
23 Separation of Variables - General Con­
sideration -

Separation of variables is probably the only systematic way
to solve linear PDEs. Its essence is the construction of the
problem-adapted orthogonal function system. We have al­
ready studied the method in 18 when the ordinary Fourier
expansion is applicable. The principles have been exhausted
there. Here the general features of the method are outlined
with a summary of prerequisites and limitations. Practi­
cally, if the reader wishes to solve a PDE boundary value
problem, consult a collection of worked-out problems. We
should not forget that if we need an exact method, it is a
sure sign of our ignorance about the problem.

Key words: special function, eigenvalue problem.

Summary:
(1) Practically, the method works only when the domain has a special
shape. Possible shapes are best seen in 'style books,' that is, books
collecting worked-out problems. If the reader cannot find any good ex­
ample in them, it may be wise to give up exact solutions (---+23.2).
(2) The essence of separation is the problem-adapted Fourier-type ex­
pansion; consequently, in order to justify the method we need almost
all the machinery of functional analysis (---+23.3).

23.1 Separation of variables: general idea. All our time-dependent
linear problems (---+ 1) have the following form:

Lt'ljJ(x, t) = Q'ljJ(x, t), (23.1)

where the operator L t acts only on the functions of time, and Q on the
functions of space coordinates. The time and space coordinates can be
separated trivially as

f-l'IP1 (t ) ,

f-l'ljJ2(X ).
(23.2)
(23.3)

Since the first equation is an ODE, it is easy to obtain its general
solution. If Q has a 'good' property, we can generalize the eigenvalue
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expansion method for a finite dimensional vector space. Formally (23.1)
can be transformed into

(23.4)

where CPJ.l(x) is the eigenfunction of the operator Q (QcpJ.l(x) = f-LCPJ.l(x))
and (consistently with the notation in 20.21)

(23.5)

This is an analogue of the integral to compute the Fourier coefficients
(--+20.14, 20.24). The final solution is formally given by

'l/J(X,t) = L(cpJ.l(x)I'l/J(x,t))cpJ.l(x),
f'

(23.6)

where the summation is over all the eigenvalues. Hence, the key prob­
lem of the separation of variables is to find a problem-adapted gener­
alized Fourier expansion.

23.2 Practical procedure via separation of variables. As we
have seen in 18 boundary conditions make the separation procedure
more complicated than stated above (--+26B, 27B). We will see an
illustration in 23.9. A practical procedure to solve a PDE with in­
homogeneous boundary conditions by separation of variables can be
summarized as follows:
(A) If the domain shape is not regular (roughly speaking, if the bound­
ary does not consist of part of planes and conic surfaces), forget about
exact analytic methods (--+23.4).
(B) If the domain is'well-shaped,' then consult a typical problem source
book of the boundary-value problem. For example, the lecturer find N.
N. Lebedev, I. P. Skalskaya and Y. S. Ufliand Worked Problems in
Applied Mathematics (Dover 1965) very usefuL327 If the reader cannot
find any similar problem, unless she wishes to be an expert of special
functions, it is wise for her to give up analytical methods to obtain
exact solutions.
(C) If the reader insists on analytical solutions:
(1) Decompose the problem into the problems with inhOIllogeneous
boundary conditions only in one coordinate direction with the aid of
superposition principle exactly as we did in 18.2. The remaining coor­
dinate directions become (generalized) eigenvalue problems.
(2) The (generalized) eigenfunctions of the separated homogeneous
problems dictate the form of the solution. (This is the step of con­
structing the problem-adapted generalized Fourier expansion scheme.)

327 This is an accompanying workbook of N. N. Lebedev. Special Functions (3 Their
Applications (Dover, 1965), which is an excellent book.
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(3) Fix the expansion coefficients with the aid of the inhomogeneous
boundary conditions and the orthogonality of the eigenfunctions as in
18. See 23.9 for an illustration

23.3 What do we need to justify and implement our proce­
dure? Here, we summarize the requirements.
(1) When can we justify the expansion (23.6)? To answer this ques­
tion, we need a rudimentary knowledge of Hilbert space (---+20) and the
operators on it (---+34). After a suitable preparation we can generalize
Fourier expansion and integral transformations (---+34B.6).
(2) We must be able to find explicitly the eigenfunctions of Q defined on
a linear space satisfying the auxiliary conditions. We use the method
of separation of variables to reduce the problems to lower dimensional
(hopefully 1-space) problems. Therefore, we need methods to solve
linear ODEs (---+24) and associated eigenvalue problems (the Sturm­
Liouville problems 35).

Discussion: Fourier expansion of multivariable functions: addendum to
separation of variables.
We have claimed that the key element of the justification of the separation of vari­
ables is the (generalized) Fourier expansion of the function in terms of the 'equation
adapted' orthonormal basis.328 Generally, we have several variables and we need
multiple Fourier expansion. Then a natural question is whether the totality of the
tensor products constructed from ON bases for individual coordinates is indeed an
ON basis. The answer is in a certain sense affirmative, but somewhat delicate.
(1) The (generalized) Fourier expansion of l(x!,'" ,xn ) is well defined if f is in­
tegrable thanks to Fubini's theorem (......20.15). That is, the value of the Fourier
coefficients do not depend on the order of expansion.
(2) To reconstruct the original function from the Fourier coefficients, we can apply
the individual inverse transforms successively. This is allowed, but the Fourier co­
efficients may not be integrable, so to interpret the inverse transform as an n-tuple
integral (not as n successive one dimensional integrals) is delicate329 and some extra
condition on f is generally required. 330

23.4 What problems can we solve by hand? To have an analytic
solutions, we must be able to solve the eigenvalue problem by hand. To
this end almost always separation of variables is mandatory. As is men­
tioned in 23.2(A), this requires not only a special form of the operator,

328The reader might say any ON basis will do for our purpose. If we need not
worry about the (termwise) differentiability of the Fourier sum, then this is indeed
the case. However, we are solving differential equations, so that we must be sensitive
about the uniformity ofthe convergence of the resultant Fourier series (......17.12-13).

329That is, we must in general inverse transform in the reverse order of the oper­
ation used in the calculation of the coefficients.

330See Kolmogorov and Fomin, second ed. Chapter 8, Section 4. Perhaps not
available in English.
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but also a special shape of the domain. 331 Therefore, problems we can
solve analytically are very limited even for the Laplace equation. For
situations frequently encountered in practice (e.g., the Laplacian in a
ball) eigenfunctions of separated operators are well known and called
special functions. In short, we can solve by hand only very standard
PDE under very standard auxiliary conditions. That is why the advice
in (B) of 23.2 "see a style book" is practical.

Exercise.
(A) Specify appropriate curvilinear coordinates to solve the following problems (if
the problems are separable at all):
(1) From a solid ball of radius a, another ball of radius b(< a) which is completely
inside the first ball is removed. Temperatures of inside and outside surfaces are
given. Find the steady temperature distribution in the solid.
(2) There are two osculating identical conducting balls. Compute the electric field
when the balls are maintained at V with respect to the infinity.
(3) A cylindrical hole of radius r is made through a solid conducting ball of radius
R(> r) slightly off the center. Find the electric field when the solid has the total
charge Q.
(4) A lens-shaped conductor is maintained at voltage V relative to infinity. Assume
that the surfaces are with the same radius of curvature R and the thickness of the
lens is 2d, where d < R.
(5) A conducting plane has a semicylindrical boss of radius a. The plane is main­
tained with the electric potential V. Find the electric field in the space.
(B) Two identical conducting spheres of radius a are placed with the separation of
21 between the centers. Both the spheres are maintained at voltage V relative to
infinity. Find the electrostatic potential due to these spheres.

Discussion: Lame's problem.
The most general case we can solve with the aid of separation of variables is the
confocal rectangular parallelepiped whose surfaces are made of confocal quadratic
surfaces given by

(23.7)

The necessary special functions are called Lame functions which are not studied
very well.

23.5 What is a special function? The word 'special function' is
used to denote collectively (1) r -function (-*9) and related functions

331 We must be able to employ the standard orthogonal curvilinear coordinates. For
example, for 3d Schrodinger equation, complete separation of variables is possible
only when the potential function V has the following form:

where h's are the ones given in 2D.3 (H. P. Robertson, Math. Ann. 98, 749 (1928);
L. P. Eisenstein, Ann. Math. 35, 284 (1934)).
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like polygamma functions,332 (2) functions described by indefinite in­
tegrals of elementary functions like the probability integral (--t25.11),
(3) elliptic functions, (4) solutions of second order ODE obtained by
separating variables, and (5) solutions to special ODE like Painleve
equations.333 Solutions to the second order linear ODE with 3 regu­
lar singular points (special functions of hypergeometric type) or with
1 irregular singular point resulting from the merging of two regular
singular points (--t24B.2) in the former (special functions of confluent
type) are called classical special functions.

23.6 Are the analytic solutions useful? It is not easy to say yes.
Often the obtained solutions are series solutions in terms of special
functions. Since special functions are mere symbols, one must look up
tables or use, e.g., Mathematica or Maple (even trigonometric functions
are no exceptions; we need a table or a pocket calculator). Hence, if
she wants a detailed behavior of the solution, a lot of numerical work
is needed anyway. One might say that in order to know qualitative or
asymptotic behaviors of a solution, analytic forms are useful. This is
true. However, to require a complete solution in order to get qualitative
or asymptotic behaviors does not sound elegant.

It should be clearly recognized that necessity of full analytic so­
lution is a clear sign of the sad fact that we do not understand the
problem.

23.7 Importance of qualitative understanding. It is important to
know how to solve the problems by hand: what special functions are
suitable, how they behave qualitatively, etc. To teach these has been
the main objective of the conventional math-phys courses.334 However,
for most scientists (esp. pure scientists) to juggle tons of special func­
tions is not important at all.335 It is much more important to acquire
the sense or feeling of correct physics and mathematics so that we will
not be outsmarted by computers, or not to be drowned in the flood of
numbers. The reader must be able to walk, but in order to go to the
Pacific coast she need not retrace the Oregon Trail on foot!

332Polygamma functions: the nth-derivative oflog r( z) is called the (n+1)-Gamma
function. In particular, n = 1 is called digamma function, n = 2 is called trigamma
function, etc.

333See E LInce, Ordinary Differential Equations (Dover, 1956; original 1926)
Chapter 14.

334See, e.g., H. W. Wyld, Mathematical Methods for Physics (Benjamin, 1976).
335Perhaps more than 50 years ago there were one-year courses solely devoted to

trigonometrics in universities (remember that the universities in those days were
not remedial schools of the high school education). This sounds absurd now. To
realize that some topics are unimportant is an important progress.
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23.8 Use of symbol manipulation programs. Many standard an­
alytic methods, e.g., the series expansion method (-+24B), are best
implemented with the aid of mathematics softwares like Mathematica
or Maple. Special functions are available in the standard mathemat­
ics softwares. For example, with Mathematica, if the reader types in
BesselJ[n,z], then she gets In(z) (-+27A.l). Hence, we need not
be extremely familiar with special functions, although we should know
their general features. Most analytical calculations can be mechanized,
so it is probably wiser to practice the use of these programs than to
experience lengthy practice sessions of analytical methods.

(23.8)

(23.9)

(23.10)

(23.11)

fo(r,r.p), 'IjJ(a,r.p,h) = fh(r,r.p),
go(r,z), 'ljJ(r,¢,z) = gq;(r,z),
ha ( r.p, z), 'ljJ (b, r.p, z) = hb ( r.p, z).

'IjJ(r, r.p, 0)
'IjJ(r,O,z)

'ljJ(a, r.p, z)

(-+2D.I0) with the boundary condition

23.9 Case study of separation of variables: Laplace equation
with Dirichlet condition. The purpose of this entry is to provide
a show case with the aid of a fairly difficult problem. The region is
fan-shaped: z E [0, h], r.p E [0, ¢] and r E [a, b]:

[~~r~ +~ [j2 + a
2

] 'IjJ = °
r ar ar r 2ar.p2 az2

o

First we perform the step (C)(1) of 23.2. The separation procedure
'IjJ = R(r)<I>(r.p)Z(z) gives three distinct eigenvalue problems. The full
solution is the superposition of the solutions to all the following three
problems (1)-(3).
(1) With the boundary condition (r, r.p homogeneous; z inhomoge­
neous):

'IjJ(r, r.p, 0)
'IjJ(r,O,z)
'IjJ(a,r.p,z)

fo(r,r.p), 'IjJ(r,r.p,h) = fh(r,r.p),
0, 'IjJ(r, r.p, z) = 0,

0, 'IjJ(b, r.p, z) = 0.

(23.12)
(23.13)

(23.14)

The separated equations are

d2 <I>

dr.p2

d2Z
dz2

~ [d
2
R + ~ dR] _ m

2
+ 0'.2

R dr2 r dr r2 o.

(23.15)

(23.16)

(23.17)

336



The eigenvalue problems are (23.15) and (23.17) with homogeneous
Dirichlet boundary conditions (<I>(O) = <I>(</» = oand R(a) = R(b) = 0).
The positivity of a 2 and m 2 follows from the negative definiteness of
the operators.336 The solution must have the following form:

ffi,Cl

(23.18)
Here Jm is the Bessel function (-27A.2-3), and N m is the Neumann
function (-27A.16). m, Cm and D m are fixed by the Dirichlet condi­
tion:

Dm=O; Cmsinm</>+Dmcosm</>=O. (23.19)

We may choose Cm = 1 without any loss of generality. a, Am,n and
Bm,n are fixed by the Dirichlet condition

Am,nJm(aa) + Bm,nNm(aa)
Am,cJm(ab) + Bm,aNm(ab)

0,
0.

(23.20)
(23.21 )

That is, Jm(aa)Nm(ab) = Jm(ab)Nm(aa) fixes a. E and F are deter­
mined from the inhomogeneous boundary condition (23.14) with the aid
of complete orthogonality (-34B.5) of the eigenfunctions constructed
above (not easy or almost impossible bu hand for general a and b).
(2) With the boundary condition (r, z homogeneous; cp inhomogeneous)

'IjJ(r,cp, O)
'IjJ(r, 0, z)

'IjJ(a, cp, z)

0; 'IjJ(a, cp, h) = 0,

90(r, z); 'IjJ(r, </>, z) = 9<j>(r, z),
0; 'IjJ(b, cp, z) =0.

(23.22)
(23.23)
(23.24)

The separated equations are

d2<I>

dcp
d2Z

dz2

!- [d2R+ ! dR] + m
2

_ a 2

R dr2 r dr r 2
0.

(23.25)

(23.26)

(23.27)

Here the positivity of a 2 is obvious from the condition that (23.26) be­
comes an eigenvalue problem (it is is not elementary to see this -34B.6

336Intuitively speaking, the eigenfunctions must be oscillatory functions to sat­
isfy the orthogonality condition. "Negative definiteness" of an operator L means
UIL\f) ::; 0 for any ket If). The Laplacian ~ is a typical example.
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Discussion (B)). m 2 also must be positive so that (23.27) becomes an
eigenvalue problem. Hence, we may assume

m,Q

(23.28)
where J and K are modified Bessel functions (-+27A.23). Here a, Ea

and Fa are fixed by the Dirichlet condition

Fa = 0; Ea sin ah + Fa cos ah = O. (23.29)

Ea = 1 is admissible. m, Am,a and Bm,a are determined by the bound­
ary conditions

Am,aJim(aa) + Bm,aKim(aa) = 0, (23.30)
Am,aJim(ab) + Bm,aKim(ab) = 0. (23.31)

That is, Jim (aa )Kim (ab) = Jim (ab )Kim (aa) determines m. C and D
are determined from the inhomogeneous boundary condition (23.23)
with the aid of complete orthogonality of the eigenfunctions constructed
above.337

(3) With the boundary condition (cp, z homogeneous; r inhomogeneous)

'ljJ(r, cp, 0) 0, 'IjJ(r, cp, h) = 0,
'IjJ(r, 0, z) = 0, ,'IjJ(r, ep, z) = 0,

'IjJ(a, cp, z) = ha(cp,z), 'IjJ(b,cp,z) = hb(cp,z).

(23.32)

(23.33)

(23.34)

The separated equations are338

(23.36)

(23.35)

(23.37)o.

d2 <.I>

dcp
d2Z

dz2

!.. [d2R+ ~ dR] _m
2

_ a 2

R dr2 r dr r2

The eigenvalue problems are easy ones: (23.35) and (23.36) with ho­
mogeneous Dirichlet conditions. We may thus assume

'IjJ = L(Am,aJm(ar)+Bm,aKm(ar))(Cm sin mO+DmcosmO)(Ea sin az+Fa cos az).
m,a

(23.38)

337 This problem is nontrivial, since we need modified Bessel functions of imaginary
order. See N. N. Lebedev, Special Functions fj Their Applications (Dover 1972)
Section 6.5.

3381n this case obviously m 2 and 0:2 must be non-negative.
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Here, 1m and Km are modified Bessel functions (~27A.23). A and B
must be fixed from the boundary condition (23.34).

23.10 Remarks to 23.9.
(1) If the region in the z-direction is not bounded, we need Fourier
transformations; if the region is not bounded in the r-direction, we
need the Fourier-Bessel(-Dini) transformation (-t27A.22).
(2) The boundary condition in the r.p direction may be periodic.
(3) The Neumann condition case is analogous.
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