9 [I'-functions

The gamma function was introduced by Euler through his
- integral: its analytic completion defines an analytic func-
tion called the Gamma function. I'(m+1)=m!form € N
makes this function very useful in theoretical physics. Ele-
mentary results are collected here.

Key words Gamma function, Euler’s integral, beta func-
tion, Schwinger-Feynman's parameter formula, Stirling’s for-
mula.

Summary

(1) Remember the definition of Gamma function in terms of Euler’s
integral (9.1). This is practically important in calculating definite in-
- tegrals (9.10).

(2) N!is roughly equal to (N/e)" for large N (Stirling’s formula 9.11).
(3) Half integer values of I' can be evaluated exactly (9.6).

9.1 Euler’s integral. For Rz > 0.
- I(z) = /0 T et it (9.1)

This is called Euler’s integral. This integral is defined only for Rz > 0,
but the Gamma function is defined by the analytic completion (—7.10)
of (9.1). A rough idea is as follows. Note that

m t\" mim?
- 1- —) t*ldt = . .
/0 ( m zlz+1)---(z+m) (9-2)

This can be shown by repeated integration by parts. Hence. (9.1) can
be written as

-

m!m?
z)= 1 .
(2) mi{lgcz(z+1)---(z+m)

The RHS is well defined for all z ¢ —IN.152

- Exercise.
- Show that
; H(z)= / (=¢)*~'e™%d( = ~2isin nzI(z). (9-9)
c
%

(9.3)

e

152 A rigorous version may be found in J. W. Dettman. Applied Complez Analysis,
p194 (Dover. 1965). or E.T. Whittaker and G.N. Watson. A Course of Modern
Analysis. Chapter XIL which is a convenient reference source of the I'-function.
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From this we obtain the following Hankel's formula
1 i ¢
e - . i
5= Lo (9:5)
(2) Draw the graph of 1/T for the interval [-2,4].

9.2I'(z+1)=2I'(z). Thisisfor z #0.-1,-2..--.
[Demo] From (9.3)

mims+! z+1+m
Tz)= 1 = .
)=l e s m T(z+1)
(9.6)
We can compute the Laurent expansion (—8A.8) of the Gamma func-
tion around negative integers s
=1
Fiz) = n! z+n (0.7)

Exercise.
Laurent-expand I'(~2 + ¢) around ¢ = 0 and find its principal part. You may use
the Taylor expansion formula (—8.9). if needed.

9.3 Factorial. Obviously from 9.2. we have
Fim+1)=m! (9.8)

form € N. 0! = 1 as usual.

9.4 9.2 directly from Euler’s integral. From (9.1) we get with
the aid of integration by parts

P(z+1)= -/:(e")’t’a!t = z/:(e-f)'tf-ldt. (9.9)

This is 9.2. which is demonstrated here for IRz > 0. but the principle
of invariance of functional relations 7.6 can be invoked to demonstrate
9.2 forall 2 ¢ —N.

However. notice that the functional relation 9.2 combined with
I(1) = 1 is not enough to characterize the P-function.!53

153However. there is a
Theorem [Wielandt] Let F(:) be a holomorphic function in the right half plane
having the following two properties:
(i) F(z+ 1) = zF(z) on the right half plane.
(ii) F(z) is bounded in the strip {1 < R: < 2}.
Then. F(z) is proportional to I'(z).
See R. Remmert. “Wielandt's theorem about the I'-function.” Am. Math. Month.
p214-220. March 1996.
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Discussion.

Thus
I'(=+1)

I(:)= (9.10)

is true for = on the right half plane. However. the RHS is meaningful for Re z > ~1
except = = . Continue this argument to show that I'(z) is analytic except negative
integer values of z.

9.5 Formula of complementary arguments: For z ¢ Z

T(2)T(1 - 2) = —

— (9.11)
SIn7#z

[Demo] We note I'(1 - z) = —:zI'(~=z) from 9.1.

1 > 22
TGT(-2) g (1 - ﬁ) : (9.12)

The RHS is an entire function (let us call it o{z)) with simple zeros at all Z. and
o(z)/z at z = 0 is 1. Actually. the product is sin 7z /7:. An easier demonstration
will be given in 9.8 below. O

Analogously. we have

D(z+1/2)T(2=1/2) =7/ cos7z. (9.13)
Exercise.
Show that x
L) {=z)= puagmye (9.14)
Using this. demonstrate
2 e
TGyl = Y (9.15)

9.6 T' for half integers: The formula of complementary arguments
allows us to compute I'(1/2).}* Since this is positive as seen from the
definition (9.3).

1
r (5) = /7. (9.16)
With 9.1 we get
1y _(@2n=1)1t — (2n)!
r (n+ 2) = VT = mﬁ (9.17)

134This can be computed directly with the aid of the Gaussian integral as (1) In
Exercise,
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and

r (_n+ .1.) ) A e L (9.18)

)= n- 1 (2n)!
Exercise.
(1) T(1/2) can be computed directly as follows:
* 1 g (
I(1/2 =/ e --—-—dt:/ e ¥ dr. 9.19)
(1/2) A v =

Hence. we have only to compute the Gaussian integral. The best method to compute
this integral is the following trick:

= 2 2 2 2 o 2
{/ e™F d:} =/ L dadye™ (=" +v) :2«/ e~ rdr. (9.20)
_— R’ 0

Complete the calculation.

{2) Compute IT{7.5}) and T{~1.3}.

{3) How fast does I'(~n + 1/2} converges to 0 in the n — oc limit?
{4) Show

o 2a =D e g
nl-l—oc Wﬂ / =T /. (9.21)

9.7 Beta function. The beta function B(p.q) is an analytic function
of two variables obtained by the analytic completion (—7.10) of the
following integral

1
Blp.q) = Atp“l(l—t}q"ldt. (9.22)
®/2
= 2 ] d6 cos?~1 § sin24~1 4. (9.23)
0
= /0 dzr P71 + )7 1P+, (9.24)

where Rp and Rg must be positive. The second line can be obtained by
setting t = sin® 4. and the third line by t = z/(1+z). Assume p,q € R
and positive. We get (t = 22 or % in (9.1))

L(p)T(q) = 4/:c dz e“2$2““1/: dy e~V y?-1 (9.25)
= 4 /Ox rdr e p2ptel) /{:;2 df cos??~1gsin?971 4,
= T(p+q)B(p.-9). (9.26)
Hence. we have .
B(p.q) = W (9.27)



The RHS is meaningful for all p. ¢ except for negative integers, so that
we may define the beta function by this formula.

Exercise.
(1) Because
AR 9.28)
B(p.q)—.!B(q,p)—/o TP (.
we obtain “ po1 o1
1 Pt 4 297
= [ T X 9.29
B =3 [ s (9.29)
and x po1 o1
T -
——eeee— = (. 9.30
[ = (8.30)

(2)

r/2 1
I= sin® 8 cos? 6d6 = %/ 2 PHIZ= et D20 gy = %B (2-'-2*-5 i+ 1) )
Q0

2 Jo 2
{9.31)
For example.
T/2 \/"
/ sin® 0df = = Tlp+1)/2)/T(p/2+1). (9.32)
[ -
This is called Wallis® formula. if p is a positive integer.
{3} Computing
1
/ (1 =22~z (9.33)
-1
with two different change of variables (¢ = 7% and t = (z + 1)/2). show
res) =22 rer (s 4 )
2= T (54 3). (934
AMore generally. it is known that
1 n
= (2)0-2pne-12p T (s 2 )T T2 5
T(nz) = (27) n r(v)r( + n) r(~+ - ). (93%)

9.8 Proof of 9.5: From (9.27) and (9.24) we get for 0 < Rz < 1

T(2)[(1 - z) = [(1)B(z.1 - 2) /d“1+x"six:rm’ (9.36)

We can apply the principle of invariance of functional relation 7.6 to
complete the proof of 9.5.

Exercise.
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To compute the integral in (9.36) we can also use the transformation z = €V to

convert [h\e iutEgraj to
g. 9-3‘
- 1

This is the same problem in 8B.9.

9.9 Taylor expansion:

1 2
I‘(1+z)=1—7z+-§(72+%—)z2+---. (9.38)
Here v is called Euler’s constant defined by
= lim (1+—1-+1+-~+3—-1nn) (9.39)
7= 2 3 n ’

and v = 0.577215664 .- .15 O
[Demo)] Calculate the logarithmic derivative of (9.3) (Uniform convergence allows
termwise operations)

I'(z) 1« (1 1 )
= = - = - e | 9.40
T{z) T g Eoktz)’ { )
so that -
1 1
r’(1)=—a~1+2(-;-——) = -1, (9.41)
k1 k k+1
Differentiating (9.40) once more. we get
d? = 1
— =) = 2
= logT(2) Z:O T (9.42)
Hence.
x
I«Hl“rlli’__ __1___,1?_3-156 A
H-TW=) 5=+ (9.45)
ka1

155V hether ~ is irrational or not is not known: it is known that if it is rational,
both the denominator and the numerator must have at least 30,000 digits.
156 T4 compute this sum or the zeta function (—7.15)

()= ;1— (9.44)
k=1
we use o 4a-1
(=¥0(=2) =](; ;—t-_—'ldt. (9.45)

See T. M. Apostol. Math. Intelligencer, 5(3). 39-60 (1983) “A proof the Euler
missed: evaluation of ((2) the easy way.” See 4.4 Discussion (1).
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This gives the desired second derivative. O

Exercise. .

(1) Demonstrate that the I'-function is a convex function (—2A.1 Discussion) for
x>0

(2) Using the fact

r__ 9.46
T - (9.46)
demonstrate -
= —-/ e~ 'logtdt. (9.47)
0

9.10 Use in perturbative field theories:'®
(1) When we compute {bare) perturbation series. we have to compute

integrals of the following type:
_ 1 a2l (0 —d/2)
I—/dq(g’-’+2k~q+m2) =T T T a)

(m® —k?)%2=2, (9.48)

Here the integral may not exist even when the RHS exists. In such
cases the integral is defined by the RHS (analytic continuation). This
formula can be demonstrated as follows: First we exponentiate the
denominator with the aid of Euler's integral (9.1)

1 e
—— [ ditetem e )
(a]/ﬂ e (9.49)
as ~
I= /dq/o dttodexp~t(g® + 2k - g +m?)].  (0.50)

This is a standard trick. We can legitimately exchange the order of
the two integrations (Fubini's theorem—19.14). and perform the d-
dimensional Gaussian integral'®(—19.19) to get

1 o d/2 .
= —717/0 di 30-1 (%) eﬂ(mz-k ’)t. (9.51)

1577, Zinn-Justin. Quantum Field Theory and Critical Phenomena, (Oxford, 1989);
D. J. Amit. Field Theory. the Renormalization Group, and Critical Phenomena
{World Scientific. original from McGraw-Hill 1978).

158 f iten'e "('\/;_:)d‘
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This gives the desired result. See also (D) below.

(2) We often need the integral of the product of the factors 1/(g*+m?).
In this case the g-integral (momentum integral) can be reduced to (1)
by the so-called Schwinger-Feynman parameter formula:

1
at’ay? .- - agr
Moy + -+ aﬂ gl genmd
/ dtydty- - dtn_y- : e,
T'{og)Mas) (tiay + - - + tpa, )™ "
(9.52)

where
V= tym1): i € [0. 1. t1+ta+ - + 1,1 < 1} (9.53)

To demonstrate this we start with (9.49). We have. using Fubini's
theorem

n = n a,—1 —Zatx,
Moo = [ dudey - do, == : (9.54)
j=1 0 f=1 F(Qi)
Now. introduce new variables (t;.ts.. - .%,_1.y) as
z, = ty. (t=1.2.---,n-1). (9.55)
Ty = (l=ty =t~ - —t,_1 )y (9.56)

The Jacobian for this transformation is y"~*. so that

n xX -yZa.r,

com [Ty [ty dtyog iy e
I——Ila? '/0 I W i=1 D)
This leads to the desired result. O

Exercise.
(A) Demonstrate

I'{a

I= //f(fi + to)t9 15 TNt dty = r__..__

aytay -1 -4
Ty / Floyt dt.  (9.38)

where the integration rangeis )y +t; £ land t; > 0.1, > 0.
{B) From a similar calculation as {A). we get the following formula:
// ff hdtgd o dt, )t"“lz“”‘1 1% ldtdty - dt,

aﬂf 32) an) / f ta;+a;+ +0n‘1df
I‘(al+a2+ T an)

(9.59)

149



where the integration rangeis t; > 0 and t; + -« +t, < 1 as in {A). You need not
demonstrate this formula (if you feel it is correct). Using this formula. demonstrate
that the volume V" of the n-ball of radius r is given by

2pngn/2

= m. (9.60)

Compute the surface area of the n-ball {i.e., the volume of the {rn — 1)-sphere).
Estimate the ratio of the volume of d-ball and that of its thin skin of thickness

€ < 1 for very large d.}*® [Hint. Actually. dimensional analysis is enough. Look at

the ratio of the volume of n-sphere of radius r and that of radius r — €.

{C) This formula can be generalized to the following. Let D) be a domain in n-space

defined by
I b )"
(—-) +oee (——") <1 (9.61)
ay ay
and 3 20.---, 2 2 0.

I ] 1‘(.’1.).,.

_ _ alr-qln 3

// G’.?‘]dl‘g'”(f.l‘n.l'? 1‘*'1'1" T ol LC !
D .

{D) Demonstrate (9.48). That is.

1 _ 1o TA/2T@=d/2), 5 24pea
/dqiq?+2kq+m?)° =59 gy m - R (9.63)

9.11 Stirling’s formula.’®® Uniformly in |argz| < 7 ~ 6 for any
small positive 6.

1 1 139

T ~\V2me™? z-1/2 1 _
() ~ vamez *12: T 5887 " Bigaos T

(9.64)

Here ~ implies that the expansion is asymptotic (—25.3. 25.14).0
A practical way to remember the salient feature is

nl ~ (n/e)". (9.65)
[Demo]*®! We only demonstrate
I‘ n

—E%——\/E — V2% as n — oc. (9.66)

15%In very high dimensional spaces. almost all the volume is always very close to
the skin. This is a very important fact for statistical mechanics, and coding theory.

160 James Stirling. 1692-1770.

1613, M. Patin. Am. Math. Month. 96, 41-42 {1989).
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In Euler's integral (9.1) set x = v/t ~ /n to find

n - 2n+41
L(n)e"yn =2 (1 + _‘T_) e—2VAzrg =2’ 4, (9.67)
nn —-vn \,/1-';

Now, the integrand is uniformly bounded in n by the integrable function =% 3”1,
because

2n—-1
x -2fr Z - - ) = e~ F VA &
(1 + \/.5) e < exp { ﬁ(2n 1)}exp( 2v/nz) =e <e. (9.68)

Since for each x
7 2n~1
lim log { (l + 7—7.1) e'zﬁ'} = ~r?, {9.69)

the dominated convergence theorem!%? tells us

E(iz;]__ﬁ - 2] e~2'dr = Vor. (9.70)

0

Discussion.!®® The above proof does not tell us why the ratio (9.66) must be
considered. Let us give a more "constructive’ proof.
{1) Notice that for R: > 0

I'iz)= / e~ 't*"lintdt. (9.71)
0

{2} To rewrite Int let us show that integration of

1 xK
- =/0 e~*ldr (9.72)

implies for IRt > 0
£ =T - e—xt
Int = / L~ dr (9.73)
0

This integral is called Frullani's integral.’6
(3} Combining the above results. we obtain

* dr

r’(;)=/a = [e“’l‘(:}-—/oxe“""“)t:“‘dt}. (9.74)

I

62 Again, this is a rudimentary theorem of Lebesgue integral (—19.11).

183 This is adapted from Lebedev.

164 Ty justify the changing the order of integrations. we may rely on Fubini's the-
orem (—19.14). The same is true for the exchange in (3).
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(4) From this we obtain
e—zt

ox -t
] £ - dt,
0 t e""l
et mgmt? 1/” /“(1 1
—————dt + = e~ t2dt — - — 4
/0 t 2 Jo o \2 t

1 *®r1 —tz
ln~+2—£-—/0 (;2'- )e dt.

{5) Integrating this with = from 0 to 2, we obtain

€

i

d
—InT(:+1)

1
et -1

S
t

1

InT(z) --2-)ln:-:+1

=

>r1 1 1 et —e 12
+/e (§v?+e'-—1) t t.
{6) This can be rewritten as
1
InT(z)= (: - ;;) Inz =z 4 w(z) — (1)
where
>
22 = / Flt)e™t3dt
0
with

To compute «(1). notice that

1
el -1

w(1/2) = (1)

x ~t/2
/ (et - )‘ﬁ
¢

but this can be obtained from the result of (3) with : = 1/2 (—9.6) as

1 1
w(l/?}-w(l) = EIIITF— 5

On the other hand. we can compute w(1/2) directly as

1
2

1

-~§—=--lnl
272

Hence. »(1) = ~(1/2)In2x

(9.75)

) e~ dt,

(9.76)
(9.77)

1
et —1

(9.78)

(9.79)

(9.80)

(9.81)

(9.82)

(9.83)

(9.84)

(7) For large IR= > 0 we can expect that w is small. Actually it is of order 1/z.
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