
9 r-functions

The gamma function was introduced by Euler through his
integral: its analytic completion defines an analytic func
tion called the Gamma function. I'(m +1) = m! for mEN
makes this function very useful in theoretical physics. Ele
mentary results are collected here.

Key words Gamma function, Euler's integral, beta func
tion, Schwinger-Feynman's parameter formula, Stirling's for
mula.

Summary
(1) Remember the definition of Gamma function in terms of Euler's
integral (9.1). This is practically important in calculating definite in
tegrals (9.10).
(2) N! is roughly equal to (Nje)''''; for large N (Stirling's formula 9.11).
(3) Half integer values of I' can be evaluated exactly (9.6).

9.1 Euler's integral. For lRz > O.

r(z) = fox e-ttZ-1dt. (9.1)

This is called Euler's integral. This integral is defined only for lRz > 0,
but the Gamma function is defined by the analytic completion (-7.10)
of (9.1 ). A rough idea is as follows. Note that

rm (1 _.!-) m tZ-1dt = m!m
Z

• (9.2)
Jo m z(z+l)···(z+m)

This can be shown by repeated integration by parts. Hence. (9.1) can
be written as

m'm Z

f(z) = lim . .
m-:x: z(z + 1)··· (z + m)

The RHS is well defined for all z ¢ _N.152

(9.3)

Exercise.
Show that

(9.4)

152 A rigorous version may be found in J. W. Dettman. Applied Complex Analysis,
p194 (Dover. 1965). or E.T. Whittaker and G.N. Watson. A Course 0/ Modern
Analysis. Chapter XII. which is a convenient reference source of the f-function.
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m1m z+1 z + 1 + m
zf(z) = lim' =f(z+l).

m....oc(z+1)(z+2)···(z+1+m) m
(9.6)

We can compute the Laurent expansion (-SA.S) of the Gamma func
tion around negative integers s

r (1.)

~
~

I

1

5

..
J

Z

1

o

(9.5)

(9.7) -z
(_l)n 1

f(z) = ---- + ....
n! z + n

From this we obtain the following Hankers formula

_1_ = .i...l (-(}Ze-<d(.
I'(c) 21l' C

(2) Draw the graph of l/r for the interval [-2,4].

9.2 Tt z + 1) = zr(z}. This is for z,# O. -1, -2.···.
[Demo] From (9.3)

Exercise.
r ~Laurent-expand (-2 + e) around e =0 and find its principal part. You may use -$ -4 -3 -2 -1 0 1 .1 ~ .4

the Taylor expansion formula (-9.9). if needed.

9.3 Factorial. Obviously from 9.2. we have

f(m + 1) =m!

for mEN. 01 = 1 as usual.

(9.8)

9.4 9.2 directly from Euler's integral. From (9.1) we get with
the aid of integration by parts

f(z + 1) = -loc(e-t)'t=dt = z lX(e-t)'t=-ldt. (9.9)

This is 9.2. which is demonstrated here for JRz > O. but the principle
of invariance of functional relations 7.6 can be invoked to demonstrate
9.2 for all z ¢ -N.

However. notice that the functional relation 9.2 combined with
I'(L) = 1 is not enough to characterize the f-function. 153

lS3Howeyer. there is a
Theorem [Wielandt] Let F(::) be a holomorphic function in the right half plane
having the following two properties:
(i) F(::+ 1) = ::F(::) on the right half plane.
(ii] F{:;) is bounded in the strip {I SlR: < 2}.
Then. F(::) is proportional to I'(c).
See R. Remmert. "Wielandt's theorem about the r·fUllction:· Am. Math. Month.
p214-220. March 1996.
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Discussion.
Thus

f(z) = f(z + 1)
z

(9.10)

is true for c on the right half plane. However. the RHS is meaningful for Re z > -1
except c =O. Continue this argument to show that f(z) is analytic except negative
integer values of z,

9.5 Formula of complementary arguments: For z ¢ Z

1r
nz)n1- z) = -.-.

sm 1rZ

[Demo] We 110te [(1-:;) =-:;f(-:;) from 9.1.

1 ex ( :;2 )
[(:;)[(1- :;) =:; Jl 1- k 2 •

(9.11)

(9.12)

The RHS is an entire function (let us call it o( z)) with simple zeros at all Z. and
0(:; ) I:: at z =0 is 1. Actually. the product is sin nz[n z: An easier demonstration
will be given in 9.8 below. 0
Analogously. we have

I'{z + 1/2)nz - 1/2) = 1r/ COS1rZ.

Exercise.
Show that

1r
r(=)f{-=)= . .

z sin nz
Using this. demonstrate

Ir(iyJlZ = .1r
Ysinh 1rY

(9.13)

(9.14)

(9.15 )

9.6 r for half integers: The formula of complementary arguments
allows us to compute I'( 1/2 ).154 Since this is positive as seen from the
definition (9.3).

r (~) = y7r.

With 9.1 we get

r (
!) = (2n - 1)!! r: = (2n)! r:

n+ 2 211 y'Tr 22nn!Y'Tr.

(9.16)

(9.17)

154This can be computed directly with the aid of the Gaussian integral as (1) In
Exercise.
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and

(
1) (-lt2n (-4tn!

r -n + 2 = (2n - I)!!y'1r = (2n)! y'1r.

Exercise.
(1) [(1/2) can be computed directly as follows:

1:>0 1 fOC 2[(1/2) = e-t r;.dt = e-z dx,
o v t -:>0

(9.18)

(9.19)

Hence. we have only to compute the Gaussian integral. The best method to compute
this integral is the following trick:

{I: e- z 2 dx } 2 =JR
2

dJ:dye-<;r2+ 1h =2r. 1°C e-r2rdr. (9.20)

Complete the calculation.
(2) Compute [(7.5) and f( -1.5),
(3) How fast does I'( -n + 1/2) converges to 0 in the n - oc limit?
(4) Show

I, (2n - 1)1! 1/2 _ -1/2.::n (?)1I n - 1l' •n oc _71 ..
(9.21 )

(9.24)

(9.23)

(9.22)

9.7 Beta function. The beta function B(p. q) is an analytic function
of two variables obtained by the analytic completion (-t7.10) of the
following integral

B(p.q) = fol tp-1(l- t)q-1dt.

_ 2t: dO COS2p-1 0 sin2q- 1 O.

fox dx xp- I ( 1 + x )-(p+q).

where 1Rp and 1Rq must be positive. The second line can be obtained by
setting t =sin2 O. and the third line by t = x I (1 +x). Assume p, q E R
and positive. We get (t = x2 or y2 in (9.1))

r(p)r(q) - 4 fox dxe-:r2
x2u- l foX dye- y 2 y2u- l (9.25)

_ 4 foX rdr e_r
2 r2(p+q- l ) fo1l' /2 dO COS2p-1 (J sin2q- 1 (J.

- I'(p + q)B(p. q). (9.26)

Hence. we have
B( . I = r(p)r(q).

pq, r(p+q)
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The RHS is meaningful for all p. q except for negative integers, so that
we may define the beta function by this formula.

Exercise.
(1) Because

we obtain

and

(2)

roc .1'9-1

B(p.q) =B(q,p) = l« (1 + .1')p+qdx,

11°C xp-1 + .1''1-1

B. =- dx(pq) 2
0

(1+x)P+9

rIX xp-l - X 9- 1

Jo (l + x)P+q dx = O.

(9.28)

(9.29)

(9.30)

1"'/ 2 III 1 (+1 +1)1= sinP&cos9&d8=- .1'(P+ll/2-1(l_X)(9+1l/2-1dx = _B p-- -q-
o 2 0 ' 22'2'

(9.31 )
For example.

1"'/ 2 ,;:;
sinP 8d9 = -i-f«p+ 1)/2)/f(p/2+ 1).

o -
This is called Walli$' formula. if p is a positive integer.
(3) Computing

r1

(1 _ :r2)~-ldx
J-l

with two different change of variables (t =.1'2 and t = (x + 1)/2). show

22~-1 (1)
f(2:) = ,;:; f(z)f z + 2" .

More generally. it is known that

(9.32)

(9.33)

(9.34 )

9.8 Proof of 9.5: From (9.27) and (9.24) we get for 0 < ~z < 1

1
00 X.:-l 1r

f(z)r(l- z) = r(l)B(z.l - z) = dx-- = -.-.
o 1 + X S1l11r Z

(9.36)

We can apply the principle of invariance of functional relation 7.6 to
complete the proof of 9.5.

Exercise.
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To compute the integral in (9.36) we can also use the transformation x = ell to
convert the integral to

j ex eZII

-ex 1 + ell dy
.

This is the same problem in 8B.9.

9.9 Taylor expansion:

1 (2 11'2) 2f(l + z) = 1 - "yZ +"2 "y + '6 z + ....

(9.3i)

(9.38)

Here "y is called Euler's constant defined by

"Y == lim (1 + ~ + ~ + ... + ~ -In n) (9.39)
n-x 2 3 n

and "Y = 0.577215664,· -. 155 0
[Demo] Calculate the logarithmic derivative of (9.3) (Uniform convergence allows
termwise operations)

r- (.:) 1 IX (1 1)
f(.:) = -~I - ; + {; k - k +:;; ,

so that
IX (1 1)['(I) =-"\ - 1+" --- =-"\, L.- J, 1.'+1 "

k=l

Differentiating (9.40) once more, we get

d2 IX 1
d.:z logf(.:) =L (= + 1..)2'

1.:=0

Hence,
ex 2

[1/(1) _ ['(1)2 =" 2..
2

= :-,156
L.- k 6
,1,=1

(9.40)

(9.41)

(9.42)

(9.45)

155"'hether '} is irrational or not is not known: it is known that if it is rational.
both the denominator and the numerator must have at least 30,000 digits.

156To compute this sum or the zeta function (-7.15)

ex 1
«(.:) == L 1..::'

k=l

(9.44)

we use

1
°c F-1

((z)f(:) = -I-ldt, (9.45)
o e-

See T. ~L Apostol. Math, Intelligencer. 5(3). 59-60 (1983) "A proof the Euler
missed: evaluation of ((2) the easy way." See 4.4 Discussion (1).
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This gives the desired second derivative. 0

Exercise.
(1) Demonstrate that the [·function is a convex function (-+2A.l Discussion) for
z > O.
(2) Using the fact

demonstrate

['(1)
[(1) =-I'

(9.46)

(9Ai)

9.10 Use in perturbative field theorlesr"
(1) When we compute (bare) perturbation series. we have to compute
integrals of the following type:

Here the integral may not exist even when the RHS exists. In such
cases the integral is defined by the RHS (analytic continuation). This
formula can be demonstrated as follows: First we exponentiate the
denominator wi th the aid of Euler's integral (9.1)

(9.49)

as
1= Jdq foX dt t":' exp[-t(q2 + 2k· q + m 2)J. (9.50)

This is a standard trick. Vve can legitimately exchange the order of
the two integrations (Fubini's theorem-s Ifl.Ld]. and perform the d
dimensional Gaussian integral158( -19.19) to get

(9.51 )

15iJ, Zinn-Justin. Quantum Field Th.eory and Critical Phenomena. (Oxford, 1989);
D, J. Amit. Field Theory. the Renormalization Group, and Critical Phenomena
(World Scientific. original from McGraw-Hill 19i8).

158
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This gives the desired result. See also (D) below.
(2) We often need the integral of the product ofthe factors 1/(q2+ m2).
In this case the q-integral (momentum integral) can be reduced to (1)
by the so-called Schwinger-Feynman parameter formula:

1

where

(9.53)

To demonstrate this we start with (9.49). We have. using Fubini's
theorem

Now. introduce new variables (t l. t2.···. tn-I. Y) as

x, = tiy. (i =1.2.··· .ti -1).

In = (1 - tl - t2 - ... - tn-I)Y'

The Jacobian for this transformation is yn-l. so that

n r: [ Eo,t,IT aid' = Jo dy k dt l ... dt n _ I y ll - l y E di-n n .•

i=l 0 , TIi=1 r(a1 )

This leads to the desired result. 0

(9.54)

(9.55)

(9.56)

(9.57)

Exercise.
(A) Demonstrate

1= JJ/(tl + t2)t~,-1t~2-1dtldt2 = ~~::)~(::;11

/(t)tOl+a2-1dt. (9.58)

where the integration range is tl + tz :5 1 and tl > O. t2 > O.

(B) From a similar calculation as (A). we get the following formula:

JJ... Jl(t1+ tz + ... + t" )t~,-1t;2-1 ... t~n-ldtldt2'" dt.;

= r(Ol)r(02)'" f(on) t' !(tW,+o2+· ..+a,,-ldt
f(o} +02 + ... +on) Jo

(9.59)
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where the integration range is t; > 0 and tl + ... + t n < 1 as in (A). You need not
demonstrate this formula (if you feel it is correct). Using this formula. demonstrate
that the volume V of the n-ball of radius r is given by

• 2rn 1l"n /2

l = nr(n/2)'
(9.60)

Compute the surface area of the n-ball (i.e., the volume of the (n - I)-sphere).
Estimate the ratio of the volume of a-ball and that of its thin skin of thickness

e «: 1 for very large d.1S 9 [Hint. Actually. dimensional analysis is enough. Look at
the ratio of the volume of n-sphere of radius r and that of radius r - t.]
(C) This formula can be generalized to the following. Let D be a domain in n-space
defined by

and .1'1 ~ 0.· .. , X n ~ O.

(9,61)

f d 1 -~S r(d/2)r(o-d/2)( 2 1.2d/2-o.
Q(q2+2kq+m2)O - 2 d-I I'(o ) m -" ) . (9.63)

(9.64)

9 .11 Stirling's formula.P" Uniformly ill Iarg zI :5 7r - 6 for any
small positive b.

r,( ) r;:;-::2 -' z-l/') [1 1 1 139 ]z ....., V;t7r€ -Z - + -- +-- - + ...
12z 288z2 51849z3 •

Here r- implies that the expansion is asymptotic (-25.3. 25.14).0
A practical way to remember the salient feature is

n!....., (njet.

[DemoJ161 'Ve only demonstrate

r( 11len JTi ;;:;-2
.... v ~1l" as 11 .... OC.

TIn

(9.65)

(9.66)

1591n very high dimensional spaces. almost all the volume is always very close to
the skin. This is a very important fact for statistical mechanics, and coding theory.

160 James Stirling. 1692,1 iiO.
161J. ~1. Patin. Am. Math. Month. 96,41-42 (1989).
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In Euler's integral (9.1) set x = Vi - vn to find

(9.67)

Now, the integrand is uniformly bounded in 11 by the integrable function e-ll"-l,
because

(1 + /;;) 2"-1 e-2vn.r s exp { /;;(21"1 - 1)}exp( -2.,fnx) =e-.r/vn ::; e. (9.68)

Since for each ;r

the dominated convergence theorem162 tells us

_[(_n_)e_"vn",,--n 2 j x - 2".'d _ it)"'- e x- V;i;1r.
11" -oc;

o
Discussion. Hi3 The above proof does 110t tell us why the ratio
considered, Let us give a more 'constructh'e' proof.
(1) Xotice that for ffi.:: > 0

(2) To rewrite In t let us show that integration of

implies for ffit > 0

This integral is called Frullani's integral.P"
(3) Combining the above results. we obtain

(9.69)

(9.70)

(9.66) must be

(9.71 )

(9.72)

(9.73)

(9,74)

J62 Again. this is a rudimentary theorem of Lebesgue integral (-19.11).
J63This is adapted from Lebedev.
J64To justify the changing the order of integrations. we may rely on Fubini's the

orem (-19.14), The same is true for the exchange in (3).
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(4) From this we obtain

(9.75)

1 100 (1 1 1) -tZd= ln z + - - - - - + -- e t:
2;; 0 2 t e' -1

= {IX (e- t
_ ~) dt,

Jo t et - 1

1
1X

-t - -tz 11"0 1"" (1 1 1)= e e dt + _ e-tzdt - - - - + -r--- e-tzdt,
o t 2 0 0 2 t e-1

(9.76)

(9.77)

d
d,: ln I'(c + 1)

(5) Integrating this with z from 0 to =, we obtain

InT(z) = ( z - ~) In z - z + 1

l
cc (1 1 1) e- t

- e-t z

+ -- -+-- dt.
o 2 t e' - 1 t

(9.78)

(6) This can be rewritten as

luf(.:)= (.:-D111Z-Z+":(Z)-..:(1). (9.79)

where

(9.80)

with

(
1 1 1) 1f(t) = - - - + -- -.
2 t e' - 1 t

(9.81 )

To compute ..:(1). notice that

l
x (e-t/2 1)

..:(1/2) - ..:(1) = - - -- dt
o t et - 1

(9.82)

but this can be obtained from the result of (5) with e = 1/2 (-9.6) as

",,'(1/2)- (""(1) =~ In 11" - ~. (9.83)

On the other hand. we can compute w(1/2) directly as

(9.84)

Hence. ..:(1) = -(1/2)ln211"
(7) For large ffi,: > 0 we can expect that » is small. Actuall:r it is of order 1/s,
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