9 -functions

The gamma function was introduced by Euler through his integral: its analytic completion defines an analytic function called the Gamma function. $\Gamma(m+1)=m$! for $m \in N$ makes this function very useful in theoretical physics. Elementary results are collected here.

Key words Gamma function, Euler's integral, beta function, Schwinger-Feynman's parameter formula, Stirling's formula.

Summary

(1) Remember the definition of Gamma function in terms of Euler's integral (9.1). This is practically important in calculating definite integrals (9.10).
(2) N ! is roughly equal to $(N / e)^{N}$ for large N (Stirling s formula 9.11).
(3) Half integer values of Γ can be evaluated exactly (9.6).
9.1 Euler's integral. For $\mathbb{R} z>0$.

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \tag{9.1}
\end{equation*}
$$

This is called Euler's integral. This integral is defined only for $\mathbb{R} z>0$, but the Gamma function is defined by the analytic completion $(\rightarrow \mathbf{7 . 1 0})$ of (9.1). A rough idea is as follows. Note that

$$
\begin{equation*}
\int_{0}^{m}\left(1-\frac{t}{m}\right)^{m} t^{z-1} d t=\frac{m!m^{z}}{z(z+1) \cdots(z+m)} \tag{9.2}
\end{equation*}
$$

This can be shown by repeated integration by parts. Hence. (9.1) can be written as

$$
\begin{equation*}
\Gamma(z)=\lim _{m \rightarrow \infty} \frac{m!m^{z}}{z(z+1) \cdots(z+m)} \tag{9.3}
\end{equation*}
$$

The RHS is well defined for all $z \notin-N .{ }^{152}$

Exercise.
Show that

$$
\begin{equation*}
H(z)=\int_{C}(-\zeta)^{z-1} e^{-\zeta} d \zeta=-2 i \sin \pi z \Gamma(z) \tag{9.4}
\end{equation*}
$$

[^0]From this we obtain the following Hankel's formula

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=\frac{i}{2 \pi} \int_{C}(-\zeta)^{2} e^{-\zeta} d \zeta \tag{9.5}
\end{equation*}
$$

(2) Draw the graph of $1 / \Gamma$ for the interval $[-2,4]$.
9.2 $\Gamma(z+1)=z \Gamma(z)$. This is for $z \neq 0 .-1,-2, \cdots$.
[Demo] From (9.3)

$$
\begin{equation*}
z \Gamma(z)=\lim _{m \rightarrow \infty} \frac{m!m^{z+1}}{(z+1)(z+2) \cdots(z+1+m)} \frac{z+1+m}{m}=\Gamma(z+1) \tag{9.6}
\end{equation*}
$$

We can compute the Laurent expansion $(\rightarrow 8 \mathrm{~A} .8$) of the Gamma function around negative integers s

$$
\begin{equation*}
\Gamma(z)=\frac{(-1)^{n}}{n!} \frac{1}{z+n}+\cdots . \tag{9.7}
\end{equation*}
$$

Exercise.

Laurent-expand $\Gamma(-2+\epsilon)$ around $\epsilon=0$ and find its principal part. You may use
 the Taylor expansion formula ($\boldsymbol{\rightarrow 9 . 9}$). if needed.
9.3 Factorial. Obviously from 9.2. we have

$$
\begin{equation*}
\Gamma(m+1)=m! \tag{9.8}
\end{equation*}
$$

for $m \in N .0!=1$ as usual.
9.49 .2 directly from Euler's integral. From (9.1) we get with the aid of integration by parts

$$
\begin{equation*}
\Gamma(z+1)=-\int_{0}^{\infty}\left(e^{-t}\right)^{\prime} t^{z} d t=z \int_{0}^{\infty}\left(e^{-t}\right)^{\prime} t^{z-1} d t \tag{9.9}
\end{equation*}
$$

This is 9.2 . which is demonstrated here for $\mathbb{R} z>0$. but the principle of invariance of functional relations 7.6 can be invoked to demonstrate 9.2 for all $z \notin-N$.

However. notice that the functional relation 9.2 combined with $\Gamma(1)=1$ is not enough to characterize the Γ-function. ${ }^{153}$

[^1]
Discussion.

Thus

$$
\begin{equation*}
\Gamma(z)=\frac{\Gamma(z+1)}{z} \tag{9.10}
\end{equation*}
$$

is true for : on the right half plane. However. the RHS is meaningful for Re $z>-1$ except $z=0$. Continue this argument to show that $\Gamma(z)$ is analytic except negative integer values of z.

9.5 Formula of complementary arguments: For $z \notin Z$

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z} \tag{9.11}
\end{equation*}
$$

[Demo] We note $\Gamma(1-z)=-z \Gamma(-z)$ from 9.1.

$$
\begin{equation*}
\frac{1}{\Gamma(z) \Gamma(1-z)}=z \prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right) . \tag{9.12}
\end{equation*}
$$

The RHS is an entire function (let us call it $o(z)$) with simple zeros at all Z. and $o(z) / z$ at $z=0$ is 1 . Actually. the product is $\sin \pi z / \pi z$. An easier demonstration will be given in 9.8 below.
Analogously. we have

$$
\begin{equation*}
\Gamma(z+1 / 2) \Gamma(z-1 / 2)=\pi / \cos \pi z \tag{9.13}
\end{equation*}
$$

Exercise.
Show that

$$
\begin{equation*}
\Gamma(z) \Gamma(-z)=\frac{\pi}{z \sin \pi z} \tag{9.14}
\end{equation*}
$$

Esing this. demonstrate

$$
\begin{equation*}
|\Gamma(i y)|^{2}=\frac{\pi}{y \sinh \pi y} . \tag{9.15}
\end{equation*}
$$

9.6 Γ for half integers: The formula of complementary arguments allows us to compute $\Gamma(1 / 2) .{ }^{154}$ Since this is positive as seen from the definition (9.3).

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \tag{9.16}
\end{equation*}
$$

With 9.1 we get

$$
\begin{equation*}
\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}=\frac{(2 n)!}{2^{2 n} n!} \sqrt{\pi} \tag{9.17}
\end{equation*}
$$

[^2]and
\[

$$
\begin{equation*}
\Gamma\left(-n+\frac{1}{2}\right)=\frac{(-1)^{n} 2^{n}}{(2 n-1)!!} \sqrt{\pi}=\frac{(-4)^{n} n!}{(2 n)!} \sqrt{\pi} \tag{9.18}
\end{equation*}
$$

\]

Exercise.

(1) $\Gamma(1 / 2)$ can be computed directly as follows:

$$
\begin{equation*}
\Gamma(1 / 2)=\int_{0}^{\infty} e^{-t} \frac{1}{\sqrt{t}} d t=\int_{-\infty}^{\infty} e^{-x^{2}} d x \tag{9.19}
\end{equation*}
$$

Hence. we have only to compute the Gaussian integral. The best method to compute this integral is the following trick:

$$
\begin{equation*}
\left\{\int_{-\infty}^{\infty} e^{-x^{2}} d x\right\}^{2}=\int_{R^{2}} d x d y e^{-\left(x^{2}+y^{2}\right)}=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r \tag{9.20}
\end{equation*}
$$

Complete the calculation.
(2) Compute $\Gamma(7.5)$ and $\Gamma(-1.5)$.
(3) How fast does $\Gamma(-n+1 / 2)$ converges to 0 in the $n \rightarrow \infty$ limit?
(4) Show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(2 n-1)!!}{(2 n)!!} n^{1 / 2}=\pi^{-1 / 2} \tag{9.21}
\end{equation*}
$$

9.7 Beta function. The beta function $B(p . q)$ is an analytic function of two variables obtained by the analytic completion $(-\mathbf{7 . 1 0})$ of the following integral

$$
\begin{align*}
B(p . q) & =\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t \tag{9.22}\\
& =2 \int_{0}^{\pi / 2} d \theta \cos ^{2 p-1} \theta \sin ^{2 q-1} \theta \tag{9.23}\\
& =\int_{0}^{\infty} d x x^{p-1}(1+x)^{-(p+q)} \tag{9.24}
\end{align*}
$$

where $\Re p$ and $\Re q$ must be positive. The second line can be obtained by setting $t=\sin ^{2} \theta$. and the third line by $t=x /(1+x)$. Assume $p, q \in \boldsymbol{R}$ and positive. We get $\left(t=x^{2}\right.$ or y^{2} in (9.1))

$$
\begin{align*}
\Gamma(p) \Gamma(q) & =4 \int_{0}^{\infty} d x e^{-x^{2}} x^{2 u-1} \int_{0}^{\infty} d y e^{-y^{2}} y^{2 u-1} \tag{9.25}\\
& =4 \int_{0}^{\infty} r d r e^{-r^{2}} r^{2(p+q-1)} \int_{0}^{\pi / 2} d \theta \cos ^{2 p-1} \theta \sin ^{2 q-1} \theta \\
& =\Gamma(p+q) B(p . q) \tag{9.26}
\end{align*}
$$

Hence. we have

$$
\begin{equation*}
B(p . q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \tag{9.27}
\end{equation*}
$$

The RHS is meaningful for all $p . q$ except for negative integers, so that we may define the beta function by this formula.

Exercise.

(1) Because

$$
\begin{equation*}
B(p . q)=B(q, p)=\int_{0}^{\infty} \frac{x^{q-1}}{(1+x)^{p+q}} d x \tag{9.28}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
B(p, q)=\frac{1}{2} \int_{0}^{\infty} \frac{x^{p-1}+x^{q-1}}{(1+x)^{p+q}} d x \tag{9.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p-1}-x^{q-1}}{(1+x)^{p+q}} d x=0 \tag{9.30}
\end{equation*}
$$

(2)
$I=\int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{9} \theta d \theta=\frac{1}{2} \int_{0}^{1} x^{(p+1) / 2-1}(1-x)^{(q+1) / 2-1} d x=\frac{1}{2} B\left(\frac{p+1}{2} \cdot \frac{q+1}{2}\right)$.
For example.

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{p} \theta d \theta=\frac{\sqrt{\pi}}{2} \Gamma((p+1) / 2) / \Gamma(p / 2+1) \tag{9.31}
\end{equation*}
$$

This is called Wallis' formula. if p is a positive integer.
(3) Computing

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{z-1} d x \tag{9.33}
\end{equation*}
$$

with two different change of variables $\left(t=x^{2}\right.$ and $\left.t=(x+1) / 2\right)$. show

$$
\begin{equation*}
\Gamma(2 z)=\frac{2^{2 z-1}}{\sqrt{\pi}} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) . \tag{9.34}
\end{equation*}
$$

More generally: it is known that

$$
\begin{equation*}
\Gamma(n z)=(2 \pi)^{(1-n) / 2} n^{n_{2}-1 / 2} \Gamma(z) \Gamma\left(z+\frac{1}{n}\right) \cdots \Gamma\left(z+\frac{n_{1}}{n}\right) . \tag{9.35}
\end{equation*}
$$

9.8 Proof of 9.5: From (9.27) and (9.24) we get for $0<\Re z<1$

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\Gamma(1) B(z .1-z)=\int_{0}^{\infty} d x \frac{x^{z-1}}{1+x}=\frac{\pi}{\sin \pi z} \tag{9.36}
\end{equation*}
$$

We can apply the principle of invariance of functional relation 7.6 to complete the proof of $\mathbf{9 . 5}$.

Exercise.

To compute the integral in (9.36) we can also use the transformation $x=e^{y}$ to convert the integral to

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{2 y}}{1+e^{y}} d y \tag{9.37}
\end{equation*}
$$

This is the same problem in 8B.9.

9.9 Taylor expansion:

$$
\begin{equation*}
\Gamma(1+z)=1-\gamma z+\frac{1}{2}\left(\gamma^{2}+\frac{\pi^{2}}{6}\right) z^{2}+\cdots \tag{9.38}
\end{equation*}
$$

Here γ is called Euler's constant defined by

$$
\begin{equation*}
\gamma \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n\right) \tag{9.39}
\end{equation*}
$$

and $\gamma=0.577215664 \cdots .^{155}$
[Demo] Calculate the logarithmic derivative of (9.3) (Uniform convergence allows termwise operations)

$$
\begin{equation*}
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-\hat{\imath}-\frac{1}{z}+\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+z}\right) \tag{9.40}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Gamma^{\prime}(1)=-\gamma-1+\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)=-\gamma . \tag{9.41}
\end{equation*}
$$

Differentiating (9.40) once more. we get

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}} \log \Gamma(z)=\sum_{k=0}^{\infty} \frac{1}{(z+k)^{2}} \tag{9.42}
\end{equation*}
$$

Hence.

$$
\begin{equation*}
\Gamma^{\prime \prime}(1)-\Gamma^{\prime}(1)^{2}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .{ }^{156} \tag{9.45}
\end{equation*}
$$

${ }^{155}$ Whether $\boldsymbol{\gamma}$ is irrational or not is not known: it is known that if it is rational, both the denominator and the numerator must have at least 30,000 digits.
${ }^{156}$ To compute this sum or the zeta function $(\rightarrow 7.15)$

$$
\begin{equation*}
\zeta(z) \equiv \sum_{k=1}^{\infty} \frac{1}{k z}, \tag{9.44}
\end{equation*}
$$

we use

$$
\begin{equation*}
\zeta(z) \mathrm{T}(z)=\int_{0}^{\infty} \frac{t^{z-1}}{e^{t}-1} d t \tag{9.45}
\end{equation*}
$$

See T. M. Apostol. Math. Intelligencer, 5(3). $59-60$ (1983) "A proof the Euler missed: evaluation of $\zeta(2)$ the easy way." See 4.4 Discussion (1).

This gives the desired second derivative.

Exercise.

(1) Demonstrate that the Γ-function is a convex function ($\rightarrow \mathbf{2 A} .1$ Discussion) for $x>0$.
(2) U'sing the fact

$$
\begin{equation*}
\frac{\Gamma^{\prime}(1)}{\Gamma(1)}=-\gamma . \tag{9.46}
\end{equation*}
$$

demonstrate

$$
\begin{equation*}
\gamma=-\int_{0}^{\infty} e^{-t} \log t d t \tag{9.47}
\end{equation*}
$$

9.10 Use in perturbative field theories: ${ }^{157}$

(1) When we compute (bare) perturbation series, we have to compute integrals of the following type:

$$
\begin{equation*}
I \equiv \int d q \frac{1}{\left(q^{2}+2 k \cdot q+m^{2}\right)^{a}}=\pi^{d / 2} \frac{\Gamma(\alpha-d / 2)}{\Gamma(\alpha)}\left(m^{2}-k^{2}\right)^{d / 2-a} \tag{9.48}
\end{equation*}
$$

Here the integral may not exist even when the RHS exists. In such cases the integral is defined by the RHS (analytic continuation). This formula can be demonstrated as follows: First we exponentiate the denominator with the aid of Euler's integral (9.1)

$$
\begin{equation*}
\frac{1}{a^{o}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} d t t^{\alpha-1} e^{-a t} \tag{9.49}
\end{equation*}
$$

as

$$
\begin{equation*}
I=\int d q \int_{0}^{\infty} d t t^{\alpha-1} \exp \left[-t\left(q^{2}+2 \boldsymbol{k} \cdot \boldsymbol{q}+m^{2}\right)\right] \tag{9.50}
\end{equation*}
$$

This is a standard trick. We can legitimately exchange the order of the two integrations (Fubini's theorem $\boldsymbol{\rightarrow 1 9 . 1 4}$). and perform the d dimensional Gaussian integral ${ }^{158}(\rightarrow 19.19)$ to get

$$
\begin{equation*}
I=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} d t t^{\alpha-1}\left(\frac{\pi}{t}\right)^{d / 2} e^{-\left(m^{2}-k^{2}\right) t} \tag{9.51}
\end{equation*}
$$

[^3]This gives the desired result. See also (D) below.
(2) We often need the integral of the product of the factors $1 /\left(q^{2}+m^{2}\right)$. In this case the q-integral (momentum integral) can be reduced to (1) by the so-called Schwinger-Feynman parameter formula:

$$
\begin{align*}
& \frac{1}{a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \cdots a_{n}^{\alpha_{n}}} \\
= & \frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(a_{n}\right)} \int_{v} d t_{1} d t_{2} \cdots d t_{n-1} \frac{t_{1}^{\alpha_{1}-1} \cdots t_{n}^{\alpha_{n}-1}}{\left(t_{1} a_{1}+\cdots+t_{n} a_{n}\right)^{\alpha_{1}+\cdots+\alpha_{n}}} \tag{9.52}
\end{align*}
$$

where

$$
\begin{equation*}
V=\left\{\left(t_{1}, \cdots, t_{n-1}\right): t_{i} \in[0.1] \cdot t_{1}+t_{2}+\cdots+t_{n-1} \leq 1\right\} \tag{9.53}
\end{equation*}
$$

To demonstrate this we start with (9.49). We have. using Fubini's theorem

$$
\begin{equation*}
\prod_{i=1}^{n} a_{i}^{-\alpha_{1}}=\int_{0}^{\infty} d x_{1} d x_{2} \cdots d x_{n} \frac{\prod_{i=1}^{n} x_{i}^{a_{1}-1} e^{-\sum a_{1} x_{i}}}{\prod_{i=1}^{n} \Gamma\left(\alpha_{i}\right)} \tag{9.54}
\end{equation*}
$$

Now. introduce new variables $\left(t_{1}, t_{2}, \cdots, t_{n-1} . y\right)$ as

$$
\begin{align*}
x_{i} & =t_{i} y . \quad(i=1.2 \cdots, n-1) \tag{9.55}\\
x_{n} & =\left(1-t_{1}-t_{2}-\cdots-t_{n-1}\right) y . \tag{9.56}
\end{align*}
$$

The Jacobian for this transformation is y^{n-1}. so that

$$
\begin{equation*}
\prod_{i=1}^{n} a_{i}^{-a_{2}}=\int_{0}^{\infty} d y \int_{V} d t_{1} \cdots d t_{n-1} y^{n-1} y \sum a_{i}-n \frac{e^{-y \sum a_{1} t_{i}}}{\prod_{i=1}^{n} \Gamma\left(\alpha_{i}\right)} \tag{9.57}
\end{equation*}
$$

This leads to the desired result.

Exercise.

(A) Demonstrate

$$
\begin{equation*}
I=\iint f\left(t_{1}+t_{2}\right) t_{1}^{a_{1}-1} t_{2}^{a_{2}-1} d t_{1} d t_{2}=\frac{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)}{\Gamma\left(a_{1}+a_{2}\right)} \int_{0}^{1} f(t) t^{a_{1}+a_{2}-1} d t \tag{9.58}
\end{equation*}
$$

where the integration range is $t_{1}+t_{2} \leq 1$ and $t_{1}>0 . t_{2}>0$.
(B) From a similar calculation as (A). we get the following formula:

$$
\begin{array}{r}
\iint \cdots \int f\left(t_{1}+t_{2}+\cdots+t_{n}\right) t_{1}^{a_{1}-1} t_{2}^{a_{2}-1} \cdots t_{n}^{a_{n}-1} d t_{1} d t_{2} \cdots d t_{n} \\
=\frac{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \cdots \Gamma\left(a_{n}\right)}{\Gamma\left(a_{1}+a_{2}+\cdots+a_{n}\right)} \int_{0}^{1} f(t) t^{a_{1}+a_{2}+\cdots+a_{n}-1} d t \tag{9.59}
\end{array}
$$

where the integration range is $t_{i}>0$ and $t_{1}+\cdots+t_{n}<1$ as in (A). You need not demonstrate this formula (if you feel it is correct). Using this formula. demonstrate that the volume V of the n-ball of radius r is given by

$$
\begin{equation*}
V=\frac{2 r^{n} \pi^{n / 2}}{n \Gamma(n / 2)} \tag{9.60}
\end{equation*}
$$

Compute the surface area of the n-ball (i.e., the volume of the ($n-1$)-sphere).
Estimate the ratio of the volume of d-ball and that of its thin skin of thickness $\epsilon \ll 1$ for very large d^{158} [Hint. Actually. dimensional analysis is enough. Look at the ratio of the volume of n-sphere of radius r and that of radius $r-\epsilon$.]
(C) This formula can be generalized to the following. Let D be a domain in n-space defined by

$$
\begin{equation*}
\left(\frac{x_{1}}{a_{1}}\right)^{b_{1}}+\cdots+\left(\frac{x_{n}}{a_{n}}\right)^{b_{n}} \leq 1 \tag{9.61}
\end{equation*}
$$

and $x_{1} \geq 0 . \cdots, x_{n} \geq 0$.

$$
\begin{equation*}
\int \cdots \int_{D} d x_{1} d x_{2} \cdots d x_{n} x_{1}^{l_{1}-1} \cdots x_{n}^{l_{n}-1}=\frac{a_{1}^{l_{1}} \cdots a_{n}^{l_{n}}}{b_{1} \cdots b_{n}} \frac{\Gamma\left(\frac{l_{1}}{b_{1}}\right) \cdots \Gamma\left(\frac{l_{n}}{b_{n}}\right)}{\Gamma\left(\frac{l_{1}}{b_{1}}+\cdots+\frac{l_{n}}{b_{n}}+1\right)} \tag{9.62}
\end{equation*}
$$

(D) Demonstrate (9.48). That is.

$$
\begin{equation*}
\int d q \frac{1}{\left(q^{2}+2 k q+m^{2}\right)^{a}}=\frac{1}{2} S_{d-1} \frac{\Gamma(d / 2) \Gamma(a-d / 2)}{\Gamma(a)}\left(m^{2}-k^{2}\right)^{d / 2-a} . \tag{9.63}
\end{equation*}
$$

9.11 Stirling's formula. ${ }^{160}$ Uniformly in $|\arg z| \leq \pi-\delta$ for any small positive δ.

$$
\begin{equation*}
\Gamma(z) \sim \sqrt{2 \pi} e^{-z} z^{z-1 / 2}\left[1+\frac{1}{12 z}+\frac{1}{288 z^{2}}-\frac{139}{51849 z^{3}}+\cdots\right] \tag{9.64}
\end{equation*}
$$

Here \sim implies that the expansion is asymptotic ($\rightarrow \mathbf{2 5 . 3}, \mathbf{2 5 . 1 4}$).
A practical way to remember the salient feature is

$$
\begin{equation*}
n!\sim(n / e)^{n} \tag{9.65}
\end{equation*}
$$

[Demol ${ }^{161}$ We only demonstrate

$$
\begin{equation*}
\frac{\Gamma(n) e^{n} \sqrt{n}}{n^{n}} \rightarrow \sqrt{2 \pi} \text { as } n \rightarrow \infty \tag{9.66}
\end{equation*}
$$

[^4]In Euler's integral (9.1) set $x=\sqrt{t}-\sqrt{n}$ to find

$$
\begin{equation*}
\frac{\Gamma(n) e^{n} \sqrt{n}}{n^{n}}=2 \int_{-\sqrt{n}}^{\infty}\left(1+\frac{x}{\sqrt{n}}\right)^{2 n+1} e^{-2 \sqrt{n} x} e^{-x^{2}} d x \tag{9.67}
\end{equation*}
$$

Now, the integrand is uniformly bounded in n by the integrable function $e^{-x^{2}-1}$, because

$$
\begin{equation*}
\left(1+\frac{x}{\sqrt{n}}\right)^{2 n-1} e^{-2 \sqrt{n} x} \leq \exp \left\{\frac{x}{\sqrt{n}}(2 n-1)\right\} \exp (-2 \sqrt{n} x)=e^{-x / \sqrt{n}} \leq e \tag{9.68}
\end{equation*}
$$

Since for each x

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log \left\{\left(1+\frac{x}{\sqrt{n}}\right)^{2 n-1} e^{-2 \sqrt{n} x}\right\}=-x^{2} \tag{9.69}
\end{equation*}
$$

the dominated convergence theorem ${ }^{162}$ tells us

$$
\begin{equation*}
\frac{\Gamma(n) e^{n} \sqrt{n}}{n^{n}} \rightarrow 2 \int_{-\infty}^{\infty} e^{-2 x^{2}} d x=\sqrt{2 \pi} \tag{9.70}
\end{equation*}
$$

Discussion. ${ }^{163}$ The above proof does not tell us why the ratio (9.66) must be considered. Let us give a more "constructive" proof.
(1) Notice that for $\mathbb{R}:>0$

$$
\begin{equation*}
\Gamma^{\prime}(z)=\int_{0}^{\infty} e^{-t} t^{z-1} \ln t d t \tag{9.71}
\end{equation*}
$$

(2) To rewrite $\ln t$ let us show that integration of

$$
\begin{equation*}
\frac{1}{t}=\int_{0}^{\infty} e^{-x t} d x \tag{9.72}
\end{equation*}
$$

implies for $\mathbb{R} t>0$

$$
\begin{equation*}
\ln t=\int_{0}^{x} \frac{e^{-x}-e^{-x t}}{x} d x \tag{9.73}
\end{equation*}
$$

This integral is called Frullanis integral. ${ }^{164}$
(3) Combining the above results. we obtain

$$
\begin{equation*}
\Gamma^{\prime}(z)=\int_{0}^{x} \frac{d x}{x}\left[e^{-x} \Gamma(z)-\int_{0}^{\infty} e^{-t(x+1)} t^{z-1} d t\right] . \tag{9.74}
\end{equation*}
$$

[^5](4) From this we obtain
\[

$$
\begin{align*}
\frac{d}{d z} \ln \Gamma(z+1) & =\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-z t}}{e^{t}-1}\right) d t \tag{9.75}\\
& =\int_{0}^{\infty} \frac{e^{-t}-e^{-t z}}{t} d t+\frac{1}{2} \int_{0}^{\infty} e^{-t z} d t-\int_{0}^{\infty}\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) e^{-t z} d t \tag{9.76}\\
& =\ln z+\frac{1}{2 z}-\int_{0}^{\infty}\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) e^{-t z} d t \tag{9.77}
\end{align*}
$$
\]

(5) Integrating this with z from 0 to z, we obtain

$$
\begin{align*}
\ln \Gamma(z)= & \left(z-\frac{1}{2}\right) \ln z-z+1 \\
& +\int_{0}^{\infty}\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) \frac{e^{-t}-e^{-t z}}{t} d t . \tag{9.78}
\end{align*}
$$

(6) This can be rewritten as

$$
\begin{equation*}
\ln \Gamma(z)=\left(z-\frac{1}{2}\right) \ln z-z+\omega(z)-\omega(1) \tag{9.79}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{-}(z)=\int_{0}^{\infty} f(t) e^{-t z} d t \tag{9.80}
\end{equation*}
$$

with

$$
\begin{equation*}
f(t)=\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) \frac{1}{t} \tag{9.81}
\end{equation*}
$$

To compute $\dot{\sim}(1)$. notice that

$$
\begin{equation*}
\omega(1 / 2)-\omega(1)=\int_{0}^{\infty}\left(\frac{e^{-t / 2}}{t}-\frac{1}{e^{t}-1}\right) d t \tag{9.82}
\end{equation*}
$$

but this can be obtained from the result of (5) with $==1 / 2(-9.6)$ as

$$
\begin{equation*}
\omega(1 / 2)-\omega(1)=\frac{1}{2} \ln \pi-\frac{1}{2} \tag{9.83}
\end{equation*}
$$

On the other hand. we can compute $\boldsymbol{\Delta}(1 / 2)$ directly as

$$
\begin{equation*}
\omega(1 / 2)=\frac{1}{2}+\frac{1}{2} \ln \frac{1}{2} . \tag{9.84}
\end{equation*}
$$

Hence. $\dot{\sim}(1)=-(1 / 2) \ln 2 \pi$
(i) For large $\mathbb{R} z>0$ we can expect that u is small. Actually it is of order $1 / z$,

[^0]: ${ }^{152}$ A rigorous version may be found in J. W. Dettman. Applied Complex Analysis, p194 (Dover. 1965). or E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. Chapter XII. which is a convenient reference source of the I-function.

[^1]: ${ }^{153}$ However. there is a
 Theorem [Wielandt] Let $F(z)$ be a holomorphic function in the right half plane having the following two properties:
 (i) $F(z+1)=\approx F(z)$ on the right half plane.
 (ii) $F(z)$ is bounded in the strip $\{1 \leq \mathbb{R} z<2\}$.

 Then. $F(z)$ is proportional to $\Gamma(z)$.
 See R. Remmert. "Wielandt's theorem about the I-function." Am. Math. Month. p214-220. March 1996.

[^2]: ${ }^{154}$ This can be computed directly with the aid of the Gaussian integral as (1) In Exercise.

[^3]: ${ }^{157}$ J. Zinn-Justin. Quantum Field Theory and Critical Phenomena, (Oxford, 1989); D. J. Amit. Field Theory. the Renormalization Group, and Critical Phenomena (World Scientific. original from McGraw-Hill 1978).
 158

 $$
 \int_{-\infty}^{\infty} d q^{d} e^{-a^{2} q^{2}}=\left(\frac{\sqrt{\pi}}{a}\right)^{d}
 $$

[^4]: ${ }^{159}$ In very high dimensional spaces. almost all the volume is always very close to the skin. This is a very important fact for statistical mechanics, and coding theory. ${ }^{160}$ James Stirling. 1692-1770.
 ${ }^{161}$ J. M. Parin. Am. Math. Month. 96, $41-42$ (1989).

[^5]: ${ }^{162}$ Again. this is a rudimentary theorem of Lebesgue integral $(\rightarrow \mathbf{1 9 . 1 1})$.
 ${ }^{163}$ This is adapted from Lebeder.
 ${ }^{164}$ To justify the changing the order of integrations. we may rely on Fubini's theorem $(\rightarrow \mathbf{1 9 . 1 4})$. The same is true for the exchange in (3).

