm dm

Pt(z) = (1-z2)m/2_
d

Pe(z), Qe(z) = (1-z2)m/2_
d

Qe(z) (24.74)
zm zm

are the fundamental system of solutions (~24A.ll) of (24.70), and
are called associate Legendre functions (~26A.5-6). Notice that pr
is not a polynomial, if m is odd. Also

(24.75)

24C.6 Confluent hypergeometric equation. Replace z in the hy­
pergeometric equation (24.61) with z//3 and let /3 ~ 00. We get

d2 ,u du
z- + h' - z)- - au = 0

dz2 dz
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This is called the confluent hypergeometric equation or Kummer's equa­
tion. z = 0 is a regular singular point (--+24B.2), but z = 00 is an
irregular singular point (--+24B.2), which is created by the confluence
of two regular singular points 1 (which is scaled to f3 by the variable
change) and 00 of the hypergeometric equation. The indicial equation
(24.24) is ¢>(f-L) = f-L(f-L - 1) + 1f-L = O. The series solution method gives

Ul = F(O'., 1; z), U2 = zl-"Y F(O'. -1 + 1,2 - 1; z),

where
_ ~ (O'.)k k

F(0'.,1; z) ~ ~ -kl( ) Z , 1 =j:. 0, 1, 2, ....
k=O . 1 k

This function is called the confluent hypergeometric function.

Exercise.
Show that
(1) (l+z)n=F(-n,~,~,z),.

(2) (ljz)log(l + z) = F(l, 1,2, -z).
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APPENDIX a24 Floquet Theory

a24.1 We consider (24.1) with periodic A(x), that is, there is w > 0 such that

A(x + w) = A(x). (24.79)

a24.2 Theorem [Floquet]. If A in (24.1) is periodic, then there is a fundamental
matrix such that

<I>(x) = F(x)exA, (24.80)

where F is a n x n matrix with period w, and A is a constant n x n matrix. 0

[Demo] Let <I>(x) be a fundamental matrix (-+24A.5) for (24.1). Then <I>(x + w)
is also a fundamental matrix. Therefore, Theorem 24A.9 tells us that there is a
constant non-singular matrix M such that <I>(x + w) = <I>(x)M. Since M is non­
singular, its logarithm In M = N is well defined. Define A = N / w, and set

F(x) = <I>(x)e-xA.

We get with the aid of <1>(x +w) = <1>(x)M

<I>(x +w) = F(x +w)e(X+W)A = F(x +w)exA M = F(x)exAM.

Hence,
F(x + w) = F(x).

In other words,

(24.81)

(24.82)

(24.83)

a24.3 Theorem. A linear ordinary differential equation (24.1) with a periodic
matrix A can be converted into a constant coefficient ordinary differential equation

dv(x) = Av(x)
dx

with u = F(x)v, where F is defined by (24.81).0

(24.84)

a24.4 Characteristic exponents. The eigenvalues of A in (24.81) are called the
characteristic exponents. There is no systematic way to obtain these exponents.
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