
22 Numerical Integration

Most integrals cannot be computed analytically. Some of
the most important numerical integration algorithms are
inseparably connencted to the theory of orthogonal poly­
nomials. Also discussed are the effectiveness of the simple
trapezoidal rule and high-dimensional integrals.

Key words: Gauss schemes, IMT formula, DE formula,
quasi-Monte Carlo method, Monte Carlo method

Summary:
(1) Roughly speaking, Gauss formulas are versatile and useful. Prob­
ably, up to 4 or 5-tuple integrals, direct use of the scheme may be
practical. (-+22A.3, 22A.5, 22A.6).
(2) However, if a very accurate integration is needed, variable transfor­
mation schemes should be used, esp., the DE formula (-+22B.2).
(3) If the integration is over a moderately high (rv 10) dimensional
region, then quasi-Monte Carlo method 22C.5 should be considered
first with the conditioning of the function according to 22C.2. I fhte
dimension is higher, then currently no better versatile method than the
Monte Carlo method is known22C.6.

22.A Gauss Formulas

22A.I Numerical integration. Simple numerical integration meth­
ods as the trapezoidal rule or Simpson's rule has the following general
structure

(the general Newton-Cotes formula).

(22.1 )
We have N freedom to choose Cv ' Hence, it is possible to choose them
so that the formula is exact for f(x) = 1,x, ... ,xN - 1 ((cf. Weierstrass'
theorem BI7.3). Gauss pointed out that there is no necessity to choose
equidistant points v / N to sample the function values. See the following
example.
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22A.2 Simple demonstration. We choose N = 2:

(22.2)

We choose Ci and Xi so that the formula is exact for f = 1, X, x 2 and
x 3 . We have four formulas

1 2 = C1 + C2 ,

X 0 = C1X1 + C2X2,

x2 2/3 = c1xi + C2X~,

x 3 0 = C1Xr + C2X~,

From these equations, we solve as

C1 = C2 = 1,

Xl = -X2 = 1/J3.

Therefore, the N = 2 Gauss-formula (G2) is

11 f(x)dx ~ f (_1)+ f ( __1).
-1 J3 J3

If we need the integration

I = l b

¢>( u )du,

introduce the variable X running from -1 to 1 such that

1
u = 2"[(b - a)x + a + b]

and
1 J11= "2(b - a) -1 ¢>([(b - a)x + a + b]/2)dx.

Examples for (22.3) are given as316

(22.3)

(22.4)

(22.5)

(22.6)

exact 1 2/3 0.4 0.77751164... 0.306853...
G2 0.99848... 0.6738... 0.3987... 0.77750464... 0.2261...

Here f*(x) = l/(x + 2) for X E [O,e - 2], f*(x) = 0 for X E [e - 2,1].

316 From P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Aca­
demic, 1975); not updated but still useful.
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(22.10)

As we see, for smooth functions the method is amazingly powerful.
If we choose the 4 point formula for I = J07l"/2 sin xdx, I = 1.000000,
correct to six decimal places. (The Simpson rule (--t22A.8) with 64
points produces 0.99999983).

Exercise.
(1) Compute the following integral analytically:

/
1 dX(x2 _ 1)e- x2

/ 2. (22.7)
-1

Prescribe a method to compute this numerically with the aid of (only) G2 with the
relative error of 10-5 .

(2) Construct the N = 2 Gauss formula for the integral of range [-1,1] with the
weight e- 1xl • Apply it to cosx and compare the result with the ordinary Gauss­
Legendre formula with N = 2 applied to e- 1xl cosx on [-1,1].
(3) Compute

("/2
Jo cosx sgn(n-j4 - x)dx (22.8)

to the relative accuracy of 10-4 using only G2. In this case if G2 is naively used
for the whole inteval, the error is about 20%.

22A.3 Fundamental theorem of Gauss quadrature. Let w( x)
be a weight function for the interval [a, bJ. Then, there exist real num­
bers Xl,.'" xN and Gl , ... , GN with the following properties
(i) a < Xl < X2 < ... < XN < b,
(ii) Gk > 0 for k = 1,2" .. ,N,
(iii)

b N1f(x)w(x)dx = {; Gkf(Xk) (22.9)

is exact for every polynomial f (x) of degree not more than 2N - 1. D
Actually, Xl'" ,XN are the zeros of PN, the N-th member of the or­
thogonal polynomial family on [a, bJ with the weight w(x) (--t21A.2),
and

Gk = Ib
~N(x)w(x)dx (k = 1, ... , N).

a PN(X)(X - Xk)
D

For example, for J~l f(x)dx, PN(X) = J2~±l PN(x) (--t21A.5) so that
the scheme is called the Gauss-Legendre formula.
[Demo] We demonstrate the theorem for L 2 ([-1, 1]), the most important case. Let
! be an m-th order polynomial, and the desired integration formula is given by

1 NII !(.1J)dx = ECk!(Xk).
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as in (iii). Here the fact (--+21A.ll) that the zeros of orthogonal polynomials are
all in its domain has been fully utilized. Notice that f can be uniquely decomposed
as

(22.11)

where Pn is the n-th order Legendre polynomial, and R is a polynomial of order
less than n. Since the order of Q is m - n, if m - n ~ n - 1 (i.e., m ~ 271 - 1), then
Pn is orthogonal to Q (--+21A.3(1)). Hence, for m ~ 2n -1, we conclude

/
1 f(x)d;r = /1 R(x)dx.

-1 -1

According to our formula (22.10), we have

1 N N

/ f(x)dx = L CkPn(Xk)Q(Xk) +L CkR(Xk).
-1 k=l k=l

(22.12)

(22.13)

Therefore, we immediately see that if we can choose Xk to be the zeros of Pn ,

then the first term on RHS vanishes. That is, (22.12) is true for our formula under
construction. For this to be true, we need to set n = N (--+21A.ll) and m = 2N-l.
We have fixed the sampling point locations. If we can choose C'k so that (22.12)
holds exactly for all the N - 1 order polynomials, then we can integrate all the
polynomials up to the order 2N - 1 exactly by our integration formula. Therfore,
the remaining task is to determine Ck so that

(22.14)

is exact for any choice of N - 1 order polynomial R. Notice that generally we can
write

N

R(x) =L R(xk)lk(x),
k=l

where317

n ( )
x-x'

lk(x) = II '.
ii'k Xk - Xi

Hence, the following choice solves our problem:

Since lk(x)(x - Xk) is proportional to PN (all the zeros are common!),

(22.15)

(22.16)

(22.17)

317This is the standard Lagrange interpolation formula.
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Exercise.
Demonstrate the formula for the weight of the Gauss-Legendre formula:

(22.19)

[Hint.

\0 20o

-5

(22.22)

(22.21) -10

(22.20)

1r(p + p-l)
lerrorl ~ ?N+1 max If(z)l·p- zEn

Exercise.
Calculate the following three integrals:

(2) If f is holomorphic (--+5.4) in n ={z liz + 11 + Iz - 11 = p + p-l}
for p > 1, then

22A.4 Error estimate of Gauss formulas.
(1) If f is at least 2N times continuously differentiable (Le., in C 2N ),
then the integration (011 [-1,1]) error is bounded by

22N+1(NI)4
lerrorl ~ (2N + 1)((2~)!)3 x¥r!t1j lf(2N)(x)l.

with the aid of the Gauss-Legendre formulas for N = 2,4, and 8 and discuss the
results. (The necessary table is on p916 of Abramowitz and Stegun).

22A.5 How to get the weights. Abscissa and weight factors are tab­
ulated in, e.g., Abramowitz-Stegun, Handbook of Mathematical Func­
tions (Dover, 1972), but it is recommended to compute them to avoid
any transcription mistakes.

22A.6 Many dimension. We can of course extend the formula for
many dimensional cases. [See Davis & Rabinowitz Chapter 5]. For
example, a singular integral like

JlJl dxdy-_l­
-1 -1 1 - xy

can be accurately calculated without any special considerations on the
singularities.

22A.7 Integral equation solver. The Gauss method may be the

323



best general numerical method to solve integral equations.

22A.8 Trapezoidal vs. Simpson rule318 Let

{

n-l 1 }
2h ~ f(a + 2rh) + 2[f(a) + f(a + 2nh)] ,

[0 = 2h{~f(a+(2r+l)h)}.

To compute the following integral

l
a+2nh

[= a f(x)dx,

the trapezoidal rule uses

and the Simpson rule uses

(22.23)

(22.24)

(22.25)

(22.26)

(22.27)

(22.28)

Usually, it is believed that the Simpson rule is superior to the trape­
zoidal rule. However, this is not always the case. If

I
b Ib+h[= f(x)dx = f(x)dx,

a a+h

where h is the increment of integration, then the trapezoidal rule is
superior to the Simpson rule. If f vanishes or becomes very small (like
exp(-x2 )) outside the domain sufficiently inside [a, b]' or if f is a peri­
odic function and [a, b] is a period, then (22.28) hold. [See 22A.9 for
the computation of Fourier coefficients.] The purpose of the modifica­
tion in the Simpson rule is to eliminate the end effect of the integration
range. This is why the trapezoidal rule can be better if there is no end
effect. Therefore, the Simpson rule is better than the trapezoidal rule,
when (22.28) does not hold.

22A.9 Discrete Fourier transform I. Let

an = ~ f X k cos (n~1r) ,
k=O

bn = ~ f X k sin (n~1r) .
k=O

(22.29)

(22.30)

318This section is based on an essay by H. Takahashi, 'Superposition in numerical
integration,' Sugaku Seminar, March 1971.
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Then,

1 N-l { (mnk1r) (mnk1r) }X k = 2(ao + aN cosk1r)) ~ an cos N + bn sin ~ ,

(22.31)
if Xk = f(k1r/N), then (22.30) is obtained from the standard forn1U­
las for Fourier coefficients through 'approximating' the integrals with
the aid of the trapezoidal rule. However, notice that the formulas are
exact. This is an example of the merit of the trapezoidal rule for peri­
odic functions.

22A.I0 Discrete Fourier transform II. Let X
sequence of complex numbers, and

e(x) == exp( -2?rix). (22.32)

The following sequence X = {xn} is called the discrete Fourier trans­
form of X:

N-l (k )
X

k = Ee :: Xn-

Its inverse transformation is given by

Cf.32B.12.

22.B Variable Transformation Schemes

(22.33)

(22.34)

22B.l Functions of double exponential decay. If f is an analytic
function, then the trapezoidal rule gives an excellent result for the in­
tegral over R. This seems to be a well known fact. If the integrand
decays double exponentially, i.e., for some positive constants A, Band
C

If I '" Aexp(-B exp(Cx))

The error of the trapezoidal rule truncated at N

N

Th = h L f(kh)
k=-N
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for some positive 6. This means that if N is doubled, then the number
of the significant digits doubles.

22B.2 Double exponential (DE) formula. The DE formula was
proposed by Takahashi319 and Mori in 1974, and is regarded the most
effective integration formula currently. The essence is to change the
independent variable so that the function decays double-exponentially.
For example, for the integral of an analytic function f on [-1, 1.]

o ...o-_....~ __

for the integral of f from -00 to +00 is given by

ITh - II ::; canst·llfll exp(-6N / In N)

x = ¢(t) == tanh (~ sinh t)

(22.37)

(22.38)

D",,~ and the DE formula reads320

1 N!-1 f(x)dx ~ h k~N f(¢(hk))¢'(hk). (22.39)

However, the DE formula is not effective for the integrals of Fourier
transformation type.
Discussion.
The DE formula is powerful even for an integrand with end singularities:

(22.40)

If we use the Gauss-Legendre formula to this, the error is never less than 10-2 for
n ~ 30. The DE formula with 5 terms is already with only less then 1% error.
With 10 points, the error is about 10-6 • With n = 30 the error is about 10-15 •

The improvement is roughly exponential 1O-n / 2 • [This is in conformity with the
theoretical error estimate.]

22B.3 Numerical estimate of Fourier transform. For

1000

f(x) sin (7r(X; a)) dx (22.41)

319 This is the same person of the 'Takahashi gas', proving that there is no phase
transition in l-space with short range interactions. He is the most creative statistical
physicist Japan has ever produced when he was young, but later became the leader
of computer research in ,Japan, saying physics was his hobby.

320H Takahashi and M Mori, Pub!. RIMS 9, 721 (1974).
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the following transformation is effective:321

t
1/;(t) = .

1 - exp( -21r sinh t)

The formula reads

(22.42)

100

f(x) sin (1r(x ; a)) dx ~ Ak'fN g (~1/; (h(k\+ a)) )1/;' (h(k\+ a)) ,
(22.43)

where g(x) = f(x)sin[1r(x - a)/A].

22.C Multidimensional Integrals

22C.l Overview. An immediate idea is to use the one dimensional for­
mulas repeatedly (direct product scheme). Other interesting methods
are the Monte Carlo or quasi-Monte Carlo methods. These latter meth­
ods are characterized by the error estimate which is independent of the
spatial dimensionality but dependent only on the number of sampling
points. Here we discuss only two methods for very large dimensions.
The quasi Monte Carlo method is becoming increasingly important,
because the error improves as 1/N instead of 1/-IN. However, there
seems to be no versatile general scheme applicable to all the cases. This
is a very active field of research esp., in relation to finance.

22C.2 Polynomial variable transformation: recommended pre­
conditioning. Let p be an integer not less than 2. If a function f ({Xi} )
has continuous partial derivatives

(22.44)

for all jl,'" ,js E {a, 1"" ,p}, then we can use the following transfor­
mation

_ (2p + 1)! {Yi
Xi = ¢(Yi) = (p!)2 J

o
uP(1- u)Pdu

to convert the integrand f to

321T. Ooura and M. Mori, J. Camp. App!. Math. 38,353-360 (1991).
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whose multidimensional Fourier coefficients have the following estimate:

(22.47)

With this smoothness condition (---+17.12), many integration formulas
become more effective than without the transformation. Thus usually,
it is recommended to transform the integrand with the aid of this trans­
formation prior to application of integration schemes.

22C.3 Weyl's equidistribution theorem. If a is irrational, then
for any 0 :::; a :::; b :::; 1 we have

1
N#{n I{na} E [a, b], n E {I, 2"", N}} ---+ Ib - al· (22.48)

/
,/'

/
V'

~

Here {a} = a - [a] is the fractional part of a, and #A is the number
of members (the cardinality) of the set A. We will not give any proof
for this,322 but this should be intuitively clear, if the reader imagines
a particle geodesically moving (i.e., going straight) on the 2-torus, and
[0, 1] is the coordinate of its section (the so-called Poincare section in
the theory of dynamical systems). A multidimensional version should
not be hard to formulate and understand in a similar fashion. Thus we
get

22C.4 Theorem [Weyl]. Let 1, a1,"', as be rationally independent. 323
Then,

1 N
lim NLf({kad,· .. {kas}) = r f({x})d{x}.

N ->00 k=l l[o,l]s

22C.5 Improved Haselgrove method.324

r 1 N
If( f({x})d{x} ~ N Lzuq(k/N)f({kad''''{kas}),

[O,l]S k=l

where

( ) _(2q+1)! q( )q
zuq x - (q!)2 x 1 - x .

(22.49)

(22.50)

(22.51 )

The representative irrational numbers a1,' .. ,as are chosen (semi-empirically)
as

322 See Section 3 of Korner.
323That is, there are no integers PO,Pl,'" ,Ps (not all of them are simultaneously

equal to 0) such that Po + 2:Pk Q k = 0
324M. Sugihara and K. Murota, Math. Computation 39, 549-554 (1982).

328



(1) If s + 3 is a prime, then (Xj = 2cos(2jlr/(2s + 3)),
(2) Otherwise, (Xj = 2j /(s+lJ.
wq is introduced to reduce the error further. A detailed error estimate
is available, but the main features of the error is that it is bounded by
the number proportional to N-q.

22C.6 Monte Carlo method. To compute

(22.52)

the Monte Carlo method randomly and uniformly samples points in the
cube [0, 1]S as Yl, Y2,'" and claim

(22.53)

The principle should be understandable from the random analogue of
22C.3.

Its error can be estimated with the aid of Chebychev's inequality325

as
ProbabilitY(II - SNI ~ 2/VdV) :S E (22.54)

for 1 such that 111 :S l.
For example, if N = 106, then with probability 99% we can get the an­
swer with 2% relative error independent of the dimension of the space!
However, the accuracy improves only as N- 1/ 2 •

Exercise.
(1) We wish to compute

/1 /1 -(x +Xo+"+X 2 N... e· 1. N) / dX1 ... d:L'N
-1 -1

(22.55)

(22.56)

with the aid of the Monte Carlo method. How many samples do we need conserva­
tively to obtain the integral with 5% relative error with probability 99.9%?
(2) We wish to compute the following integral by the Monte Carlo method:

1= 1dX1 ... dX100r(1 - r),

where r = JL~~~ Xl/5, and the domain D is the 100 dimensional hypercube
[0,1] x ... x [0,1]. How many sample points are (conservatively) needed, if we wish
to get I with the error less than 2% with the probability more than 99.5%?

325 0.2Probability(lx\ ~ a) ::; (x 2 ), which can be derived easily from the obvious
inequality x2 ~ a2 0(lxl ::; a).
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(3) Generalization of the Chebychev inequality. Let f be a positive function,326
and tpA == infxEA tp(x). Then,

tpAProbability(X E A) ::; (tp).

The inequality we have used is a special case with 'P = x 2 •

(22.57)

326Measurable w.r.t. the probability measure under consideration (---+19a).
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