
19 Integration Revisited

Riemann can integrate piecewise continuous functions. How­
ever, there are many functions which cannot be integrated
by the Riemann integration, although the values of their
integrals are more or less obvious. In this section, the ba­
sic idea of the Lebesgue integral is given with a practical
summary. The theory is a natural prerequisite for under­
standing Hilbert space. The most natural integral concept
for Fourier expansion is the Lebesgue integral. In the Ap­
pendix, rudiments of measure theory is outlined.

Key words: measure zero, almost everywhere, Lebesgue
integral, dominated convergence theorem, Beppo-Levi's the­
orem, Fubini's theorem, Gaussian integral, Wick's theorem.

Remember:
(1) Lebesgue integral is defined by the integral of simple functions (=
functions taking only countably many values) (19.7-8).
(2) There are several very powerful theorems for Lebesgue integration
(19.11-17). Basically, they justify what looks formally OK to physi­
cists.
(3) Lebesgue integral is the most natural framework to consider Fourier
analysis (19.18).
(4) Gaussian integrals should be very familiar (19.19-20).

[19.0 Practical Check].
Exercise. Before going into the discussion of the Lebesgue integration theory, let
us check our practical ability to compute Riemann integrals. (1) Compute the fol­
lowing indefinite integrals:

Jd
ax + b

x ex + d'

Here we assume that a, b, e(:I 0), d are constants.
(2) Let n E N. For

r/2

In == Jo sinn xdx

demonstrate that

In = (1 - ~) In- 2 •
n
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(19.1)

(19.2)

(19.3)



Then, compute In.
(3) Find the range of 0: where

100 sin2 x
--dx

o x Oi

exists.
(4) [Fresnel integral]. Show that

exists (as a Riemann integral). cf 8B.8(1).
(5) Does

100
sinecosh x )dx

exist (as a Riemann integral)?
(6) Show

Use (.....8B.7)

100 -OIX sin AX d _ 0:
e x - 2 \2'

o X 0: +A
(7) Show that

rOO sin ax cos bx = ~,

io x 2

if a> b> O. What happens otherwise?
(8) Show that

1
~/2 ~

log sin BdB = - - log 2.
o 2

(9) Compute

. 1 x 2x (71 - l)x
11m -[1 + cos - + cos - + ... cos + cosx]

n--+oo 71 71 71 71

(10) Compute
d" t (x - y)"-l

dx n io (71 - I)! j(y)dy.

Discussion.
(1) Let

( ) -100 dxI a,b =
o v(a2 + x 2 )(b2 + x 2

)

for positive a and b. Show that
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(19.4)

(19.5)

(19.6)

(19.7)

(19.8)

(19.9)

(19.10)

(19.11)

(19.12)

(19.13)

(19.14)



(19.15)

for any n = 1,2"", where an+l = (an + bn)/2 and bn+1 = Vanbn, where al = a
and b1 = b. an and bn converge to a common limit ft determined by a and b. Gauss
(--7.15) used the bove observation to compute p. = 1r/2I. Show this conclusion.
(2) Let! be integrable on [0,1]. Then

11

exp(j(t))dt ~ exp (11

!(t)dt) .

Note that fo1 f(t)dt may be understood as the average of f on [0, l] (--2A.1, Dis­
cussion (A)).

19.1 Dirichlet function. The Dirichlet function is defined as275

D(x) = { 0 for x r:t Q,
1 for x E Q. (19.16)

fo1 dxD(x) must be zero, but obviously this function is not Riemann
integrable.

19.2 The area below D(x) must be zero. We know (-17.18(4),
A1.16) all the rational numbers can be counted, so we may write the
totality ofrational numbers in [0,1] as Q == {Yn}~=l = Qn [0,1]. Let us
cover Yn with an interval En of length E/2n centered at Yn' Obviously,
UEn :J Q for any positive E, but the total length of UEn is not larger
than E, because length(UEn ) ::; 2:( length En) = E. This number is any
positive number, so it can be indefinitely small. Hence, the total area
occupied by Q must be zero. This must be the area below D(x) on
[0,1]. Hence, 'fldxD(x)' =0 (-19.7).

19.3 Measure zero. We have demonstrated that Q is measure zero.
A set U c R is called a measure zero set, if it can be covered by count­
ably many open intervals the totality of the length of which is less than
Efor any E(> 0). 19.2 tells us that any countable set is measure zero.
See Appendix a19 for a general discussion about measure (-a19.4).

19.4 Lebesgue's characterization of Riemann integrability. In
his thesis, Lebesgue showed the following theorem.
Theorem. A bounded function f is integrable in the sense of Riemann
on [a, b] if and only if the set of discontinuous points of f is measure
zero. 0
Obviously, D(x) is not integrable in the sense of Riemann.

19.5 "Almost everywhere". Lebesgue also introduced the concept
of almost everywhere: if a property 'A' is true for a function f except on

275 This is the characteristic function of the set of all the rational numbers.
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the measure zero set, we say f has the property 'A' almost everywhere.
Thus the theorem above can be restated as: A bounded function f is
Riemann integrable if f is almost everywhere continuous.

19.6 Simple function. A function which takes at most countably
many (-17.18(4), Al.16) values is called a simple function. The
Dirichlet function (-19.1) is a simple function, because it assumes
only two values, 0 and 1.

19.7 Lebesgue integral of simple functions. Let f be a real­
valued simple function defined on an interval I. If the right-hand-side
of the following formula converges absolutely, we say f is Lebesgue inte­
grable and the limit is denoted by just the same symbol as the Riemann
integral:

(19.17)

where 1* 1 is the total length ofthe set *, and In ..--- {xix E I, f(x) = Yn}.
Cantor showed IQI = 0 (-19.2). Hence, the Dirichlet function is
Lebesgue integrable and the value of the integral is zero. 276

Note that the values of a function on measure zero sets are irrele­
vant to the value of the integral.

19.8 Lebesgue integral of general function: L 1 ([a, b]). The
Lebesgue integral of a function f on an interval [a, b] is defined as fol­
lows. Make a uniform approximation sequence of Lebesgue integrable
simple functions fi for f:

,...,

1'::::7

11

Then

sup Ifi(X) - f(x)1 - 0 as i - 00.
xE[a,bJ

(19.18)

l
b

f (x )dx..--- .lim l b
fi (X)dx. (19.19)

a ~-+oo a

[Of course, if we cannot find such a sequence, f is not Lebesgue inte­
grable.]

The totality of functions Lebesgue integrable on the interval [a, b]
is denoted by L1([a, b]).

276In this definition, it is very crucial that all In have lengths. Or more generally, if
we wish to define an integral of functions on a multidimensional space, then In must
have a definite volume. Therefore, Lebesgue had to contemplate on the concept
'volume.' This led him to his measure theory (--+a19). We say a simple function f
is measurable if all In have well-defined volumes (--+a19.4). A function f is said to
be measurable (more precisely, Borel measurable), if the set {x Ia < f (x) < b} has
a definite length (measure) for any a and b( > a).
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Discussion [Fundamental properties of integrals].
(I) Double Linearity. We know that the integral is linear with respect to the
integrand. There is one more linearity with respect to the domain as we already
noticed in 6.2:

or

If we define

l c

f(t)dt = l b

f(t)dt +l c

f(t)dt

1 f(t)dt = 1 f(t)dt + r f(t)dt.
[a,b]+[b,c] [a,b] J[b,c]

(19.20)

(19.21)

(19.22)r f(t)dt = Ct1 f(t)dt,
Ja-[a,b] [a,b]

then J becomes a linear map on geometrical objects (in this case we discussed only
1D objects, but this can be generalized to general dimensional spaces). Notice that
the convention is meaningful if we interpret the integral over -[a, b] to be the inte­
gral on [a, b] from b to a instead of a to b (- is the reversing of orientation).
(II) Non-negativity and monotonicity. If the integrand is nonnegative, its inte­

gral is nonnegative. Consequently, if f 2: g, then J: dtf(t) 2: J: g(t)dt.
(III) Boundedness. If the integrand is bounded, then its integral over a bounded
set is bounded.

19.9 Remark. We must demonstrate that the limit in 19.8 does
not depend on the choice of the approximation sequences, but it is a
technical detail. An important difference between the Riemann and
the Lebesgue integrations is that the latter requires absolute conver­
gence. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis
(Revised English edition, Englewood Cliffs, 1970)277 is an excellent self­
study textbook for the measure theory and Lebesgue integration (and
standard functional analysis (say, spectral analysis)).

19.10 Relation between Riemann and Lebesgue integrals.
(1) If f is integrable in both the senses, their values are the same.
(2) If f is bounded and Riemann integrable, then it is Lebesgue inte­
grable. But
(3) There are Riemann integrable but not Lebesgue integrable func­
tions, and vice versa.

The practical merit of the Lebesgue integral is that the conditions
for exchanging the order of operations (say, limit and integral) can
be simpler than those for Riemann integrals (---+19.11, 19.14, 19.17).
This simplicity is due to the absolute convergence in the definition

277Its original Russian version is an undergraduate textbook for Analysis III
(designed by Kolmogorov) of Dept of Engineering Mathematics of Moscow State
University.
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(-+19.7).

19.11 Theorem [Lebesgue's dominated convergence theorem].
Let I be an interval. If limn->oo fn(x) = j(x) for almost all x E I (i.e.,
except on a measure zero set (-+19.3), fn converges to j), and if there is
a Lebesgue integrable function (-+19.8) ep(x) such that Ifn(x)1 < ep(x)
on I, then

D

lim r fn(x)dx = r f(x)dx.
n->oo iI iI (19.23)

(19.24)

19.12 Theorem [Beppo-Levi]. Let fn be Lebesgue integrable on
an interval I, JI fn(x)dx < K for some number K for all n, and
h :::; h :::; ... :::; f n :::; .. '. Then

lim r fn(x)dx = r lim fn(x)dx.
n->oo iI iI n->oo

D

19.13 Example. Termwise integration of 2:xn = (1 - x)-l. For
t E [0,1), we may apply Beppo-Levi's theorem to the partial sums to
integrate this termwisely:

t 00 00 t 00 tn1L xndx = L io xndx = L - = -In(1 - t).
o n=O n=O 0 n=l n

Exercise.
Compute the following integrals in the n -+ 00 limit:
(1)

11 x
--dx.

o 1+ nx

(2)

11 1
-:----;;-dx
1 + nx2

(19.25)

(19.26)

(19.27)

Notice that the exchange of the order of limit and integration does not work for

See 14.19.

11 n
2 2 dx .o 1 + n x

(19.28)

19.14 Theorem [FubiniJ. If J dx (J dylf(x, y)\) or J dy (J dx\f(x, y)l)
is finite, then we may exchange the order oftwo integrations in J dx Jdyf(x, y).
D
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Discussion.
(1) Using the integral of j(x, y) == xY on [0,1.] x [a, b] for 0 < a < b, demonstrate

11 xb - x a 1 + b
----:---dx == log --.

o logx 1 +a

(2) Demonstrate that

J1 dxdyf(a2x2 + b2y2) ==..!!-b roo xf(x)dx.
x~O,y~o 4a Jo

(3) Compute

(19.29)

(19.30)

(19.31)

(19.32)

(19.33)

19.15 Pathological example. Do not think the order of integrations
can be freely changed:

11 11 x
2

- y2 7f 11 11 x
2

- y2 7fdx dy = -. dy dx = --. (19.34)
o 0 (x2 +y2)2 4' 0 0 (x2 +y2)2 4

Demonstrate that the condition for 19.14 is violated.

Discussion
The reason for the pathology is explained by Legendre with the aiel of the following
formula:

11 11 x 2 - y2 1r f3
dx dy (2 2)2 == - - arctan-.

0: j3 x +y 2 0:

Demonstrate the formula and complete the argument.

(19.35)

(19.36)

19.16 Good function principle. In short, if a relation is correct
for a simple function (-+19.6), then it is correct for integrable func­
tions. This is sometimes called the good function principle.

19.17 Exchanging differentiation and integration. Suppose f(x, a)
is integrable for any a in its range, and Get! is integrable, then

:a f !(x1 a)dx = f :a!(x, a)dx.

Very crudely peaking1 for Lebesgue integration, if the formal result is
mathematically meaningful1 then the result is (eventually) justifiable.
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(19.37)

Discussion.
(1) Let f be continuous. Demonstrate that g defined by

r (x - y)n-l
g(x) = io (n _ I)! j(y)dy

is en and g(n)(x) = j(x). [Almost the same as 19.0 (10).]
(2) Hadamard representation. Let j(x, y) be e 1 in the ball of radius r centered
at (xo,Yo). Then

j(x, y) = j(xo, Yo) + h (x, y)(x - xo) + h(x, y)(y - Yo),

where
rIM rIM

h (x, y) = io ax (Xt, Yddt, h(x, y) = io ay (Xt, Yt)dt

with Xt = tx + (1 - t)xo and Yt = ty + (1 - t)yo.
Exercise.
(1) Show that

F(x) =100

e-
y2

sin2xydy

satisfies
F'(x) + 2xF(x) = 1.

(2) A similar question is: Let

I(a) = 100

e-
x2

cos2a.rdx.

Show that
dI- = -2aI.
da

Use this to demonstrate that

I V1i _a2

=Te .

[Hint. The change of variables:: = x + a/x works.]
(3) Let

Demonstrate that
dI 2- = -2b I.
da

Then, show

(19.38)

(19.39)

(19.40)

(19.41 )

(19.42)

(19.43)

(19.44)

(19.45)

(19.46)

(19.47)

19.18 Why is the Lebesgue integral most natural for Fourier
analysis? As we have already mentioned in 17.10(3) if f is square
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Lebesgue integrable, then its Fourier series is almost everywhere con­
vergent to f. See also Carlson's theorem (-t17.9). Physicists know
that Fourier transform is a powerful tool to disentangle convolution
(-t32A.2). This can be done freely only when we integrate all inte­
grals as Lebesgue integrals. We can make a continuous and absolute
integrable function f such that its convolution to itself Jdxf(t - x )f(x)
is Lebesgue integrable, but diverges for all rational t (so that it is not
Riemann integrable).278 That is, if we use the Riemann integral, then
we cannot freely use Fourier transformation to disentangle the con­
volution. The Lebesgue integration theory is much more elegant and
fundamental in Fourier analysis than the Riemann integration.

19.19 Gaussian integral, 'Wick's theorem'. The following inte­
gral (the generator of multidimensional Gaussian distribution) is of
vital importance in theoretical physics:

j oo joo ( 1 n n)I(A, b) = ... dX1'" dXn exp -"2 L AijXiXj +L Xibi ,
-00 -00 i,j=l ;=1

(19.48)
where A = M atr(Aij ) is an n X n symmetric non-singular matrix, and
b is an n-vector. We get

I(A,b) = (27r)n/2(detA)-1/2 exp (~2:Aijbibj) .
I,)

(19.49)

I(A, b)/I(A, 0) is called the generator (generating function) of the Gaus­
sian distribution with mean zero and covariance matrix given by A-I.
The standard method to compute this is to shift the origin to the minimum point
of the function in the parentheses as

This leads to

Yi = Xi - L(A -1 )ijbj.
j

(19.50)

I(A,b) = exp (~2:(A-1)ijbibj)I:"'1: dY1··· dYn exP (-.t AijYiYj)
I,) 1,)==1

(19.51)
The integral can be computed by diagonalizing the matrix.

According to 19.17 we can freely change the order of differentiation
with respect to b and integration in (19.48). In this way we arrive at
the so-called Wick '8 theorem: For b = 0

(19.52)

278See Korner, Example C.6 on p570.

280



where {k1,"', kn } = {a,"" z} and the sum is over all the possible
pairings of a, b, ... ,Z. For example,

(X1X2XaX4) = (X1X2) (XaX4) + (X1Xa) (X2X4) + (X1X4) (X2Xa). (19.53)

Exercise.
(A) Compute the following integrals:
(1)

J1 dxdy e-(z'+2xycos lI+y').
z~O,y~O

(2)

(19.54)

J r dxdye-(Z2+2ZYCosll+y2). (19.55)
1R'

(B) Using the spherical symmetry of the Gaussian integral, find the following inte­
grals in terms of

u == Jddke- ak' /2. (19.56)

(1)

1= Jddk~~e-ak'/2. (19.57)

(2)

J k
2
k

2
J = adk-=-...1!...e- ak'/2. (19.58)

k4

[Hint. (19.53) and (k4
) = d(k;) + d(d - 1)(k~k~). Also differentiation

and integration with respect to a (or -a/2) is useful.]

19.20 Gaussian integral: complex case. We have the following
analogous formula

I(A, b) == 100

•••100

dz1dz1··· dzndzn exp (- t AijZiZj + t(z;bi + ZlJi)) ,
-00 -00 i,j=l i=l

(19.59)
where A is any nonsingular n x n matrix, b is a complex n-vector. In
terms of real variables Xi and Yi as

(19.60)

we get dzidzi = dXidYi.279 Integration is understood as the integration
with respect to these real variables. The result is

I(A,b) = (27f)n(detA)-l exp (~(A-1))jibj),
I,J

(19.61)

279 although formally, the calculation here seems to justify the equality, it is better
to undersdand that dzdz is a shorthand notation of dxdy.
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The cleverest proof of this relation is: (i) (if necessary) to slightly per­
turb A so that all the eigenvalues of A +bA are distinct (so that A +bA
is diagonalizable); (ii) compute the integral analogous to 19.19; then
(iii) use the continuity of the integral as a function of the components
of A to obtain the result for the unperturbed case.
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APPENDIX a19 Measure

In this appendix the general theory of the Lebesgue measure is out­
lined. Without measure theory proper understanding of statistical me­
chanics and dynamical systems is impossible. However, just as all the
important topics, the essence of measure theory is not at all hard to
understand. The theory could be read as a very nice example of the
analysis of a concept that we seem to know intuitively. For a more
formal introduction Kolmogorov-Fomin is strongly recommended.

al9.a Reader's guide to this appendix. (1) + (3) is the minimum
of this appendix:
(1) The ordinary Lebesgue measure = volume is explained up to al9.6.
These entries should be very easy to digest. Remember that Archimedes
reached this level of sophistication more than 2000 years ago.
(2) General Lebesgue measure is outlined in al9.9-l1. This is an ab­
stract repetition of (1), so the essence should be already obvious.
(3) Lebesgue integral is redefined in terms of the Lebesgue measure in
al9.l5 with a preparation in al9.l4. This leads us naturally to the
concept of functional and path integrals (al9.l6).
(4) Probability is a measure with total mass 1 (i.e., normalized) (al9.l9).
(5) If we read any probability book, we encounter the triplet (P, X, B).
The reason why we need such a nonintuitive device is explained in
a19.20-21.

al9.l What is volume? For simplicity, we confine our discussion
to 2-space, but our discussion can easily be extended to higher dimen­
sional spaces. The question is: what is 'area' ? It is not easy to answer
this question for an arbitrary shape.28o Therefore, we should start with
a seemingly obvious example. The area of a rectangle [0, a] x [0, b] in
R 2 is abo Do we actually know this? Why can we say the area of the
rectangle is ab without knowing what area is? To be logically consci­
entious we must accept:
Definition. The area of a rectangle which is congruent281 to (0, a) X

(0, b) (Here ( is [ or ( and) is ] or )) is defined to be abo Notice that

280 As we will see soon in a19.21, if we stick to our usual axiomatic system of
mathematics ZF+C (-+17.18(5) for references), then there are figures without
area.

281 This word is defined by the superposability. That is, if we move (translate,
rotate) a figure .4 and can exactly superpose it on B, we say A and B are congruent.
As Hilbert (-+20.4) realized we must guarantee that the figure does not deform,
etc., while being moved, so that we need an axiom, which was never stated in Euclid,
although freely used by him (just as the Axiom of Choice in the early 20th century).
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area is defined so that it is not affected by whether the boundary is
included or not.

a19.2 Area of fundamental set. A set which is a direct sum (dis­
joint union) of finite number of rectangles is called a fundamental set.
The area of a fundamental set is defined by the sum of the areas of
constitutive rectangles.

It should be intuitively obvious that the join and the common set
of fundamental sets are again fundamental.

a19.3 Heuristic consideration. For an arbitrary shape, the strategy
for defining its area should be to approximate the figure with a sequence
of fundamental sets. We should use the idea going back to Archimedes;
we must approximate the figure from the inside and from the outside.
If both sequences converge to the same area, we should define the area
to be the are of the figure.

a19.4 Outer measure. Let A be a set. We consider a cover of A with
finite number of rectangles Pk (inclusion or exclusion of their bound­
aries can be chosen conveniently ---+a19.1), and call ita rectangular
cover P = {Pk } of A. Let us denote the area of a rectangle Pk by
m(Pk ). The outer measure m*(A) of A is defined byc?

m*(A) = infL m(Pk ),

k

(19.62)

where the infimum is taken over all the finite or countable rectangular
covers of A.
m*(A) = °is equivalent to A being measure zero (---+19.3 or a null set).

a19.5 Inner measure. For simplicity, let us assume that A E E =
[0,1] x [0,1]. Then, the inner measure m*(A) of A is defined by

Obviously,

m*(A) = 1 - m"(E \ A). (19.63)

(19.64)

for any figure A.

a19.6 Measurable set, area = Lebesgue measure. Let A be a
bounded subset of E. 282 If m*(A) = m*(A), then we say A is measur­
able (in the sense of Lebesgue), and m*(A) written as ~L(A) is called its

282It should be obvious how to generalize our argument to a more general bounded

set in R 2
•
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area (= Lebesgue measure).

al9.7 Additivity. Assume that all the sets here are in a bounded
rectangle, say, E above. The join and the common set of finitely many
measurable sets are again measurable. This is true even for countably
many measurable sets. The second statement follows from the preceding state­
ment thanks to the finiteness of the outer measure of the join or the common set.

al9.8 O"-additivity. Let {An} be a family of measurable sets sat­
isfying An n Am = 0 for n =!= m. Let A = UnAn. Then,

(19.65)
n

This is called the O"-additivity of the Lebesgue measure. D
[Demo] A is measurable due to aI9.7. Since {An} covers A, JL(A):5 2:JL(All ). On
the other hand A:) U;;=lAn, so that for any N It(A) ~ 2::=1 JL(An).

al9.9 Measure, general case. A map from a family of sets to R
is called a set function. A set function m satisfying the following three
conditions is called a measure.
(1) m is defined on a semiring283 S. [Note that the set of all the rect­
angles is a semiring.]
(2) m(A) ~ O.
(3) m is an additive function: If A is direct-sum-decomposed in terms
of the elements of S as A = Uk=1Ak, then m(A) = 2:k=1 m(Ak).

Therefroe, the area J-l defined in al9.6 is a measure on the set of
all the rectangles. In the case of area, the definition of area is extended
from rectangles to fundamental sets (~al9.2). This is the next step:

al9A.I0 Minimum algebra on S, extension of measure. The
totality of sets A which is a finite join of the elements in S is called the
minimum algebra generated by S. Notice that the totality of funda­
mental sets in a19.2 is the minimum algebra of sets generated by the
totality of rectangles. Just as the concept of area could be generalized
to the area of a fundamental set, we can uniquely extend m defined on
S to the measure defined on the algebra generated by S.

a19.ll Lebesgue extension. We can repeat the procedure to de­
fine J-l from m* and m* in al9A.5 for any measure m on S (in an

283If a family of sets S satisfies the following conditions, it is called a semiring of
sets:
(i) S contains 0,
(ii) If A,B E S, then An B and AU B are in S,
(iii) if Al and A are in S and Al C A, then A \ Al can be written as a direct sum
(the join of disjoint sets) of elements in S.
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abstract fashion). We define m* and m* with the aid of the covers
made of the elements in S. If m*(A) = m*(A), we define the Lebesgue
extension f-l of m with f-l(A) = m*(A), and we say A is f-l-measurable.

a19.l2 Remark. When we simply say the Lebesgue measure, we usu­
ally mean the volume (or area) defined as in a19A.6. However, there
is a different usage of the word. f-l constructed in a19.ll is also called
a Lebesgue measure. That is, a measure constructed by the Lebesgue
extension is generally called Q Lebesgue measure. This concept includes
the much narrower usage common to physicists.

a19.l3 a-additivity. (3) in a19.9 is often replaced by the follow­
ing a-additivity condition: Let A be a sum of countably many disjoint
f-l-measurable sets A = U~=lAn' If

00

f-l(A) = l: f-l(An ),

n=l
(19.66)

we say !t is a a-additive measure.
The Lebesgue measure defined in a19.6 is a-additive. Actually,

if m is a-additive on a semiring of sets, then its Lebesgue extension is
also a-additive.

a19.l4 Measurable function. A real function defined on a set D
is called a f-l-measurable function for a Lebesgue measure f-l on the set,
ifany'levelset'{xlf(x) E [a,b]}nDisf-l-measurable. When we simply
say a function is measurable, then it means that any level set has a well
defined volume in the ordinary sense.

a19.l5 Lebesgue integral with measure !t. Let f-l be Lebesgue
measure on R n

. Then the Lebesgue integral of a f-l-measurable func­
tion on U C R n is defined as

( f(x)df-l(x) = liml:af-l({xi f(x) E [a-E/2,a+E/2)}nU), (19.67)Ju €-+O

where the sum is over all the disjoint level sets of 'thickness' E (> 0).284

a19.l6 Functional integral. As the reader has seen in a19.l5, if
we can define a measure on a set, we can define an integral over the set.

284The measures m satisfying tt(A) = 0 ::} m(A) = 0, where tt is the Lebesgue
measure (volume), is said to be absolutely continuous with respect to tt. If m is abso­
lutely continuous "\V.r.t. tt, then Lebesgue extension, Lebesgue integral, etc are easy
without any technical difficutly just as the volume. However, careful consideration
is needed because there are 'singular' measures.
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The set need not be an ordinary finite-dimensional set, but can be a
function space. In this case the integral is called a functional integral.
If the set is the totality of paths from time t = 0 to T, that is, if the set
is the totality of continuous functions: [0, T] ~ R d

, we call the integral
over the set a path integral. The Feynman-Kac path integral (~30.12)
is an example.285

a19.17 Uniform measure. The Lebesgue measure defined in a19.6
is uniform in the sense that the volume of a set does not depend on its
absolute location in the space. That is, the measure is translationally
invariant (see a19.20 below for a further comment). However, there is
no useful uniform measure in infinite dimensional spaces (~20.2 Dis­
cussion (1)). Thus every measure on a function space or path space
must be non-uniform.

a19.18 Borel measure. Usually, we mean by a Borel measure a mea­
sure which makes measurable all the elements of the smallest algebra
(~a19.10) of sets containing all the rectangles.

a19.19 Probability. A (Lebesgue) measure P with the total mass
1 is called a probability measure. To compute the expectation value
with respect to P is to compute the Lebesgue integral w.r.t. the mea­
sure P.

When we read mathematical probability books, we always en­
counter the 'triplet' (P, X, B), where P is a probability measure, X
is the totality of elementary events (the event space; P(X) = 1) and
B is the algebra of measurable events. This specification is needed,
because if we assume that every composite event has a probability, we
have paradoxes.286 This question arose from the characterization of
'uniform measure' in a finite dimensional Euclidean space:

a19.20 Lebesgue's measure problem. Consider d-Euclidean space
Rd. Is it possible to define a set function (~a19.9) m defined on every
bounded set A E R d such that
(l) The d-unit cube has value 1.

285 However, the definition of the Feynman path integral is too delicate to be
discussed in the proper integration theory.

286There is at least one problem in which the choice of l3 is crucial. This is the
first digit problem. The first significant digits of a table of natural phenomenon
such as the height of mountains do not distribute uniformly: 1 appears much more
often than 9. Why is this so? A conclusive mathematical explanation was given
recently: T P Hill, The Significant-digit Phenomenon, Am. Math. Month. April
1995, p322. If we apparently need a uniform probability on an infinite space (in
this case [0,00)), the choice of l3 seems to be the key (-+a19.17).
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(2) Congruent sets have the same value,
(3) m(A U B) = m(A) +m(B) if An B = 0, and
(4) a-additive
?

This is called Lebesgue's measure problem.

a19.21 Hausdorff and non-measurable set. Hausdorff demon­
strated in 1914 for any d there is no such m satisfying (1 )-(4) of a19.20.
Then, Hausdorff asked in 1914 what if we drop the condition (4). He
showed that m does not exist for d 2 3.287 He showed this by con­
structing a partition of 2-sphere into sets A, B, C, D such that A, B,
C and B U C are all congruent and D is countable (---r15.6). Thus if
m existed, then we had to conclude 3 = 2. Therefore, we must admit
non-measurable sets.288

287Banach demonstrated in 1923 that there is a solution for d = 1 and for d = 2.
288 under the current popular axiomatic system ZF + C.
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