
9 r-functions

The gamma function was introduced by Euler through his
integral: its analytic completion defines an analytic func­
tion called the Gamma function. I'(m +1) = m! for mEN
makes this function very useful in theoretical physics. Ele­
mentary results are collected here.

Key words Gamma function, Euler's integral, beta func­
tion, Schwinger-Feynman's parameter formula, Stirling's for­
mula.

Summary
(1) Remember the definition of Gamma function in terms of Euler's
integral (9.1). This is practically important in calculating definite in­
tegrals (9.10).
(2) N! is roughly equal to (Nje)''''; for large N (Stirling's formula 9.11).
(3) Half integer values of I' can be evaluated exactly (9.6).

9.1 Euler's integral. For lRz > O.

r(z) = fox e-ttZ-1dt. (9.1)

This is called Euler's integral. This integral is defined only for lRz > 0,
but the Gamma function is defined by the analytic completion (-7.10)
of (9.1 ). A rough idea is as follows. Note that

rm (1 _.!-) m tZ-1dt = m!m
Z

• (9.2)
Jo m z(z+l)···(z+m)

This can be shown by repeated integration by parts. Hence. (9.1) can
be written as

m'm Z

f(z) = lim . .
m-:x: z(z + 1)··· (z + m)

The RHS is well defined for all z ¢ _N.152

(9.3)

Exercise.
Show that

(9.4)

152 A rigorous version may be found in J. W. Dettman. Applied Complex Analysis,
p194 (Dover. 1965). or E.T. Whittaker and G.N. Watson. A Course 0/ Modern
Analysis. Chapter XII. which is a convenient reference source of the f-function.
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m1m z+1 z + 1 + m
zf(z) = lim' =f(z+l).

m....oc(z+1)(z+2)···(z+1+m) m
(9.6)

We can compute the Laurent expansion (-SA.S) of the Gamma func­
tion around negative integers s

r (1.)

~
~

I

1

5

..
J

Z

1

o

(9.5)

(9.7) -z
(_l)n 1

f(z) = ---- + ....
n! z + n

From this we obtain the following Hankers formula

_1_ = .i...l (-(}Ze-<d(.
I'(c) 21l' C

(2) Draw the graph of l/r for the interval [-2,4].

9.2 Tt z + 1) = zr(z}. This is for z,# O. -1, -2.···.
[Demo] From (9.3)

Exercise.
r ~Laurent-expand (-2 + e) around e =0 and find its principal part. You may use -$ -4 -3 -2 -1 0 1 .1 ~ .4

the Taylor expansion formula (-9.9). if needed.

9.3 Factorial. Obviously from 9.2. we have

f(m + 1) =m!

for mEN. 01 = 1 as usual.

(9.8)

9.4 9.2 directly from Euler's integral. From (9.1) we get with
the aid of integration by parts

f(z + 1) = -loc(e-t)'t=dt = z lX(e-t)'t=-ldt. (9.9)

This is 9.2. which is demonstrated here for JRz > O. but the principle
of invariance of functional relations 7.6 can be invoked to demonstrate
9.2 for all z ¢ -N.

However. notice that the functional relation 9.2 combined with
I'(L) = 1 is not enough to characterize the f-function. 153

lS3Howeyer. there is a
Theorem [Wielandt] Let F(::) be a holomorphic function in the right half plane
having the following two properties:
(i) F(::+ 1) = ::F(::) on the right half plane.
(ii] F{:;) is bounded in the strip {I SlR: < 2}.
Then. F(::) is proportional to I'(c).
See R. Remmert. "Wielandt's theorem about the r·fUllction:· Am. Math. Month.
p214-220. March 1996.
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Discussion.
Thus

f(z) = f(z + 1)
z

(9.10)

is true for c on the right half plane. However. the RHS is meaningful for Re z > -1
except c =O. Continue this argument to show that f(z) is analytic except negative
integer values of z,

9.5 Formula of complementary arguments: For z ¢ Z

1r
nz)n1- z) = -.-.

sm 1rZ

[Demo] We 110te [(1-:;) =-:;f(-:;) from 9.1.

1 ex ( :;2 )
[(:;)[(1- :;) =:; Jl 1- k 2 •

(9.11)

(9.12)

The RHS is an entire function (let us call it o( z)) with simple zeros at all Z. and
0(:; ) I:: at z =0 is 1. Actually. the product is sin nz[n z: An easier demonstration
will be given in 9.8 below. 0
Analogously. we have

I'{z + 1/2)nz - 1/2) = 1r/ COS1rZ.

Exercise.
Show that

1r
r(=)f{-=)= . .

z sin nz
Using this. demonstrate

Ir(iyJlZ = .1r
Ysinh 1rY

(9.13)

(9.14)

(9.15 )

9.6 r for half integers: The formula of complementary arguments
allows us to compute I'( 1/2 ).154 Since this is positive as seen from the
definition (9.3).

r (~) = y7r.

With 9.1 we get

r (
!) = (2n - 1)!! r: = (2n)! r:

n+ 2 211 y'Tr 22nn!Y'Tr.

(9.16)

(9.17)

154This can be computed directly with the aid of the Gaussian integral as (1) In
Exercise.
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and

(
1) (-lt2n (-4tn!

r -n + 2 = (2n - I)!!y'1r = (2n)! y'1r.

Exercise.
(1) [(1/2) can be computed directly as follows:

1:>0 1 fOC 2[(1/2) = e-t r;.dt = e-z dx,
o v t -:>0

(9.18)

(9.19)

Hence. we have only to compute the Gaussian integral. The best method to compute
this integral is the following trick:

{I: e- z 2 dx } 2 =JR
2

dJ:dye-<;r2+ 1h =2r. 1°C e-r2rdr. (9.20)

Complete the calculation.
(2) Compute [(7.5) and f( -1.5),
(3) How fast does I'( -n + 1/2) converges to 0 in the n - oc limit?
(4) Show

I, (2n - 1)1! 1/2 _ -1/2.::n (?)1I n - 1l' •n oc _71 ..
(9.21 )

(9.24)

(9.23)

(9.22)

9.7 Beta function. The beta function B(p. q) is an analytic function
of two variables obtained by the analytic completion (-t7.10) of the
following integral

B(p.q) = fol tp-1(l- t)q-1dt.

_ 2t: dO COS2p-1 0 sin2q- 1 O.

fox dx xp- I ( 1 + x )-(p+q).

where 1Rp and 1Rq must be positive. The second line can be obtained by
setting t =sin2 O. and the third line by t = x I (1 +x). Assume p, q E R
and positive. We get (t = x2 or y2 in (9.1))

r(p)r(q) - 4 fox dxe-:r2
x2u- l foX dye- y 2 y2u- l (9.25)

_ 4 foX rdr e_r
2 r2(p+q- l ) fo1l' /2 dO COS2p-1 (J sin2q- 1 (J.

- I'(p + q)B(p. q). (9.26)

Hence. we have
B( . I = r(p)r(q).

pq, r(p+q)
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The RHS is meaningful for all p. q except for negative integers, so that
we may define the beta function by this formula.

Exercise.
(1) Because

we obtain

and

(2)

roc .1'9-1

B(p.q) =B(q,p) = l« (1 + .1')p+qdx,

11°C xp-1 + .1''1-1

B. =- dx(pq) 2
0

(1+x)P+9

rIX xp-l - X 9- 1

Jo (l + x)P+q dx = O.

(9.28)

(9.29)

(9.30)

1"'/ 2 III 1 (+1 +1)1= sinP&cos9&d8=- .1'(P+ll/2-1(l_X)(9+1l/2-1dx = _B p-- -q-
o 2 0 ' 22'2'

(9.31 )
For example.

1"'/ 2 ,;:;
sinP 8d9 = -i-f«p+ 1)/2)/f(p/2+ 1).

o -
This is called Walli$' formula. if p is a positive integer.
(3) Computing

r1

(1 _ :r2)~-ldx
J-l

with two different change of variables (t =.1'2 and t = (x + 1)/2). show

22~-1 (1)
f(2:) = ,;:; f(z)f z + 2" .

More generally. it is known that

(9.32)

(9.33)

(9.34 )

9.8 Proof of 9.5: From (9.27) and (9.24) we get for 0 < ~z < 1

1
00 X.:-l 1r

f(z)r(l- z) = r(l)B(z.l - z) = dx-- = -.-.
o 1 + X S1l11r Z

(9.36)

We can apply the principle of invariance of functional relation 7.6 to
complete the proof of 9.5.

Exercise.
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To compute the integral in (9.36) we can also use the transformation x = ell to
convert the integral to

j ex eZII

-ex 1 + ell dy
.

This is the same problem in 8B.9.

9.9 Taylor expansion:

1 (2 11'2) 2f(l + z) = 1 - "yZ +"2 "y + '6 z + ....

(9.3i)

(9.38)

Here "y is called Euler's constant defined by

"Y == lim (1 + ~ + ~ + ... + ~ -In n) (9.39)
n-x 2 3 n

and "Y = 0.577215664,· -. 155 0
[Demo] Calculate the logarithmic derivative of (9.3) (Uniform convergence allows
termwise operations)

r- (.:) 1 IX (1 1)
f(.:) = -~I - ; + {; k - k +:;; ,

so that
IX (1 1)['(I) =-"\ - 1+" --- =-"\, L.- J, 1.'+1 "

k=l

Differentiating (9.40) once more, we get

d2 IX 1
d.:z logf(.:) =L (= + 1..)2'

1.:=0

Hence,
ex 2

[1/(1) _ ['(1)2 =" 2..
2

= :-,156
L.- k 6
,1,=1

(9.40)

(9.41)

(9.42)

(9.45)

155"'hether '} is irrational or not is not known: it is known that if it is rational.
both the denominator and the numerator must have at least 30,000 digits.

156To compute this sum or the zeta function (-7.15)

ex 1
«(.:) == L 1..::'

k=l

(9.44)

we use

1
°c F-1

((z)f(:) = -I-ldt, (9.45)
o e-

See T. ~L Apostol. Math, Intelligencer. 5(3). 59-60 (1983) "A proof the Euler
missed: evaluation of ((2) the easy way." See 4.4 Discussion (1).
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This gives the desired second derivative. 0

Exercise.
(1) Demonstrate that the [·function is a convex function (-+2A.l Discussion) for
z > O.
(2) Using the fact

demonstrate

['(1)
[(1) =-I'

(9.46)

(9Ai)

9.10 Use in perturbative field theorlesr"
(1) When we compute (bare) perturbation series. we have to compute
integrals of the following type:

Here the integral may not exist even when the RHS exists. In such
cases the integral is defined by the RHS (analytic continuation). This
formula can be demonstrated as follows: First we exponentiate the
denominator wi th the aid of Euler's integral (9.1)

(9.49)

as
1= Jdq foX dt t":' exp[-t(q2 + 2k· q + m 2)J. (9.50)

This is a standard trick. Vve can legitimately exchange the order of
the two integrations (Fubini's theorem-s Ifl.Ld]. and perform the d­
dimensional Gaussian integral158( -19.19) to get

(9.51 )

15iJ, Zinn-Justin. Quantum Field Th.eory and Critical Phenomena. (Oxford, 1989);
D, J. Amit. Field Theory. the Renormalization Group, and Critical Phenomena
(World Scientific. original from McGraw-Hill 19i8).

158
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This gives the desired result. See also (D) below.
(2) We often need the integral of the product ofthe factors 1/(q2+ m2).
In this case the q-integral (momentum integral) can be reduced to (1)
by the so-called Schwinger-Feynman parameter formula:

1

where

(9.53)

To demonstrate this we start with (9.49). We have. using Fubini's
theorem

Now. introduce new variables (t l. t2.···. tn-I. Y) as

x, = tiy. (i =1.2.··· .ti -1).

In = (1 - tl - t2 - ... - tn-I)Y'

The Jacobian for this transformation is yn-l. so that

n r: [ Eo,t,IT aid' = Jo dy k dt l ... dt n _ I y ll - l y E di-n n .•

i=l 0 , TIi=1 r(a1 )

This leads to the desired result. 0

(9.54)

(9.55)

(9.56)

(9.57)

Exercise.
(A) Demonstrate

1= JJ/(tl + t2)t~,-1t~2-1dtldt2 = ~~::)~(::;11

/(t)tOl+a2-1dt. (9.58)

where the integration range is tl + tz :5 1 and tl > O. t2 > O.

(B) From a similar calculation as (A). we get the following formula:

JJ... Jl(t1+ tz + ... + t" )t~,-1t;2-1 ... t~n-ldtldt2'" dt.;

= r(Ol)r(02)'" f(on) t' !(tW,+o2+· ..+a,,-ldt
f(o} +02 + ... +on) Jo

(9.59)
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where the integration range is t; > 0 and tl + ... + t n < 1 as in (A). You need not
demonstrate this formula (if you feel it is correct). Using this formula. demonstrate
that the volume V of the n-ball of radius r is given by

• 2rn 1l"n /2

l = nr(n/2)'
(9.60)

Compute the surface area of the n-ball (i.e., the volume of the (n - I)-sphere).
Estimate the ratio of the volume of a-ball and that of its thin skin of thickness

e «: 1 for very large d.1S 9 [Hint. Actually. dimensional analysis is enough. Look at
the ratio of the volume of n-sphere of radius r and that of radius r - t.]
(C) This formula can be generalized to the following. Let D be a domain in n-space
defined by

and .1'1 ~ 0.· .. , X n ~ O.

(9,61)

f d 1 -~S r(d/2)r(o-d/2)( 2 1.2d/2-o.
Q(q2+2kq+m2)O - 2 d-I I'(o ) m -" ) . (9.63)

(9.64)

9 .11 Stirling's formula.P" Uniformly ill Iarg zI :5 7r - 6 for any
small positive b.

r,( ) r;:;-::2 -' z-l/') [1 1 1 139 ]z ....., V;t7r€ -Z - + -- +-- - + ...
12z 288z2 51849z3 •

Here r- implies that the expansion is asymptotic (-25.3. 25.14).0
A practical way to remember the salient feature is

n!....., (njet.

[DemoJ161 'Ve only demonstrate

r( 11len JTi ;;:;-2
.... v ~1l" as 11 .... OC.

TIn

(9.65)

(9.66)

1591n very high dimensional spaces. almost all the volume is always very close to
the skin. This is a very important fact for statistical mechanics, and coding theory.

160 James Stirling. 1692,1 iiO.
161J. ~1. Patin. Am. Math. Month. 96,41-42 (1989).
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In Euler's integral (9.1) set x = Vi - vn to find

(9.67)

Now, the integrand is uniformly bounded in 11 by the integrable function e-ll"-l,
because

(1 + /;;) 2"-1 e-2vn.r s exp { /;;(21"1 - 1)}exp( -2.,fnx) =e-.r/vn ::; e. (9.68)

Since for each ;r

the dominated convergence theorem162 tells us

_[(_n_)e_"vn",,--n 2 j x - 2".'d _ it)"'- e x- V;i;1r.
11" -oc;

o
Discussion. Hi3 The above proof does 110t tell us why the ratio
considered, Let us give a more 'constructh'e' proof.
(1) Xotice that for ffi.:: > 0

(2) To rewrite In t let us show that integration of

implies for ffit > 0

This integral is called Frullani's integral.P"
(3) Combining the above results. we obtain

(9.69)

(9.70)

(9.66) must be

(9.71 )

(9.72)

(9.73)

(9,74)

J62 Again. this is a rudimentary theorem of Lebesgue integral (-19.11).
J63This is adapted from Lebedev.
J64To justify the changing the order of integrations. we may rely on Fubini's the­

orem (-19.14), The same is true for the exchange in (3).
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(4) From this we obtain

(9.75)

1 100 (1 1 1) -tZd= ln z + - - - - - + -- e t:
2;; 0 2 t e' -1

= {IX (e- t
_ ~) dt,

Jo t et - 1

1
1X

-t - -tz 11"0 1"" (1 1 1)= e e dt + _ e-tzdt - - - - + -r--- e-tzdt,
o t 2 0 0 2 t e-1

(9.76)

(9.77)

d
d,: ln I'(c + 1)

(5) Integrating this with z from 0 to =, we obtain

InT(z) = ( z - ~) In z - z + 1

l
cc (1 1 1) e- t

- e-t z

+ -- -+-- dt.
o 2 t e' - 1 t

(9.78)

(6) This can be rewritten as

luf(.:)= (.:-D111Z-Z+":(Z)-..:(1). (9.79)

where

(9.80)

with

(
1 1 1) 1f(t) = - - - + -- -.
2 t e' - 1 t

(9.81 )

To compute ..:(1). notice that

l
x (e-t/2 1)

..:(1/2) - ..:(1) = - - -- dt
o t et - 1

(9.82)

but this can be obtained from the result of (5) with e = 1/2 (-9.6) as

",,'(1/2)- (""(1) =~ In 11" - ~. (9.83)

On the other hand. we can compute w(1/2) directly as

(9.84)

Hence. ..:(1) = -(1/2)ln211"
(7) For large ffi,: > 0 we can expect that » is small. Actuall:r it is of order 1/s,
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