
21 Orthogonal Polynomials

We can construct a polynomial orthonormal basis of a Hilbert
space. They are called orthogonal polynomials, which have
a beautiful general theory and many important numerical
applications (---t 22).

Key words: generalized Fourier expansion, generalized Ro­
drigues' formula, generating function, three term recursion
relation, zeros, Sturm's theorem, Legendre polynomial, Her­
mite polynomial, Chebychev polynomial

Summary:
(1) Recognize that there is a set of relations and formulas common to
many (all classical) orthogonal polynomials (21A.3-11).
(2) Generating function is a useful tool to derive recursion relations
(21B.4, for example).
(3) Remember where the representative polynomials - Legendre, Her­
mite, and Chebychev - appear (21B).

21.A General Theory

21A.l Existence of general theory. The most important fact about
orthonormal polynomials is that there is a general theory shared by all
the families of (classical ---t21A.6 Discussion (A) ) orthogonal polyno­
mials. The general theory includes generalized Rodrigues' formula, as­
sociating (Sturm-Liouville type) eigenvalue problems, generating func­
tions, three term recursion formulas, etc.

21A.2 Orthogonal polynomials for L2([a, b]' w) via Gram-Schmidt.
{l, x, x2, .•• } makes a complete set offunctions for L2([a, b]' w) (---t20.19):
notice first that CO([a, b]) (the totality of continuous functions on [a, b])
is dense in this space. Weierstrass' theorem (---t17.3) tells us that
any continuous function on a finite interval can be uniformly approxi­
mated by a polynomial. Hence, the totality of polynomials is dense in
L2((a, b), w). Therefore, the set of kets {In)} such that (xln) = xn308 is

308Por the notational convention see 20.21.
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a complete set (-+20.3) of the Hilbert space L2([a, b], w). In this space
the scalar product (-+20.5) is defined by

(fIg) _lb

f(x)g(x)w(x)dx, (21.1)

and the norm Ilfllw = JUII). We apply the Gram-Schmidt orthonor­
malization (-+20.16) to {In)} as follows:

(1) We define Ipo) = 10)//(010).
(2) Normalizing 11) -IPo)(Poll), we construct Ipl)'
(3) More generally, normalizing

n-l

In) - L IPk)(Pkl n ),
k=O

(21.2)

we obtain IPn).
{IPn)} is an orthonormal basis of L2([a, b], w).

The family of orthogonal polynomials of L2([a, b], w) is defined by
(xIPn) times appropriate n-dependent numerical multiplicative factor
as seen in 21A.5.

Exercise.
Apply the Gram-Schmidt orthonormalization method to {xn}~=o and make an ON
basis for L2 ([O, 1]). Compute the basis up to the third member of the set.

21A.3 Theorem.
(1) Pn(x) = (xIPn) is orthogonal to any (n - I)-order polynomial.
(2) The orthonormal polynomials for L2 ([a, b], w) are unique, if the co­
efficients of the highest order terms are chosen to be positive.309

These assertions are obviously true by construction, but practically im­
portant.

21AA Least square approximation and generalized Fourier ex­
pansion. Let Pn be the totality of the polynomials order less than or
equal to n. The polynomial P E Pn which minimizes

Ilf - Pllw (21.3)

for f E L2([a, b), w) is called the n-th order least square approximation
of f (-+20.13). The ket IP) satisfying this condition is given by

n

IP) =L Ipj)(pjlj),
j=O

(21.4)

309Here, it is not meant that the orthonormal basis in terms of polynomials is
unique (of course, not). If we demand that there are no two polynomials of the
same order in the basis, the choice is unique.
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(21.6)

where IPi) are calculated in 21A.2 with respect to w. That is, IP)
is the n- th partial sum of the following generalized Fourier expansion
(~20.14) of If)

00

If) = L Ipj)(pjlf)· (21.5)
j=O

Notice that all the general properties of the Fourier series 17.5 apply
here as well.

Exercise.
(1) Consider the step function (xla) = 0(x - a) on [-1,1] (a E (-1,1». Expand
this in terms of Legendre polynomials (-->21A.5).

(Pnl a) =V2(2n\ 1) (Pn-1(a) - Pn+1(a».

(pO Ia) = (1 - a) / y'2 as easily seen. Hence,

1 1 ex:>

0(x - a) = 2(1 - a) + 2 I)Pn-1(a) - Pn+1(a)]Pn(x). (21.7)
n=!

(2) Expand x 5 into the generalized Fourier series in terms of Legendre polynomials.

21A.5 Example: Legendre polynomials. A family of orthogonal
polynomials of £2 ([-1, 1]) called the Legendre polynomials is defined
as

Pn(x) = f2(xIPn) (21.8)
y~

in terms of orthonormal kets {IPn)} constructed for a = -1, b = 1

and w = 1 in 21A.2. The coefficient J2/(2n + 1) is the multiplicative
factor mentioned in 21A.2. Pn(x) is called the n-th order Legendre
polynomial. According to our notational rule (~20.22)

11 V2n + 1
(Pnlf) = -1 dx 2 Pn(x)f(x). (21.9)

Hence, the corresponding generalized Fourier expansion (21.5) in terms
of the Legendre polynomials reads

00 2n + 1 [11 ]f(x) =~ 2 Pn(x) -1 dxPn(x)f(x) . (21.10)

21A.6 Generalized Rodrigues' formula. Let Fn(x) be defined on
(a, b) eRas

(21.11)
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(21.12)

where wand s are chosen as

a b w(x) s(x)
a b (b - x)Q(x - a)f1 a.f3 > -1 (b-x)(x-a)
a +00 e-X(x - a)f3 f3 > -1 x-a
-00 +00 e- x2 1

As can easily be seen Fn is an n-th order polynomial (-t2A.l Ex­
ercise (D) )'1Fn(x)} is a orthogonal polynomial system for £2((a, b), w)
(-t20.17),31 because

l
b

dxw(x)Fn(x)Fm(x) = 0 for n =J m.
(I

(Demonstrate this.) If the interval (a, b) and the weight function w
are given, the orthogonal polynomial set311 is uniquely fixed as seen
from the Gram-Schmidt construction (up to multiplicative constants)
(-t21A.2).

For example, with w = 1 (that is, a = f3 = 0), a = -1 and b = 1,
Fn must (-t21A.3) be proportional to the Legendre polynomial Pn­
Indeed, from (21.11)

(21.13)

(21.14)

This is called Rodrigues' formula.
With a suitable n-dependent numerical coefficient K n a set of or­

thogonal polynomials {fn} is defined by

1 d"
fn(x) = K () -dn [w(x)s(xtJ

nW x x

which is called the generalized Rodrigues formula (-t21B.l).312

Discussion.
(A) Classical polynomials. The generalized Rodrigues' formula can be intro­
duced in a slightly more abstract fashion as follows:
Consider

FIl(x) = w(;r)-I
d

dll
[w(x)s(x)"],

x n (21.15)

where the following conditions are required:
(1) F I (x) is a first order polynomial.

3IOU a and b are finite, then L2 ((a,b),w) = L2 ([a,b],w).
311 We assume that the polynomials are ordered according to their order (---+20.19).
3l2Not all the orthogonal polynomials can be obtained from the formula; only the

so-called classical polynomials.
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(2) s(x) is a polynomial in x of degree less than or equal to 2 with real roots.
(3) w(x) is real, positive and integrable on [a, b] and satisfies the boundary condi­
tions w(a)s(a) = w(b)s(b) = O.
It turns out that (i)-(iii) implies that we can only have the cases in the table in
22A.6 (apart from trivial linear transformations, and multiplicative constants).313
These polynomials are called classical polynomials.
(B) Demonstrate with the aid of Rolle's theorem that all the zeros of Pn(x) are in
[-1,1].

21A.7 Relation to the Sturm-Liouville problem. fn(x) defined
by (21.14) obeys the following equation generally called the Sturm­
Liouville equation (-+15.4, 35.1)

where A is a pure number given by

\ = _ (K dh(O) n - 1 d2
s(x))

/\ n 1 d + d 2 .x 2 x

(21.16)

(21.17)

This can be demonstrated by a tedious but straightforward calculation.
See 35.3 Discussion.

21A.8 Generating functions. In general, the following power se­
ries of ( is called the generating function of the orthogonal polynomial
set {Pn(x)}

00

Q((,x) = L AnPn(x)C,
n=O

(21.18)

(21.19)

where An is a numerical constant introduced to streamline the formula.
That there is such a function for any orthogonal polynomial family can
be seen from the rewriting of generalized Rodrigues' formula (21.11).
Using Cauchy's theorem (-+6.14), we have

1 i n'f n ( z) = K () dt .( ') +1 W ( t )s (t )n ,
n W Z aD 21T'l t - Z n

where Dee is a small disk centered at z. We define a new variable
( as

1 s(t)
--a-­
(- t - z'

(21.20)

313 See P Dennery and A Krzywicki, Mathematics for Physicists (Harper and Row,
1967), Section 10.3.

307



where a is a numerical factor introduced to streamline the final out­
come. In terms of this variable (21.19) can be rewritten generally as

ann! i 1
inez) = 2'K () d(;-n+l Q((,z),7f'/, nW Z aD' ."

(21.21)

where Q is an appropriate function resulted from the intergrand in
(21.19) through the change of variables. This implies

(21.22)

(21.23)

21A.9 Generating function for Legendre polynomials. For ex­
ample, for the Legendre polynomials, Kn = (-2)nn! and w(x) = 1.
(21.19) reads (or directly from (21.13))

1 1 (t2 - 1)n dt
Pn(z) = 27fi JeD [2(t - z)]n t - z'

which is called Schlafii's integral. We choose a = -1/2 in (21.21) to
get

P (z) = _1 1 _1_ d(
71 27fi JaD' (n+1 VI - 2z( + (2 '

so that (---t8B.3(i))

1 00

w(z, () = VI _ 2z( + (2 = ; Pn(z)C.

This is the generating function for the Legendre polynomials.

Exercise.
Derive (21.24). Use the new variable (following (21.20)) <: as

1 t2 - 1
(=2(t-z)'

(21.24)

(21.25)

(21.26)

[Hint. When the reader solves for t, she must choose the correct branch so that
t -+ z corresponds to <: -+ 0.]

21A.I0 Three term recursion formula. Let {IPn)} be a complete
set of orthonormal polynomial kets, and kn be the highest order coeffi­
cient of the polynomial Pn(x) = (xIPn). Define

(21.27)
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Then,
Pn+l(X) = h'nx - an)Pn(X) - fJnPn-l(X),

this follows easily from (1) of 21A.3.

Discussion.
Let us demonstrate the assertion.

(21.28)

(21.29)

is a polynomial of degree at most n - 1. Therefore, it can be expressed as a sum of
{Pn-l, ... ,Po}.
(1) Demonstrate, because of 21A.3, that only Pn-2 and Pn-l are needed to express
Pn - xknPn-I/kn1 · Already we have the form of (21.24). [Hint. What happens if
there are other remaining terms?]
(2) Determine the coefficients.

21A.l1 Zeros of orthogonal polynomials. Let {IPn)} be the or­
thogonal polynomial kets of L2(fa, b], w) (~20.19). Then
(1) All the zeros of Pn(x) = (x Pn) are in the interval (a, b). This is
~ractically very important (~22A.3). For a proof see 35.3 Discus­
SIOn.

(2) All the zeros of Pn(x) are single and the zeros of Pn+l(X) are sepa­
rated by those of Pn (x).

Discussion.
The three term recurrence relation can be written as

xP(x) = AP(x) + q(x), (21.30)

where P = (Po, PI,'" ,Pn-If, A is a symmetric matrix, and q = (0,··· ,0, kn-1Pn/kn).
Choose x to be a zero Xi of Pn, then we have

(21.31)

That is, the zeros of Pn must be the eigenvalues of A, so that they must be real.

21A.12 Remark: how to locate real zeros of polynomials. Draw­
ing graphs with the aid of Mathematica and zooming into the relevant
portion of the graphs may be the most practical method. Analytically,
there is a famous
Theorem [Sturm]. Assume that the n-th order polynomial P does
not have any multiple zero. Let Po =P and P1 =Pl. Using the theo­
rem of division algorithm, construct Pn as follows:

PH1 = Piqi - Pi-1 (i == 1,2"", n - 1). (21.32)

Let V (c) be the number of changes of sign in the sequence Po (c), P1 (c), ... ,Pn(c).314

The number of zeros in the interval [a, b] is given by V(a) - V(b).O

31 4Remove pi(C) if it is zero from the sequence.
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21A.13 Example of Sturm's theorem. Let us study f(x) = x(x2­
1). We trivially know that 0, ±1 are the real zeros. First we construct
Pi in the theorem as follows:

Po = x(x2 - 1); PI = 3x2 - 1; P2 = 2x/3; P3 = 1. (21.33)

Therefore, we can make, for example, the following table exhibiting the
signs and V.

a Po PI P2 P3 V(a)
+00 + + + + 0

2 + + + + 0
1/2 - - + + 1

-1/2 + - - + 2
-00 - + - + 3

For example, V(-1/2) - V(2)
(-1/2,2).

2, so there must be two zeros III

Discussion.
Find the number of positive real roots of the following polynomials.
(1) P(x) = 3x4 + 2x2 - x - 5,
(2) P(x) = 13x21 +3x3

- 2,
(3) (Runge's example)
P(x) = 3.22x6 + 4.12x4 + 3.11x3

- 7.25x2 + 1.88x - 7.84.

21A.14 Descartes' sign rule. Let

P(x) = aoxn + al:Z;n-1 + ... + an (21.34)

be a real coefficient polynomial. Let W be the number of the sign
change in the sequence ao, al," . ,an (remove 0 from this sequence be­
fore counting). Then the number of strictly positive roots of P(x) = 0 is
given by War W minus some even positive number. (Hence, if ltV = 1,
that is the answer.)

21.B Representative Examples

21B.l Table of orthogonal polynomials. (---t2A.l Exercise (D))
21A.6 tells us that various orthogonal polynomial families can be ob-
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tained by choosing wand s appropriately and also by choosing appro­
priate multiplicative numerical factors Kn • Some common examples
are given as follows.

name symbol domain w(x) s(x) K -1
n

Legendre Pn [-1,1] 1 1 - x"l. (-1)n2nn!
Chebychev Tn [-1,1] I/Vl - x2 1- x2 (-I)n(2n - I)!!

Jacobi p(o.f3) [-1,1] (1- x)Q(x + 1)f3 1 -x2 (-1)n2nn!n

Laguerre Ln [0,00) e x x n!
Hermite Hn (-00,00) e-X- 1 (_1)n

Note that L n is L~O) of 2A.1.

Exercise. Show Tn = n!..;:rrp~-1/2.1/2) /f(n + 1/2).

21B.2 Legendre polynomials. The Legendre polynomials have been
discussed above (~21A.5). The orthonormal basis of L2([-I, 1]) (~20.19)
in terms of the Legendre polynomials is in 21A.5 with the general­
ized Fourier expansion formula. The decomposition of unity (---+-20.15)
reads

00 2n + 1
8(x - y) = L 2 Pn(x)Pn(y).

n=O
(21.35)

(21.36)

Rodrigues' formula is in 21A.6, and the generating function is given
in 21A.9. We can write down the general formula starting from Ro­
drigues' formula as

1 [nJ2] (-I)j (2 - 2 ')'
P ( ) = _ '" n J. n-2j

n X 2n f;:o j! (n _ j)!(n _ 2j)!x .

([.] is Gauss' symbol denoting the largest integer not exceeding .. )

LO p.(.) /'

0.8 ~)c~ .1 ....-'" I
0.6 .\~p, (.) "?,0-...... ,I, ~'" ;'\ /
0.4 I ~l)( /h ~r..........~ '><~b ~q,'t.1
02" ~)§
. 1\ / 'j.\.. < I'-.. .-.?;...' ') ~ q,'" q,~ •

o \ '" v v?' ....... A ./ Ik
-0.2 fI X ./ ~;:::::../ -f.--' 'V ........~)<~!l.~
-0.4 .....-/ _ .......1--

-0.6 II I.A ,

I ....... '1'.,',\.,~_.1-I-t---4-1--1--l--+-+-l--+--+-+--+-t-t---l-0.8 v -t

10 .......
- :"1.0 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1.0
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Discussion.
Let Qn(X) be the n-th order polynomial with its highest order coefficient normalized
to be unity. If its L 2-distance from 0 is the smallest among such polynomials, Qn
is proportional to Pn . That is, minimize

(21.37)

with respect to the coefficients. The resultant polynomial is proportional to Pn .

21B.3 Sturm-Liouville equation for Legendre polynomials. The
differential equation corresponding to (21.16) reads (---t24C.l)

or

(21.38)

(21.39)

21BA Recursion formulas for Legendre polynomials. The three
term recursion relation (---t21A.I0) reads

(21.40)

(21.41)

with Po (x) = 1 and P1(x) = x. This can also be obtained easily from
the generating function (21.25): expand

? aw
(1-2x(+(-)O( +(-(+x)w=O.

Similarly, we obtain

? aw
(1 - 2x( +(-)- - (w = O.ax

This leads to
P~+1 - 2xP~ + P~-l - Pn = O.

If we eliminate P~-l from (21.40) and (21.43), we get

P~+l - xP~ = (n + l)Pn .

If we eliminate P~+1 from (21.40) and (21.43), we get

xP~ - P~-l = nPn •
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Combining above two formulas, we obtain

(21.46)

21B.5 Legendre polynomials, some properties.
(1) Pn(x) is an odd (resp., even) function, if n is odd (resp., even):
Pn(x) = (-l)npn(-x), Pn(1) = 1 and Pn(-l) = (_1)n. P2n (O) =
(-;(2) (see Exercise below).

(2) IPn(x)1 :::; 1.
(3) All the zeros of Pn are simple and in (-1,1) (-+21A.ll).
(4) If I1n is an n-th order polynomial satisfying

(21.47)

for all k E {a, 1, ... ,n - I}, then I1n ex: Pn (-+21A.3(2»).
[Demo of (2)] This can be proved with the aid of Schliifii's integral (21.23). We
choose for the intergration path to be

t=z+~ei<l> (21.48)

for ep E [-1r, 1l"). Note that dt/ (t - z) = idep. Changing the integration variable from
t to ep in (21.23), we get the following Laplace's first integral

(21.49)

From this we get

Exercise
P2n(0) can be obtained from Rodrigues' formula (21.11), which reads

() (
n r(n + 1/2)

P2n 0 = -1) J1rr(n + 1)'

(21.50)

(21.51)

21B.6 Hermite polynomials. The orthonormal basis {Ihn )} for
L 2((-oo,oo),e- X2

) (-+20.19) obtained by the Gram-Schmidt method
applied to monomials (-+21A.2) is written in terms of the Hermite
polynomials Hn(x) as

(21.52)
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where

[(n+1)/2] ,
Hn(x) = L (_)n . n. (2xt+1-2m.

m=O m!(n + 1 - 2m)!
(21.53)

([.] is Gauss' symbol denoting the largest integer not exceeding '.) The
generalized Rodrigues formula (-+21A.6) for the Hermite polynomials
is

H ( ) - (_l)n x2 ..!!!:..- _x
2

n X - e de.x n

The generating function (-+21A.8) is given by

(21.54)

W ( r) _ 2z(_(2 _ ~ Hn(z) rn
HZ,., - e - L...J --,-" •

n=O n.
(21.55)

H n is an even (resp., odd) function, if n is even (resp., odd).

3o

1M11
~ "'~i-lIlz1r ,

~
~,

V
~'-.;f {7If... ,~~",

~;;.~
!' \"-K

I t'J-j"\
~"l(%l / \ X'~

~ \ A / X \ ~~~:J' ~
z

;'''(z) \
::I(,,)~ JI ~ .) __<..~vt4-.1

~ ...-;,
/~

(Zl(x,

'\ h
~1-'\%1. "

, \, ~

0.5

0.4

0.3

0.2

O.

o

-0.5
4

-0.2

-0.3

-0.4

-0.1

Warning. Many authors use the weight e-x2
/
2 instead of e-x2

• If
we write the Hermite polynomials defined for this weight as H~(x),

then the generalized Rodrigues formula (-+21A.6) reads

(21.56)

and

(21.57)

Discussion.
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To demonstrate the completeness of the Hermite polynomials, Weierstrass' theo­
rem 17.3 is not enough, because the latter is about a finite interval. To show the
completeness with respect to the L 2-norm we have only to show the completeness
of polynomials. This can be demonstrated with the aid of Weierstrass' theorem on
increasingly large intervals.

Exercise.
(A) From the generating function show

ex'/2Hn(x) =~Joo eixv-v2/2Hn(y)dy.
z V2ir -00

(21.58)

This can be split into real and imaginary part relations (Lebedev).
(B) From the generating function we obtain the following generalized Fourier ex­
pansion

00 n

eax = ea' /4,""" _a_H (x) (21.59)L..t 2n , n ,
o n.

which is good for all x E R.
(C) Compute the generalized Fourier expansion of e-ax2 in terms of Hermite poly­
nomials. The expansion coefficients can be written as

1 Joo ,_ -(a+l)x. .
C2n - 22n (2n)!y'1r -00 e H2n (x)dx. (21.60)

To compute the integral use (21.69) below. The x-integration can be done and we
are left with

( _l)TlaTl 100
_ -8 n-l/2d

C2Tl - y'1r(2n)!(1 + a)Tl+l/2 0 e s s.

Use the Gamma function (-+9.6) to obtain the final result (Lebedev)

(_l)nan

(21.61)

(21.62)

21B.7 Sturm-Liouville equation for Hermite polynomials. The
formula corresponding to (21.16) reads

H~ - 2xH~ + 2nHn = 0. (21.63)

21B.8 Recurrence equations for Hermite polynomials. The
three term recurrence relation (----+21A.I0) reads

Hn+l + 2xHn + 2nHn_1 = 0,

which can be obtained from

8WH8f = -2(z + Ow.
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From

we obtain

f)WH = 2(w
f)z

(21.66)

(21.67)

Exercise.
An integral formula for Hermite polynomials can be obtained with the aid of

2 2 (Xi 2

e- X = -.[if Jo e- t cos2xtdt. (21.68)

[Hint. Note that the integrand is an even function.] Putting this into the generalized
Rodrigues' formula (calculate the odd and even n cases separately, and unify the
results), we obtain

271
( ')71 x

2 Joo
H ( ) - -z e -t 2+2itx "d

" x - r::::: e t t.
y7r -00

(21.69)

21B.9 Chebychev polynomials. These polynomials are best intro­
duced as

Tn(x) = cos(ncos-1 x).

The generalized Rodrigues formula (~21A.6) is given by

(21.70)

(21.71)

This can be transformed into (21.70) with the aid of the binomial the­
orem: it is easy to demonstrate that this formula yields

(21. 72)

which reduces to cos nO with x = cosO.
The orthonormal basis {It n )} of L2([-1, 1], 1/Jl - x 2 )) (~20.19)

obtained by the Gram-Schmidt orthonormalization of monomials (~21A.6)
can be written as

(xltn) = ~Tn(X).

The generating function (~21A.8) is

1 - z2 00

----=-2 = To(x) + 2 L: Tn(x)zn.
1 - 2xz + Z 71=1

316

(21. 73)

(21.74)



The highest order coefficient of Tn is 2n
-

1 for n ~ 1. The three term
recursion formula (.....21A.10) is315

Tn+l(x) = 2xTn(x) - Tn-l(x)

for n = 1,2",' with To = 1, TI(x) = X.

Exercise.
(1) Demonstrate that

(21.75)

(21.76)

(2) Demonstrate the generating function for Chebychev polynomials (21.74) as el­
egantly as possible. [Hint. Use (" ).]

:V.7Q

21B.10 Remarkable properties of Chebychev polynomials.
(1) Theorem. Let Pn(x) be a polynomial of order n(~ 1) whose coef­
ficient of xn is unity. Then,

max IPn(x)1 ~ 21
-

n
,

XE[-l,l]
(21.77)

and the equality holds if and only if Pn(x) =Tn(x)/2n- I .D
(2) The best (w.r.t. the sup norm) n-th order polynomial approximant
of xn+l on [-1,1] is given by Tn+l(x)/2n - xn+l. This property makes
the Chebychev polynomial very important in approximation theory of
functions.
(3) Xk+l = Tn(Xk) defines a sequence Xo, Xl, X2,' .. from the initial con­
dition xo. This is a typical chaotic sequence. Among any continuous
functions with n laps, Tn(x) gives the most chaotic sequences on the
average.

315This is nothing but cos(n + 1)x + cos(n - 1)x = 2 cosx cosnx.
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Discussion.
(A) (1) above implies that if the n-th order polynomial Qn defined on [-1,1] with
its highest order coefficient normalized to be unity and if its maximum deviation
from zero is the smallest among such polynomials, then Qn is proportional to the
order n Chebychev polynomial.
(B) Take T2 (x). Demonstrate that there are two intervals I and J in [-1,1.] which
share at most one point such that T2 (I) n T2 (J) :J I U J. In general, if the reader
can find two positive integers and two intervals I and J sharing at most one point
such that reI) n fm(J) :J I U J, then f exhibits chaos on the inteval containing
both I and J. That is, there is an invariant set n of fN for some positive integer
N such that fN restricted to n is isomorphic to the coin-tossing process.).
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