9 Γ-functions

The gamma function was introduced by Euler through his integral: its analytic completion defines an analytic function called the Gamma function. $\Gamma(m+1) = m!$ for $m \in N$ makes this function very useful in theoretical physics. Elementary results are collected here.

Key words Gamma function, Euler's integral, beta function, Schwinger-Feynman's parameter formula, Stirling's formula.

Summary

(1) Remember the definition of Gamma function in terms of Euler's integral (9.1). This is practically important in calculating definite integrals (9.10).

(2) N! is roughly equal to (N/e)^N for large N (Stirling's formula 9.11).
(3) Half integer values of Γ can be evaluated exactly (9.6).

9.1 Euler's integral. For $\mathbb{R}z > 0$.

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt.$$
 (9.1)

This is called *Euler's integral*. This integral is defined only for $\mathbb{R}z > 0$, but the *Gamma function* is defined by the analytic completion $(\rightarrow 7.10)$ of (9.1). A rough idea is as follows. Note that

$$\int_0^m \left(1 - \frac{t}{m}\right)^m t^{z-1} dt = \frac{m! m^z}{z(z+1)\cdots(z+m)}.$$
 (9.2)

This can be shown by repeated integration by parts. Hence, (9.1) can be written as

$$\Gamma(z) = \lim_{m \to \infty} \frac{m! m^2}{z(z+1) \cdots (z+m)}.$$
(9.3)

The RHS is well defined for all $z \notin -N$.¹⁵²

Exercise. Show that

Re

Im

C

$$H(z) = \int_C (-\zeta)^{z-1} e^{-\zeta} d\zeta = -2i \sin \pi z \Gamma(z).$$
(9.4)

 152 A rigorous version may be found in J. W. Dettman. Applied Complex Analysis, p194 (Dover. 1965). or E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. Chapter XII. which is a convenient reference source of the Γ -function.

From this we obtain the following Hankel's formula

$$\frac{1}{\Gamma(z)} = \frac{i}{2\pi} \int_C (-\zeta)^z e^{-\zeta} d\zeta.$$
(9.5)

(2) Draw the graph of $1/\Gamma$ for the interval [-2, 4].

9.2 $\Gamma(z + 1) = z\Gamma(z)$. This is for $z \neq 0, -1, -2, \cdots$. [Demo] From (9.3)

$$z\Gamma(z) = \lim_{m \to \infty} \frac{m! m^{z+1}}{(z+1)(z+2)\cdots(z+1+m)} \frac{z+1+m}{m} = \Gamma(z+1).$$
(9.6)

We can compute the Laurent expansion $(\rightarrow 8A.8)$ of the Gamma function around negative integers s

$$\Gamma(z) = \frac{(-1)^n}{n!} \frac{1}{z+n} + \cdots$$

Exercise.

Laurent-expand $\Gamma(-2 + \epsilon)$ around $\epsilon = 0$ and find its principal part. You may use the Taylor expansion formula $(\rightarrow 9.9)$, if needed.

9.3 Factorial. Obviously from 9.2. we have

$$\Gamma(m+1) = m! \tag{9.8}$$

for $m \in \mathbb{N}$. 0! = 1 as usual.

9.4 9.2 directly from Euler's integral. From (9.1) we get with the aid of integration by parts

$$\Gamma(z+1) = -\int_0^\infty (e^{-t})' t^z dt = z \int_0^\infty (e^{-t})' t^{z-1} dt.$$
(9.9)

This is 9.2. which is demonstrated here for $\mathbb{R}z > 0$, but the principle of invariance of functional relations 7.6 can be invoked to demonstrate 9.2 for all $z \notin -N$.

However. notice that the functional relation 9.2 combined with $\Gamma(1) = 1$ is <u>not</u> enough to characterize the Γ -function.¹⁵³

¹⁵³However. there is a

Theorem [Wielandt] Let F(z) be a holomorphic function in the right half plane having the following two properties:

(i) F(z+1) = zF(z) on the right half plane.

(ii) F(z) is bounded in the strip $\{1 \leq \mathbb{R}z < 2\}$.

Then, F(z) is proportional to $\Gamma(z)$.

See R. Remmert, "Wielandt's theorem about the Γ -function," Am. Math. Month. p214-220. March 1996.

Discussion. Thus

$$\Gamma(z) = \frac{\Gamma(z+1)}{z}$$
(9.10)

is true for z on the right half plane. However, the RHS is meaningful for Re z > -1except z = 0. Continue this argument to show that $\Gamma(z)$ is analytic except negative integer values of z.

9.5 Formula of complementary arguments: For $z \notin Z$

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$
(9.11)

[Demo] We note $\Gamma(1-z) = -z\Gamma(-z)$ from 9.1.

$$\frac{1}{\Gamma(z)\Gamma(1-z)} = z \prod_{k=1}^{\infty} \left(1 - \frac{z^2}{k^2} \right).$$
(9.12)

The RHS is an entire function (let us call it o(z)) with simple zeros at all Z. and o(z)/z at z = 0 is 1. Actually, the product is $\sin \pi z/\pi z$. An easier demonstration will be given in 9.8 below. \Box

Analogously, we have

$$\Gamma(z+1/2)\Gamma(z-1/2) = \pi/\cos \pi z.$$
(9.13)

Exercise.

Show that

$$\Gamma(z)\Gamma(-z) = \frac{\pi}{z\sin\pi z}.$$
(9.14)

Using this. demonstrate

$$|\Gamma(iy)|^2 = \frac{\pi}{y \sinh \pi y}.$$
(9.15)

9.6 Γ for half integers: The formula of complementary arguments allows us to compute $\Gamma(1/2)$.¹⁵⁴ Since this is positive as seen from the definition (9.3).

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.\tag{9.16}$$

With 9.1 we get

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n}\sqrt{\pi} = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}.$$
(9.17)

 154 This can be computed directly with the aid of the Gaussian integral as (1) In Exercise.

 and

$$\Gamma\left(-n+\frac{1}{2}\right) = \frac{(-1)^n 2^n}{(2n-1)!!} \sqrt{\pi} = \frac{(-4)^n n!}{(2n)!} \sqrt{\pi}.$$
 (9.18)

Exercise.

(1) $\Gamma(1/2)$ can be computed directly as follows:

$$\Gamma(1/2) = \int_0^\infty e^{-t} \frac{1}{\sqrt{t}} dt = \int_{-\infty}^\infty e^{-x^2} dx.$$
 (9.19)

Hence, we have only to compute the Gaussian integral. The best method to compute this integral is the following trick:

$$\left\{\int_{-\infty}^{\infty} e^{-x^2} dx\right\}^2 = \int_{\mathbf{R}^2} dx dy e^{-(x^2+y^2)} = 2\pi \int_0^{\infty} e^{-r^2} r dr.$$
(9.20)

Complete the calculation.

- (2) Compute $\Gamma(7.5)$ and $\Gamma(-1.5)$.
- (3) How fast does $\Gamma(-n+1/2)$ converges to 0 in the $n \to \infty$ limit?

(4) Show

$$\lim_{n \to \infty} \frac{(2n-1)!!}{(2n)!!} n^{1/2} = \pi^{-1/2}.$$
(9.21)

9.7 Beta function. The beta function B(p,q) is an analytic function of two variables obtained by the analytic completion $(\rightarrow 7.10)$ of the following integral

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt.$$
(9.22)

$$= 2 \int_0^{\pi/2} d\theta \cos^{2p-1} \theta \sin^{2q-1} \theta.$$
 (9.23)

$$= \int_0^\infty dx \, x^{p-1} (1+x)^{-(p+q)}. \tag{9.24}$$

where $\Re p$ and $\Re q$ must be positive. The second line can be obtained by setting $t = \sin^2 \theta$, and the third line by t = x/(1+x). Assume $p, q \in \mathbf{R}$ and positive. We get $(t = x^2 \text{ or } y^2 \text{ in } (9.1))$

$$\Gamma(p)\Gamma(q) = 4 \int_0^\infty dx \, e^{-x^2} x^{2u-1} \int_0^\infty dy \, e^{-y^2} y^{2u-1}$$
(9.25)

$$= 4 \int_0^\infty r dr \, e^{-r^2} r^{2(p+q-1)} \int_0^{\pi/2} d\theta \cos^{2p-1} \theta \sin^{2q-1} \theta,$$

= $\Gamma(p+q) B(p,q).$ (9.26)

Hence. we have

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$
(9.27)

The RHS is meaningful for all p. q except for negative integers, so that we may define the beta function by this formula.

Exercise.

(1) Because

$$B(p,q) = B(q,p) = \int_0^\infty \frac{x^{q-1}}{(1+x)^{p+q}} dx,$$
(9.28)

we obtain

$$B(p,q) = \frac{1}{2} \int_0^\infty \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx$$
(9.29)

and

$$\int_0^\infty \frac{x^{p-1} - x^{q-1}}{(1+x)^{p+q}} dx = 0.$$
(9.30)

(2)

$$I = \int_0^{\pi/2} \sin^p \theta \cos^q \theta d\theta = \frac{1}{2} \int_0^1 x^{(p+1)/2 - 1} (1 - x)^{(q+1)/2 - 1} dx = \frac{1}{2} B\left(\frac{p+1}{2}, \frac{q+1}{2}\right)$$
(9.31)

For example.

$$\int_0^{\pi/2} \sin^p \theta d\theta = \frac{\sqrt{\pi}}{2} \Gamma((p+1)/2) / \Gamma(p/2+1).$$
(9.32)

This is called *Wallis' formula*. if p is a positive integer. (3) Computing

$$\int_{-1}^{1} (1 - x^2)^{z - 1} dx \tag{9.33}$$

with two different change of variables $(t = x^2 \text{ and } t = (x + 1)/2)$. show

$$\Gamma(2z) = \frac{2^{2z-1}}{\sqrt{\pi}} \Gamma(z) \Gamma\left(z + \frac{1}{2}\right).$$
(9.34)

More generally, it is known that

$$\Gamma(nz) = (2\pi)^{(1-n)/2} n^{nz-1/2} \Gamma(z) \Gamma\left(z+\frac{1}{n}\right) \cdots \Gamma\left(z+\frac{n_1}{n}\right).$$
(9.35)

9.8 Proof of 9.5: From (9.27) and (9.24) we get for $0 < \Re z < 1$

$$\Gamma(z)\Gamma(1-z) = \Gamma(1)B(z,1-z) = \int_0^\infty dx \frac{x^{z-1}}{1+x} = \frac{\pi}{\sin \pi z}.$$
 (9.36)

We can apply the principle of invariance of functional relation 7.6 to complete the proof of 9.5.

Exercise.

To compute the integral in (9.36) we can also use the transformation $x = e^y$ to convert the integral to

$$\int_{-\infty}^{\infty} \frac{e^{zy}}{1+e^{y}} dy. \tag{9.37}$$

This is the same problem in 8B.9.

9.9 Taylor expansion:

$$\Gamma(1+z) = 1 - \gamma z + \frac{1}{2} \left(\gamma^2 + \frac{\pi^2}{6}\right) z^2 + \cdots .$$
 (9.38)

Here γ is called *Euler's constant* defined by

$$\gamma \equiv \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$$
 (9.39)

and $\gamma = 0.577215664 \cdots$ ¹⁵⁵

[Demo] Calculate the logarithmic derivative of (9.3) (Uniform convergence allows termwise operations)

$$\frac{\Gamma'(z)}{\Gamma(z)} = -\gamma - \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+z}\right),\tag{9.40}$$

so that

$$\Gamma'(1) = -\gamma - 1 + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) = -\gamma.$$
(9.41)

Differentiating (9.40) once more, we get

$$\frac{d^2}{dz^2}\log\Gamma(z) = \sum_{k=0}^{\infty} \frac{1}{(z+k)^2}.$$
(9.42)

Hence.

$$\Gamma''(1) - \Gamma'(1)^2 = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$
 (9.45)

¹⁵⁵Whether γ is irrational or not is not known: it is known that if it is rational, both the denominator and the numerator must have at least 30,000 digits.

¹⁵⁶To compute this sum or the zeta function $(\rightarrow 7.15)$

$$\zeta(z) \equiv \sum_{k=1}^{\infty} \frac{1}{k^z},\tag{9.44}$$

we use

$$\zeta(z)\Gamma(z) = \int_0^\infty \frac{t^{z-1}}{e^t - 1} dt.$$
(9.45)

See T. M. Apostol. Math. Intelligencer, 5(3). 59-60 (1983) "A proof the Euler missed: evaluation of $\zeta(2)$ the easy way." See 4.4 Discussion (1).

This gives the desired second derivative. \Box

Exercise.

(1) Demonstrate that the Γ -function is a convex function (\rightarrow **2A.1** Discussion) for x > 0.

(2) Using the fact

$$\frac{\Gamma'(1)}{\Gamma(1)} = -\gamma. \tag{9.46}$$

demonstrate

$$\gamma = -\int_0^\infty e^{-t} \log t \, dt. \tag{9.47}$$

9.10 Use in perturbative field theories:¹⁵⁷

(1) When we compute (bare) perturbation series, we have to compute integrals of the following type:

$$I \equiv \int dq \frac{1}{(q^2 + 2\mathbf{k} \cdot \mathbf{q} + m^2)^{\alpha}} = \pi^{d/2} \frac{\Gamma(\alpha - d/2)}{\Gamma(\alpha)} (m^2 - k^2)^{d/2 - \alpha}.$$
 (9.48)

Here the integral may not exist even when the RHS exists. In such cases the integral is <u>defined</u> by the RHS (analytic continuation). This formula can be demonstrated as follows: First we exponentiate the denominator with the aid of Euler's integral (9.1)

$$\frac{1}{a^{\alpha}} = \frac{1}{\Gamma(\alpha)} \int_0^{\infty} dt \, t^{\alpha - 1} e^{-at} \tag{9.49}$$

 \mathbf{as}

$$I = \int dq \int_0^\infty dt \, t^{\alpha - 1} \exp[-t(q^2 + 2\mathbf{k} \cdot \mathbf{q} + m^2)].$$
(9.50)

This is a standard trick. We can legitimately exchange the order of the two integrations (Fubini's theorem $\rightarrow 19.14$). and perform the *d*-dimensional Gaussian integral¹⁵⁸($\rightarrow 19.19$) to get

$$I = \frac{1}{\Gamma(\alpha)} \int_0^\infty dt \, t^{\alpha - 1} \left(\frac{\pi}{t}\right)^{d/2} e^{-(m^2 - k^2)t}.$$
 (9.51)

$$\int_{-\infty}^{\infty} dq^d e^{-a^2 q^2} = \left(\frac{\sqrt{\pi}}{a}\right)^d.$$

 ¹⁵⁷ J. Zinn-Justin. Quantum Field Theory and Critical Phenomena, (Oxford, 1989);
 D. J. Amit. Field Theory. the Renormalization Group, and Critical Phenomena (World Scientific, original from McGraw-Hill 1978).

This gives the desired result. See also (D) below.

(2) We often need the integral of the product of the factors $1/(q^2 + m^2)$. In this case the q-integral (momentum integral) can be reduced to (1) by the so-called Schwinger-Feynman parameter formula:

$$= \frac{\Gamma(\alpha_1 + \dots + \alpha_n)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\cdots\Gamma(\alpha_n)} \int_{V} dt_1 dt_2 \cdots dt_{n-1} \frac{t_1^{\alpha_1 - 1} \cdots t_n^{\alpha_n - 1}}{(t_1 a_1 + \dots + t_n a_n)^{\alpha_1 + \dots + \alpha_n}},$$
(9.52)

where

$$V = \{(t_1, \cdots, t_{n-1}) : t_i \in [0, 1], t_1 + t_2 + \cdots + t_{n-1} \le 1\}.$$
 (9.53)

To demonstrate this we start with (9.49). We have, using Fubini's theorem

$$\prod_{i=1}^{n} a_{i}^{-\alpha_{i}} = \int_{0}^{\infty} dx_{1} dx_{2} \cdots dx_{n} \frac{\prod_{i=1}^{n} x_{i}^{\alpha_{i}-1} e^{-\sum a_{i} x_{i}}}{\prod_{i=1}^{n} \Gamma(\alpha_{i})}.$$
(9.54)

Now, introduce new variables $(t_1, t_2, \dots, t_{n-1}, y)$ as

$$x_i = t_i y.$$
 $(i = 1, 2, \cdots, n-1).$ (9.55)

$$x_n = (1 - t_1 - t_2 - \dots - t_{n-1})y.$$
 (9.56)

The Jacobian for this transformation is y^{n-1} , so that

$$\prod_{i=1}^{n} a_{i}^{-\alpha_{i}} = \int_{0}^{\infty} dy \int_{V} dt_{1} \cdots dt_{n-1} y^{n-1} y^{\sum \alpha_{i} - n} \frac{e^{-y \sum \alpha_{i} t_{i}}}{\prod_{i=1}^{n} \Gamma(\alpha_{i})}.$$
 (9.57)

This leads to the desired result. \Box

Exercise.

(A) Demonstrate

$$I = \int \int f(t_1 + t_2) t_1^{a_1 - 1} t_2^{a_2 - 1} dt_1 dt_2 = \frac{\Gamma(a_1) \Gamma(a_2)}{\Gamma(a_1 + a_2)} \int_0^1 f(t) t^{a_1 + a_2 - 1} dt, \quad (9.58)$$

where the integration range is $t_1 + t_2 \leq 1$ and $t_1 > 0$, $t_2 > 0$.

(B) From a similar calculation as (A). we get the following formula:

$$\int \int \cdots \int f(t_1 + t_2 + \dots + t_n) t_1^{a_1 - 1} t_2^{a_2 - 1} \cdots t_n^{a_n - 1} dt_1 dt_2 \cdots dt_n$$
$$= \frac{\Gamma(a_1) \Gamma(a_2) \cdots \Gamma(a_n)}{\Gamma(a_1 + a_2 + \dots + a_n)} \int_0^1 f(t) t^{a_1 + a_2 + \dots + a_n - 1} dt$$
(9.59)

where the integration range is $t_i > 0$ and $t_1 + \cdots + t_n < 1$ as in (A). You need not demonstrate this formula (if you feel it is correct). Using this formula, demonstrate that the volume V of the n-ball of radius r is given by

$$V = \frac{2r^n \pi^{n/2}}{n\Gamma(n/2)}.$$
 (9.60)

Compute the surface area of the *n*-ball (i.e., the volume of the (n-1)-sphere).

Estimate the ratio of the volume of *d*-ball and that of its thin skin of thickness $\epsilon \ll 1$ for very large d.¹⁵⁹ [Hint. Actually, dimensional analysis is enough. Look at the ratio of the volume of *n*-sphere of radius *r* and that of radius $r - \epsilon$.] (C) This formula can be generalized to the following. Let *D* be a domain in *n*-space defined by

$$\left(\frac{x_1}{a_1}\right)^{b_1} + \dots + \left(\frac{x_n}{a_n}\right)^{b_n} \le 1$$
(9.61)

and $x_1 \geq 0, \cdots, x_n \geq 0$.

$$\int \cdots \int_{D} dx_1 dx_2 \cdots dx_n x_1^{l_1 - 1} \cdots x_n^{l_n - 1} = \frac{a_1^{l_1} \cdots a_n^{l_n}}{b_1 \cdots b_n} \frac{\Gamma\left(\frac{l_1}{b_1}\right) \cdots \Gamma\left(\frac{l_n}{b_n}\right)}{\Gamma\left(\frac{l_1}{b_1} + \cdots + \frac{l_n}{b_n} + 1\right)}.$$
 (9.62)

(D) Demonstrate (9.48). That is.

$$\int dq \frac{1}{(q^2 + 2kq + m^2)^{\alpha}} = \frac{1}{2} S_{d-1} \frac{\Gamma(d/2)\Gamma(\alpha - d/2)}{\Gamma(\alpha)} (m^2 - k^2)^{d/2 - \alpha}.$$
 (9.63)

9.11 Stirling's formula.¹⁶⁰ Uniformly in $|\arg z| \leq \pi - \delta$ for any small positive δ .

$$\Gamma(z) \sim \sqrt{2\pi} e^{-z} z^{z-1/2} \left[1 + \frac{1}{12z} + \frac{1}{288z^2} - \frac{139}{51849z^3} + \cdots \right].$$
(9.64)

Here ~ implies that the expansion is asymptotic ($\rightarrow 25.3, 25.14$). \Box

A practical way to remember the salient feature is

$$n! \sim (n/e)^n. \tag{9.65}$$

[Demo]¹⁶¹ We only demonstrate

$$\frac{\Gamma(n)e^n\sqrt{n}}{n^n} \to \sqrt{2\pi} \quad \text{as} \quad n \to \infty.$$
(9.66)

¹⁵⁹In very high dimensional spaces, almost all the volume is always very close to the skin. This is a very important fact for statistical mechanics, and coding theory. ¹⁶⁰James Stirling, 1692-1770.

¹⁶¹ J. M. Patin. Am. Math. Month. 96, 41-42 (1989).

In Euler's integral (9.1) set $x = \sqrt{t} - \sqrt{n}$ to find

$$\frac{\Gamma(n)e^n\sqrt{n}}{n^n} = 2\int_{-\sqrt{n}}^{\infty} \left(1 + \frac{x}{\sqrt{n}}\right)^{2n+1} e^{-2\sqrt{n}x} e^{-x^2} dx$$
(9.67)

Now, the integrand is uniformly bounded in n by the integrable function e^{-x^2-1} , because

$$\left(1+\frac{x}{\sqrt{n}}\right)^{2n-1}e^{-2\sqrt{n}x} \le \exp\left\{\frac{x}{\sqrt{n}}(2n-1)\right\}\exp(-2\sqrt{n}x) = e^{-x/\sqrt{n}} \le e. \quad (9.68)$$

Since for each x

$$\lim_{n \to \infty} \log \left\{ \left(1 + \frac{x}{\sqrt{n}} \right)^{2n-1} e^{-2\sqrt{n}x} \right\} = -x^2.$$
(9.69)

the dominated convergence theorem¹⁶² tells us

$$\frac{\Gamma(n)e^n\sqrt{n}}{n^n} \to 2\int_{-\infty}^{\infty} e^{-2x^2} dx = \sqrt{2\pi}.$$
(9.70)

Discussion.¹⁶³ The above proof does not tell us why the ratio (9.66) must be considered. Let us give a more 'constructive' proof. (1) Notice that for $\mathbb{R}_{z} > 0$

$$\Gamma'(z) = \int_0^\infty e^{-t} t^{z-1} \ln t \, dt. \tag{9.71}$$

(2) To rewrite $\ln t$ let us show that integration of

$$\frac{1}{t} = \int_0^\infty e^{-xt} dx \tag{9.72}$$

implies for $\mathbb{R}t > 0$

$$\ln t = \int_0^\infty \frac{e^{-x} - e^{-xt}}{x} dx.$$
 (9.73)

This integral is called Frullani's integral.¹⁶⁴ (3) Combining the above results. we obtain

$$\Gamma'(z) = \int_0^\infty \frac{dx}{x} \left[e^{-x} \Gamma(z) - \int_0^\infty e^{-t(x+1)} t^{z-1} dt \right].$$
 (9.74)

¹⁶²Again, this is a rudimentary theorem of Lebesgue integral (\rightarrow **19.11**).

¹⁶³This is adapted from Lebedev.

¹⁶⁴To justify the changing the order of integrations. we may rely on Fubini's theorem $(\rightarrow 19.14)$. The same is true for the exchange in (3).

(4) From this we obtain

$$\frac{d}{dz}\ln\Gamma(z+1) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-zt}}{e^t - 1}\right) dt,$$

$$= \int_0^\infty \frac{e^{-t} - e^{-tz}}{t} dt + \frac{1}{2} \int_0^\infty e^{-tz} dt - \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right) e^{-tz} dt,$$
(9.75)
(9.76)

$$= \ln z + \frac{1}{2z} - \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right) e^{-tz} dt.$$
(9.77)

(5) Integrating this with z from 0 to z, we obtain

$$\ln \Gamma(z) = \left(z - \frac{1}{2}\right) \ln z - z + 1 + \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right) \frac{e^{-t} - e^{-tz}}{t} dt.$$
(9.78)

(6) This can be rewritten as

$$\ln \Gamma(z) = \left(z - \frac{1}{2}\right) \ln z - z + \omega(z) - \omega(1). \tag{9.79}$$

where

_

-

$$\omega(z) = \int_0^\infty f(t)e^{-tz}dt \tag{9.80}$$

with

$$f(t) = \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right)\frac{1}{t}.$$
(9.81)

To compute $\omega(1)$, notice that

$$\omega(1/2) - \omega(1) = \int_0^\infty \left(\frac{e^{-t/2}}{t} - \frac{1}{e^t - 1}\right) dt$$
(9.82)

but this can be obtained from the result of (5) with $z = 1/2 (\rightarrow 9.6)$ as

$$\omega(1/2) - \omega(1) = \frac{1}{2} \ln \pi - \frac{1}{2}.$$
(9.83)

On the other hand, we can compute $\omega(1/2)$ directly as

$$\omega(1/2) = \frac{1}{2} + \frac{1}{2}\ln\frac{1}{2}.$$
(9.84)

Hence, $\omega(1) = -(1/2) \ln 2\pi$

(7) For large $\mathbb{R}z > 0$ we can expect that ω is small. Actually it is of order 1/z.

.