
20 Hilbert Space

Fourier expansion is quite parallel to the expansion of a
vector into a linear combination of basis vectors in a fi­
nite dimensional vector space. However, function spaces
are generally very different from finite dimensional vector
spaces. To understand Fourier expansion more intuitively,
it is convenient to introduce an infinite dimensional vector
space in which our knowledge of finite dimensional vector
spaces can be used almost 'freely.' This is the Hilbert space.

Key words: Hilbert space, scalar product, completeness,
l2' £2, H 2, Cauchy-Schwartz inequality, bra-ket, dual space,
K-vector space, orthonormal basis, Gram-Schmidt orthonor­
malization, generalized Fourier expansion, orthogonal pro­
jection, Bessel's inequality, Parseval's equality

Remember:
(1) Hilbert space is an infinite dimensional vector space in which we
can define an angle between vectors (20.3).
(2) Understand Gram-Schmidt orthonormalization geometrically (20.16).
(3) Fourier expansion is a orthogonal decomposition in a Hilbert space
(20.14).
(4) Be familiar with the bra-ket notation (20.21-24).
(5) Understand the formal expression of Green's functions (20.28).

20.1 Vector space. Let V be a set such that any (finite) linear combi­
nation of its elements with coefficients taken from a field K is again in
V. V is called a K-vector space. K may be R or C. A R-vector space
is called a real vector space and a C-vector space is called a complex
vector space. For example, the set C O([O, I]) of continuous real func­
tions on the interval [0, 1] is a real vector space. The set of analytic
functions on the unit disc is a complex vector space.
Examples.
(1) The set of all the real polynomials of degree n forms a real vector space.
(2) The totality of continuous functions on [a, b] is a vector space (with respect to
the ordinary + and x).
(3) The totality of sequences {Xi} converging to zero is a vector space, if we intro­
duce + as {Xi} + {Yi} = {Xi + Yi} and scalar multiplication by C{Xi} = {exi}.

20.2 Infinite dimensional space. Consider the set CO([O,l]) of all
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the continuous functions on [0,1]. x n cannot be written as a linear
combination of 1,x, x2,' •. ,xn - 1 for any n. Thus this function space
is obviously infinite dimensional, if we wish to define the 'dimension'
of the space as in the ordinary vector space by counting the necessary
number of components to specify a vector uniquely. Another approach
may be to refer to the interpretation of f (x) as the x-component of a
vector f as in functional differentiation (---+3.7, 20.21 ).289

Infinite dimensionality causes special difficulties in convergence.
For example, the boundedness of a sequence does not guarantee the
existence of a convergent subsequence. For example, consider,

(1,0"",), (0, 1,0", '), (0,0,1,0", .), .... (20.1)

Discussion.
Infinite dimensional spaces have important peculiar features.
(1) We cannot define a 'uniform volume.' More precisely, there is no uniform mea­
sure (=volume) J1 (-+19a) such that for the unit cube C (of infinite dimension)
J.l(C) = 1 with the translational symmetry (i.e., even if we translate an object, its
volume does not change), and the additivity (J.l(AUB) = J.l(A)+J.l(B), if AnB = 0).
If such a J.l were to exists, then the volumes of most bounded sets are 0 or 00.290

Therefore, we cannot define the concept of 'almost everywhere' (-+19.5).291
(2) Compactness and boundedness are distinct. Compactness means (-+A1.25): if
a set A is covered by a family of open sets, then A can already be covered by a
finite subset of the family. If the space dimension is finite, this is equivalent to the
open boundedness (the Heine-Borel theorem). However, this is obviously untrue for
infinite dimensional space: to cover a unit open ball we need infinitely many open
balls of radius 1/2. This distinction of compactness and boundedness in infinite
dimensional space makes functional analysis much more difficult. A bounded oper­
ator and a compact operator are distinct (-+34C.9).

20.3 Hilbert space. An infinite dimensional vector space V, which is
complete (see below) with respect to the norm (---+3.3 footnote) defined

289In this case one might feel that the dimension is uncountable (-+17 .15(3)).
However, usually we do not pay the minute details of the functions, but pay atten­
tion to the equivalence classes of functions as individual elements (for example, we
ignore the difference on measure zero sets (-+19.3), so that often the dimension is
countable. See Weierstrass' theorem 17.3.

290 Here, we are not discussing 'non-measurable' sets. We confine ourselves to the
Borel sets. That is, we discuss the sets which can be constructed as joins and
intersections of countable finite cubes. See 19a.

291See B R Hunt, T Sauer, and J A Yorke, "Prevalence: a translational-invariant
"almost-every" on infinite dimensional spaces," Bull. Amer. Math. Soc. 27, 217
(1992). Addendum 28, 306 (1993).
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by the scalar product (see below) is called a Hilbert space.292

A scalar product is a bilinear functional of two vectors I, 9 E V denoted
by the bracket product Ulg) satisfying

(II!) > 0, (II!) = °{=::} 1=0, (20.2)

(11 + hlg) (hlg) + (hlg), (20.3)

U/gl + g2) Ulgl) + Ulg2), (20.4)

Ulg) (glf), (20.5)

(aIlg) aUlg), Ulag) = aUlg)· (20.6)

Here a is a constant scalr (i.e., an element in K). The norm in a

Hilbert space is defined by 11111 = 1fiIi). 'Complete' means that all
the Cauchy sequences293 do converge: in particular, if IIIn - gil -+ 0,
then actually In -+ g.

Introduction of scalar product allows us to introduce the concept
of angle between two vectors. We may say that an infinite dimensional
space in which we can talk about not only lengths but also angles is a
Hilbert space. In other words, in any vector spaces we can define mag­
nitudes by a norm, but the concept of direction is not easy to visualize.
To this end, we need a scalar product to introduce the angle between
vectors.
Discussion.
(A) Banach space. A complete normed space is called a Banach space. It is more
important in the study of PDE than the Hilbert space. L 1 (-+19.8) is a typical
Banach space.
(B) Euclidean space. In these notes, Hilbert spaces are defined as infinite dimen­
sional spaces. Hilbert spaces and finite dimensional vector spaces (with the ordinary
scalar product) are sometimes called Euclidean spaces (written as Ed).

20.4 Who was Hilbert? 294 David Hilbert was born in 1862. He
studied mainly at Konigsberg, where he befriended Minkowski (who
was already famous when he was a high school student. He died rel­
atively young due to appendicitis). From 1895 until his retirement in
1930 he was a named professor at Gottingen. At the Second Interna­
tional Congress of Mathematicians in Paris in 1900, he presented the

292The definition of 'Hilbert space' can change slightly from book to book. Many
authors include finite dimensional vector spaces. Here, following Kolmogorov and
Fomin, we understand that a Hilbert space is always infinite dimensional (need not
be countably so).

293 A Cauchy sequence for a given norm II II is a sequence {Yn} such that llYn ­
Yrnll -+ 0 as nand m go to infinity. If the sequence is a complex number sequence,
then the norm is the usual modulus. We know that C is complete.

294See also C Reid, Hilbert (Springer, 1970).
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famous 23 problems for the mathematics of twentieth century. He had
a characteristic optimism that new discoveries would continuously be
made and that these discoveries were necessary for the vitality of math­
ematics.

His scientific study covers vast area of mathematics, algebra, num­
ber theory, functional analysis (as one of the founders; the term 'spec­
trum' (--+34B, 34C) is due to him). His Grund1agen der Geometrie
(based first on the lectures delivered in 1898-9; there are many versions,
because he continued to improve the work) made an epoch.295 He en­
deavored to make axiomatic systems more general; he believed that
fundamental terms should not have a single privileged interpretation.

Hilbert's last two main scientific interests were theoretical physics
and foundation of mathematics. His study of the Boltzmann equation
was an important contribution.

He was the major proponent of Formalism, trying hard to prove
the consistency of the axiomatic systems on which the modern math­
ematics is based on (--+17.18(5)). This was shown to be untenable
by Godel. However, we must remember that Godel's sharp result was
possible because the problem was posed (formulated) unambiguously
by the Hilbert school.

Hilbert died during the World War II (1943). The motto on his
grave in Gottingen reads, "Wir miissen wissen, wir werden wissen.,,296

20.5 Examples.
(1) l2-space. Let V be the totality of infinite sequences {cn } =
{CI' ... ,Cn , ... } such that :En c; < +00. If we introduce the natural
linear structure a{cn} = {acn} and {an} + {bn} = {an + bn} and the
scalar product {an} . {bn} = :E anbn, then V is a Hilbert space, which
is called the 12 -space.
(2) L 2([a, b]). Let V be the totality of square Lebesgue integrable
(--+19.8) functions (complex valued) on the interval [a,b]. Then, with
the definition of the scalar product

(20.7)

V becomes a Hilbert space called the L2([a, b])-space (--+20.19).297
(3) HI([a, b]). Let V be the totality of Lebesgue square integrable func­
tions defined on [a, b] whose first derivatives are also square integrable.

295Hilbert's axiomatization of Euclidean geometry is summarized in the book of
Mac Lane quoted in Book Guide (p63 and on of the book).

296 We must know; we will know.
297 Some authors use £2 and [2 for £2 and [2'
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If we introduce the following scalar product

(JIg) =l b

dx{f(x)g(x) + f'(x)g'(x)}, (20.8)

then V becomes a Hilbert space called the Hl_space.298 The norm
based on this scalar product is called in the context of wave equations
the energy norm (---+alD.12 ).

Discussion.
(A) Theorem[Riesz-Fischer]. Let {In}} be an orthonormal set (not necessar­
ily a basis -.21.10) of a Hilbert space H. Then for any element C = {cn } of 12
(-.21.4(1)), there is la) E H such that (nla) = Cn' 0
In this sense, any separable (-.21.11) Hilbert space is isomorphic.
(B) {(2rr(n2+ 1))-1/2einx} is a complete orthonormal basis of H1([-rr,rr]).
(C) Let u E L 2[( -rr, rr)]. A condition for u E HI([-rr, rr]) is that l:nEZ n21cnl2 <
00, where en is the complex Fourier expansion coefficient (-.17.1.

Exercise.
Set up the Gram-Schmidt orthonormalization scheme (-.20.16) for the HI ([-1,1])­
space. Apply it to {I, X, x 2 ,' .• } and obtain the first three polynomials. Compare
them with the Legendre polynomials (-.21A.5, 21B.2).

20.6 Parallelogram law and Pythagoras theorem. Let V be a
Hilbert space and x, y E V.
(1) Parallelogram law. Ilx + yll + Ilx - yll = 2(llx112+ IlyI12).
(2) Pythagoras' theorem. If (xly) = 0, then Ilx +yl12 = IIxl12+ Ily112.
Discussion.
The parallelogram law is a necessary and sufficient condition that the vector space
is an Euclidean space (-.20.3). To demonstrate this we have only to show that

1
(x, y) == 4(llx + yll-Ilx - ylll (20.9)

20.6
is a respectable scalar product (-.20.3). Demonstrating the linearity (.A) is not
very easy. See Kolmogorov-Fomin.

From this we can show that Cp-space defined by l: IcnlP < 00 is a Euclidean
space only when p = 2. Also the vector space e[a,b] can never be an Euclidean
space.

20.7 Cauchy-Schwartz inequality. Let V be a Hilbert space and
f,g E V. Then

(20.10)

To prove this assume g oF 0, and g is normalized (without loss of generality). Make
h~ f - g(glJ). (hlh) 2: 0 implies the desired inequality.

298This is an example of the Sobolev space (Sergei L'vovich Sobolev, 1908-?).
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This inequality tells us a very obvious fact that the modulus of co­
sine cannot be larger than 1. As is often the case, very obvious things
tell us deep things. Heisenberg's uncertainty principle is a disguised
version of Icos 01 ~ 1 (---+32B.1).

From this it is easy to derive the
Triangle inequality: Ilf + gil ~ Ilfll + Ilgll·

Discussion.
This inequality allows us to show that + and scalar product are continuous for a
Hilbert space. For example, (x n, Yn) -- (x, y) .

20.8 Bracket notation.
(1) Ket. In elementary algebra, we regard an element of a vector space
a column vector a. Dirac introduced a symbol I!) to denote an element
f of a vector space, and called it a keto
(2) Dual space. A map from a K-vector space (---+20.1) V to a field K
is called a linear map, if it satisfies the superposition principle (---+1.4):
f(ala)+J3lb)) = af(la))+J3f(lb)). The totality V* of these linear maps
is again a K-vector space.
Exercise.
Demonstrate this statement.
This space V* is called the dual space of V.
(3) Scalar product. In a finite dimensional vector space V, a scalar
product is introduced as (a, b) = a*b. 299 Any linear map f(a) from
a K-vector space to K can be uniquely described as a scalar product
f (a) = (b, a) by choosing an appropriate vector b.
Exercise.
Demonstrate the above statement. [It is convenient to use a basis vector set of V.]
This implies that if a E V, then a* E V*. That is, (at least for a finite
dimensional vector space) we may identify the dual space as the vector
space spanned by all the row vectors. We write the hermitian conjugate
of a ket la) as (ai, which is called a bra. We regard V* the totality of
bras.
Notation. The scalar product of la) and Ib) is written as (alb).

20.9 How Dirac introduced brackets. The bra-ket notation was
introduced by Dirac. See P. A. M. Dirac, Principles of Quantum Me­
chanics (Oxford UP, 1958). The book is a good example to demonstrate
that mathematical depth and mathematical rigor can be different. In
this book he introduces kets to describe the states of a quantum me­
chanical system after explaining superposition of states is required to
understand the double slit interference experiment. What he claims

299* implies the hermitian conjugate. That is, a* is the complex conjugate of the
transposition of a.
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is that the state space of a quantum mechanical system is a vector
space. Then, he says that for a given vector space, there is always an­
other space, and introduces the space of bras as the dual vectors of kets.

20.10 Orthonormal basis, separability. A subset {ej} of a Hilbert
space V is said to be an orthonormal basis, if (eilej) = Dij and the
subspace spanned by {ej} is dense300 in V. If a Hilbert space has a
countable dense set, then we say the Hilbert space is separable. Sepa­
rable Hilbert spaces have countable orthonormal basis.

Discussion.
(A) L z(R3

) is separable.
(B) An example of a non-separable Hilbert space is the totality offunctions on [0,1]
such that they are nonzero only on a countably many points, and the square sum
of these values is finite. The scalar product is defined by (x, y) = E x(t)y(t), where
the sum is over all the countable points on which x(t)y(t) =/= O. (from Kolmogorov­
Fomin)
(C) Let en = {6nk hEN' Then, {en}~=o is a complete orthonormal system of lz.

20.11 Bessel's inequality. Let {len)} be an orthonormal set of a
separable Hilbert space V. Then for \fll) E V

00

L l(enll)12
~ Uil)·

n=l

[Demo]
N N

Ilf - L Ien)(enlf)II Z
= (fIn - L l(enlfW 2: 0

n=1 n=1

for any positive integer N. Hence, (20.11).0

(20.11)

(20.12)

20.12 Parseval's equality. Let {\en)} be an orthonormal basis of
a separable Hilbert space V. Then, for \fll) E V

00

L l(en ll)12
= UII)·

n=l

(20.13)

Conversely, if (20.13) holds for \fll) E V, then {len)} is an orthonormal
basis of V. (This follows easily from IS[i]) = \1) (see below 20.14).
This is a natural extension of Pythagoras' theorem 20.6.)

Discussion.

300Le., for any f E V there is a sequence {ad such that bN = E~1 aiei converges
to f in the norm as N -+ 00. That is, {ei} is complete (-+20.3).
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(A) Let Q = {In)} be an orthonormal set of a Hilbert space. Q is an orthonormal
basis, iff301 la) satisfying (nla) = 0 for all n is actually zero.
[Demo] If Q is an orthonormal basis, vanishing of all the Fourier coefficients implies
that la) = O. Suppose Q is not a basis. Then due to Bessel's inequality 21.12 and
Parseval's equality 21.13 there is a nonzero vector Ib) such that

(20.14)
n

Thanks to the Riesz-Fischer theorem (-+D20.5(1)), there is a ket la) such that

la) = I: In)(nlb).
n

(20.15)

Since (bib) > (ala), Ib) - la) #- O. However, (nib - a) = 0 for any n. That is, there
is a ket Ie) satisfying (nle) = 0 for all n but not zero. Hence, if there is no such ket
Ie), then Q must be a basis.
(B) Rademacher functions. Define l'n (x) as 1'0 (x) = 1 and

(20.16)

where X n is the number of the n-th binary place of x. R I = {rn(x)}nEN is called
the Rademacher orthogonal function system.
(1) Show that it is an orthonormal system for Lz([O, 1]).
(2) Show, however, the system is not complete.
(3) Let R be the totality offunctions made by multiplying finite number offunctions
in RI

• Then, R is a complete orthonormal system for Lz([O, 1]).

20.13 Generalized Fourier expansion. Let {len)} be an orthonor­
mal basis (-+20.10) of a Hilbert space V. The following sum for
If) E V

00

18[1]) = L len)(enlf)
n=l

(20.17)

is called the generalized Fourier expansion of f (cf. 20.24). Due to
the definition of the orthonormal basis, actually 18[i]) = 1f).302 The
expansion allows us to make a one to one map between any separable
Hilbert space (-+20.8) and the .ez-space (-+20.3). Hence, all the sep­
arable Hilbert spaces are isomorphic.303

20.14 Least square approximation and Fourier expansion. 20.11

301 i.e., if and only if.
302This equality is in the L z sense (-+20.5). When this equality is in the ordinary

sense is a non-trivial question as we have seen in 17.
303In these notes, we use the terminology 'Hilbert space' for infinite dimensional

cases only.
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tells us that the Fourier coefficients can be determined by the following
minimization problem:

N

min IIf - L cnenll·
n=O

(20.18)

That is, the generalized Fourier series gives the best approximation in
the L 2-sense. This gives another reason why L 2 is a natural space to
consider Fourier series (Fourier analysis in general) (-+19.18).

20.15 Decomposition of unity. The main result of 20.12 can be
abstracted as

(20.19)
n

for an orthonormal basis {len)} of a Hilbert space V. This formula is
called a decomposition of unity.

20.16 Gram-Schmidt orthonormalization. Let V be a Hilbert
space, and {II'), 12'), ...} be a set of linearly independent kets in V
whose linear hull is dense in V (i.e., complete -+20.3). Then, we can
construct an orthonormal basis {II), 12), ...} of V out of these kets as
follows. The procedure is called the Gram-Schmidt orthonormalization.
(1) 11) = 11')/11'1, where lal will denote J(ala) in this entry.

(2) 12) = 12")/12"1' where 12") = 0-11)(11)12').
(3) 3) = 3")1 3" ,where 3") = (1 - 1)(1 - 12)(21)13'), etc.
This is a method to construct orthogonal polynomials from 1, x, x 2 , x 3 , •••

(-+21A.2).

20.17 Respect the order in the basis. Hilbert spaces may almost
be treated as finite dimensional vector space. However, we must respect
the ordering of the basis set. The (generalized) Fourier expansion is not
absolutely convergent usually, so this is a very natural thing to respect.

20.18 Orthogonal projection. Let the k-th summand in (20.19)
be Pk ....-Iek)(ekl. Then we have PiPj = PjPi = t5ijPi. Especially,
PiPi = Pi' These operators are hermitIan, Pi; = Pk.

If a linear operator P satisfies the idempotency, Le., p 2 = P, then
P is called a projection (or a projection operator).
If it is hermitian, then it is called an orthogonal projection: For a non­
zero ket la), let Ip)....- Pia) and Iq)....- (1 - P)la). (plq) = (aIP*(1 ­
P)la) = (al(P* - P* P)la). If P is hermitian, this vanishes. That is, Ip)
and Iq) are orthogonal.

Discussion.
(A) [What is P 1P 2?] Let PI and P2 be orthogonal projection operators. A nec­
essary and sufficient condition for P1P2 to be a projection operator is that P1 and
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P2 commute. Let PiV = Vi, where V is a vector space on which these projection
operators are defined. What is P1P2V?
(B) [System reduction]. We wish to study a nonlinear equation

du
- =N(u).
dt

(20.20)

Here N is a nonliner functional (a map). Formally, orthogonal projections are used
to reduce a complicated system. Suppose P is a projection to a space spanned by
'important variables' (say, slow variables). Let us write Q = 1-P. We can formally
rewrite

dPu

dt
aQu
at

= PN(Pu+Qu),

= QN(Pu + Qu).

(20.21 )

(20.22)

If we could solve the second equation for Qu for any Pu as Qu = F (Pu), then the
first member becomes

dPuat = PN(Pu + F(Pu)). (20.23)

In this way we can get rid of unwanted variables, and reduce the number of vari­
ables or the dimension of the space we work. The procedure is only formal, and the
crucial point is how to choose P, and how to obtain F. This is a very active field
of research now.

20.19 Space L 2([a,b],w). Let L 2([a, b]' w) be the totality of the func­
tions which are square integrable30i! with the weight w on the interval
[a, b]:

L 2([a,b],w)..-{fll
b

lf (xWw(x)dx < oo}. (20.24)

This set is a Hilbert space with the following definition of the scalar
product

(Jlg)..- l
b

j(x)g(x) w(x)dx. (20.25)

When w(x) =1 we omit wand write L2 ([a, b]) as in 20.5. L2 ( (-00, +(0))
is often written as L 2 or L 2(R). The convergence with respect to the

norm (called the L 2- norm) defined by II j II = /fiIi) is called the
L 2 -convergence. As we know from the theory of Lebesgue integrals
(-t19.8), we may freely change the values of the function on a measure
zero set (-t19.3). so that the convergence in this sense could be quite
different from the ordinary sense of convergence (w.r.t the sup norm).

Discussion.
(A) measure (->19a). Mathematicians usually avoid to discuss the weight func­
tions w, because W need not be an ordinary function (i.e., the density need not be

304Usually, 'integrable' means 'Lebesgue integrable' (->19.8).
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well-behaved). Hence, instead of writing wdx we usually write d/l, introducing a
measure /1. Hence, more officially, it is better to call L2([a,b],w) as Lz([a,b],/1):

(20.26)

(B) Lp-space. The Lp-space (p 2: 1) is defined by the completion305 ofthe following
function set

{<plll<plip < +oo},

where II lip is the Lp-norm defined a

(20.27)

(20.28)

Lp-space is a Banach space (~20.3 Discussion), but not a Hilbert space except for
p = 2, because the parallelogram law (~20.6) does not hold.

20.20 Dirac's "abuse" of symbols. As we have seen, in a Hilbert
space306 Dirac's bra-ket notation causes no mathematical problem and
is quite useful. However, Dirac wished to unify not only the lin­
ear space spanned by normalizable states (physically, localized states
-t34C.8(4); this part is a Hilbert space) but also the space contain­
ing 'plane wave states' which cannot be normalized in the usual way.307
The starting point of his formal approach is the following interpretation
of an ordinary function as a vector with uncountably many components.

20.21 I(x) as an x-component of a vector. It is not an unnatural
idea to regard the i-th component of a vector Iv) as a 'value' v(i) of
a function v defined on {I, 2" .. ,n}, where n is the dimension of the
vector space. Then, as we have already used the idea (-t3.7), it is not
outrageous to regard f(x) as the 'x-component' of a vector If). We
know the i-th component of a vector v may be written as Vi = (ilv)
using the basis vecor Ii). Analogously, we write

f(x) = (xlf), f(x) = (fIx). (20.29)

[We Thus we may regard a function as a vector in an infinite dimen­
sional vector space spanned by position kets {Ix) : x E [a, b]}. These
position kets may be regarded as orthonormal vectors (-t20.10).

305Completion means to add elements to make all the Cauchy sequences have
unique limits.

306assuming separability (~20.10)

307Dirac wished to use the Hilbert space notation in a much wider class of spaces
now called rigged Hilbert space.
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20.22 Inner product of functions. It is natural to interpret sum­
mations over the coordinate indices as integrations (weighted with a
function w as in 20.19) over the independent variable x. Thus, it is
natural to define the scalar product or inner product of two functions
j and 9 defined on the same domain as

(Jlg).,--- Jdxw(x)(Jlx)(xlg) = Jdxw(x)f(x)g(x). (20.30)

20.23 Decomposition of unity. The formula (20.30) suggests that
we can decompose unity (cf. 20.15) as

JIx)w(x )dx(xl == 1. (20.31 )

This suggests that we may interpret {Ix)} as an "orthonormal basis."
Often unity is written as the following operator:

1 = Ix) Jdxw(x)(xl· (20.32)

20.24 Trigonometric expansion revisited. Let V = L 2 ([ -1f,1fj)
(----+20.5). Let us introduce the kets 10), In, c), In, s) such that

111
(xIO) = !<c.' (xln,c) = ;;;:cosnx, (xln,s) = ;;;:sinnx. (20.33)

y 21f y 1f Y 1f

Then {/O), 11, c), 11, s), 12, c), 12, s),"'} is an orthonormal basis, because
it is a complete set for CO-functions on [-1f, 1f], (----+17.4). The standard
Fourier expansion 17.1 is

00

If) = IO)(OIf) +L {In, c)(n, elj) + In, s)(n, slf)}·
n=l

(20.34)

[Here, the equality is in the L2-sense.] Notice, again, that the equal­
ity in this formula is in the L2-sense. Bessel's inequality (----+20.11) and
Parseval's equality (----+20.12) adapted to the trigonometric function set
are their original forms.

20.25 o-function (with weight). We can formally write (----+20.23)

I(x) = (xl:!.l!) = J(xly)w(y)dy(yj!) = Jf(y)(xly)w(y)dy. (20.35)

Therefore, it is natural to introduce

(xly) = ow(x - y)
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(20.37)

such that
JOw(x - y)w(y)dy = 1,
ow(x-y)=O x=j:y.

Obviously, Ow is a generalization of fJ (---+14.5). We should identify as

fJw(x - y) = fJ(x - y)jw(x).

Exercise.
Show (for r' > 0)

t5(x - .'C')t5(y - y')t5(z - z') = t5(r - r')t5(O - O')t5(<p - <p')/r2 sin O.

(20.38)

(20.39)

20.26 fJ-function for curvilinear coordinates. (20.38) tells us that
if we wish to use functions defined in terms of the O_qlq2q3 coordinates
which are orthogonal curvilinear (---+2D.3), then it is natural to choose
the function space whose scalar product uses the weight function w =
h1h2 h3 (---+2D.8). Thus it is convenient to define the position bra-ket
with the normalization

For example, for the spherical coordinate system (---+2D.5)

( () I' ()' ')- fJ(r-r')fJ(()-()')fJ('{J-'{J')
r, ,'{J r, , '(J - 2 . () .

r sm

Exercise.
Write down the t5-function adapted to the elliptic cylindrical coordinates.

(20.41)

20.27 Delta function in terms of orthonormal basis. Since
o(x - y) = (xly) may be interpreted as (xI1Iy), we may introduce
the decomposition of unity 20.15 into this formula to obtain

(20.42)
n

where {len)} is an orthonormal basis, and en(x) =(xlen).

20.28 Green's operator and Green's function - a formal ap­
proach. We have already seen the fundamental idea of Green in 1.8,
and know several examples of Green's functions (---+15, 16). We wish
to solve the following linear equation:

[Lu](z) = f(z)

301

(20.43)



with the homogeneous boundary condition. Let {Ix)} be the position
kets w.r.t. the Cartesian coordinates (-*20.21). With the aid of the
decomposition of unity (-*20.23), we rewrite (20.43) as

or

(zILjy) Jdy(ylu) = (zlj) (20.44)

JdyL(z, Y)Zl(Y) = f(z), (20.45)

where L(x, y) = (xILly) (a sort of matrix element). If we can invert
the 'matrix' L(x, V), then we can solve this equation. In other words,
if we can solve

LG = 1 (20.46)

for G, then Zl = Gf tanks to superposition (linearity). (20.46) reads

JdyL(x, y)(yIGlz) = (xlz) = 8(x - z). (20.47)

G is called a Green's operator, and G(xly) == (xIGly) is called a Green's
function. Formally, G = L-\ so that G(xjy) = (xIL-1Iy).

20.29 Eigenfunction expansion of Green's function - a formal
approach. Suppose we know the eigenkets {In)} of the operator L:

(20.48 )

If all the eigenvalues are non-zero, then formally

(20.49)
n

where (xln) = un(x). Here we have assumed that the eigenkets of L
make a complete orthonormal set. This is the Fourier decomposition
formula for the Green's function. We can immediately see the symme­
try of the Green's function: G(xly) = G(ylx) (-*16A.20, 35.2, 36.4,
37.7). We will later return to a more careful discussion (-*37).
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