
8 Contour Integration

A contour integral of a complex function is nonzero only
when it is not holomorphic in the region encircled by the
contour. Hence. the integral is determined by the singulari­
ties of the integrand. Consequently, it is worth paying close
attention to singularities. Starting with the classification
of singularities, we discuss the Laurent expansion of a func­
tion around an isolated singularity. and the definition of the
residue, which determines the value of integrals. Cauchy's
theorem, which allows us to deform the integration path on
the complex plane and the residue theorem sometimes al­
low us to compute definite integrals neatly. Cauchy devised
complex function theory with the motivation of unifying the
computation of definite integrals.

Key words: singularity. isolated singularity, branch point.
degree of ramification. Laurent expansion. principal part.
pole. genuine singularity. Casorati-Weierstrass' theorem. residue
theorem. principal value. Plemelj formula. hyperfunction.

Summary
(1) Fate of analytic continuation around a singularity classifies the sin­
gularity (8A.3).
(2) Around an isolated non-branching singularity. we can expand the
function into Laurent series (8A.6).
(3) Its coefficient of the (z - at1 term is called the residue and the
integral is determined by residues (8B.2).
(4) Deformation of the integration contour thanks to the Cauchy the­
orem + the residue theorem can allow many definite integrals to be
evaluated exactly (8B). The only way to be familiar with this tech­
nique is to practice.

8.A Singularities

8A.1 Integral and singularities. The value of the contour integral
can be nonzero only when the integrand is not holomorphic in the re­
gion encircled by the contour as can be seen from Cauchy's theorem
6.3. The points where the function becomes nonholomorphic is called
singularities. This is one good reason to pay close attention to singular­
ities of a function. The nature and location of singularities completely
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specifies an analytic function as can be guessed from the theorem of
identity (-7.5).

8A.2 Singularity. Let (P,U) be a function element (....7.7) de­
fined by a power series P whose convergence disk is U centered at
a. Consider a curve 'Y : [0,1] - C connecting a and (3 E C such that
'Y( 0) = a, 'Y( 1) = f3 and 'Y( t) :I: f3 for t :I: 1. If analytic continuation
along v up to 'Y(t) for any t < 1 is possible. but not possible to f3, we
say the analytic function determined by the function element (P, U)
has a singularity or a singular point at {3.

SA.3 Classification of isolated singularities. If a is a singular
point of an analytic function f. and there is r > 0 such that there is
no singularity of f in 0 < Iz - o] < T, then 0: is called an isolated
singularity of f.

Let 0: be an isolated singularity of an analytic function (-7.10)
f. If a curve 'Y encircles the singularity 0:. there are two possible cases
for the analytic continuation along the curve around 0: to the starting
point:
(1) The result gives the same function element (P. V). In this case the
singularity 0: is called a non-branch point.
(2) The result does not give the same function element. In this case 0:

is called a branch point. We say we arrive at a different branch of the
function (cf. 7.S Discussion).

8AA Classification of branch point. Branch points are classified
into two cases:
(2a) If the analytic continuation along 'Y which goes around 0: gives
the original function element (P. U) at Zo for the first time after going
around 0: m( > 1j-tirnes. 0: is called an algebraic branch point. m - 1 is
called the degree of ramification of the branch point.
(21) If there is no such finite m. 0: is called a logarithmic branch point
(-4.7. see below (B)).143

Discussion.
(A) Read a passage from Gauss' (-6.17) letter to Bessel dated December 28.1811
(not ....ery faithfully translated as the reader sees from the modern notations. Bessel
wished to introduce a new special function (-23.5) lix = f dx/logx):
".. '. If a person wishes to introduce a new function in analysis. I ask first whether he
confines his variable to R. and regards imaginary numbers as superfluous CUberbein),
or. as I accept as a principle, he allows imaginary numbers to enjoy the same right
in the world of numbers. I am not discussing the practical merits. I see analysis as
an independent branch of science. If those hypothetical 'imaginary numbers' were
excluded from analysis. then we would suffer from enormous loss in aesthetics and
flexibility. and would have to impose complicated restrictions on the truth which
should be quite general. Well. when x E C what do we mean by J!p(x}dx? Its

143There are no other cases thanks to the Poincare-Volterra theorem 7.14.
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value does not depend on the paths. if r(x) :F 00 in the plane bounded by these
paths. .... By the way as is clear from the statement, the function defined by
Jr(x )dx can be a multivalued function, because the path may not go around the
point where rex) = 00 or may go around it once or a few times. For example...."
(then. Gauss discussed log defined by the integral as in (8.1) below, and continued)
"However. if the function is not infinite. then the integral is univalent. For example,
consider

e:r -1
rex) = --.

x
Its integral is univalent and can be expanded into the following series

1 2 1 3 1.(
x+2'x +18 x +96x +''',

This can be obtained from

(8.1 )

(8.2)

(8.3)

which is always convergent and has th(' unique meaning."
It is clear that Gauss had alread known by 1811 what Cauchy (-6.11) reached

at last in 1851.144

(B) For I: - 11 < 1. we have

1
z 1 IX (-1)1..+1(-_1)1.'

Icg c e -d(=L k- EII(z)
1 ( 1.'=1

r IfJ ~ 'Ye wish to directly analytically continue this around the unit circle. The expansion
.f~ ! f... around eir./4 is obtained as

\ )

and
fjn)(e ir./4 ) =(_It+ 1e- in r./ 4.

In this way after one rotation we obtain

(8.4)

(8.5)

Exercise.
Compute the integral

(8.6)

144based on T. Takagi. Kinsei Sugaku Shidan (Tales from Modern Mathematics
History) (Iwanami. 1995: original from Kyoritu Publ. 1933).
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8A.5 Classification ofnon-branch isolated singular points. Non­
branch isolated singular points are classified according to the principal
part (~8A.I0) of the Laurent series (~8A.8) around the singularity:
(1) If there is no principal part, we can redefine appropriately the value
of f at the singularity to make it holomorphic, so the singularity is
called a removable singularity.
(2) If the principal part is a finite series, the singularity is called a pole.
If the largest negative power of the principal part is -m (m > 0), then
the pole is called a pole of order m.
(3) If the principal part is an infinite series. the singularity is called a
genuine singularity (~8A.7).

Exercise.
Compute the Laurent expansion around:: =a of

(8.7)

"'e know :: =a is a genuine singularity of the function.

8A.a Branch point can be found by formal expansion. If the
reader suspects ex is a branch point of a function J. formally expand it
around ex. Then. as can be seen from the example. she can tell whether
it is a branch point or not.

Consider a trivial example vz=-I. z = 1 is an algebraic branch
point with degree of ramification (-8AA (2a)) 1. Let us formally
expand it around z = 1 with the aid of the binomial theorem:

(z _1)1 /2 =t (1/2)zn(_1)1 /2-n.
n=O n

where the binomial coefficients are defined as usual:

(8.8 )

(8.9)(1/2)= ~ (! - 1) ...n-n + 1)
n n( n - 1) ... 2 . 1

Obviously due to the double valuedness of (-1 )1/2 (~4.9), z = 1 must
be a branch point.

8A.7 Casorati-Weierstrass's theorem. Let a be an isolated gen­
uine singularity (~8A.5) of an analytic function f(z). Then f assumes
values arbitrarily close to any value in C. Or, more explicitly. for any
to E C (including (0) there is a sequence {Z71} such that Zn ~ a and
J(zn) ~ W. 0
[Demo] Let lL' = oc and assume that there is no sequence which makes J{zn} -+ 00.

Then. f must be finite. so a is a removable singularity. contrary to the assumption.
Hence. there must be a sequence required in the theorem for u: = oc, Suppose 'Ie is
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-

finite. Consider 1/(f(:) - w). z is still a genuine singularity of this function, but
this is finite at a, a contradiction. 0

Exercise.
illustrate that the theorem is true for ell:,

8A.8 Laurent's theorem. Let f(z) be holomorphic in U = {z :
o:5 T < Iz - 01 < R :5 +oo} and 0 be not a branch point,145 Then, f
can be expanded in U in the following normally convergent series called
the Laurent series:

u

+00
f(z) = 2: cn(z - o)",

n=-oo

where the coefficients are defined by

1 hen = ---. (z -0)-n-1f(z)dz
27rZ 8{::lz-al<s}

(8,10)

(8.11)

with s E (r. R). 0
Notice that there must be a singularity on the convergence circle

for a Laurent series. since it is a kind of power series (-7.3).
[Demo] Choose r' and R' such that r < r' < R' < R. Then. I is holomorphic in
,. == {c : r' < I: - 01 < R'}. so Cauchy's formula (-6.1O) tells us

f(:} =~ r f«~ ac - Ar f«). de. (8.12)
27r1 Ja{(:I(-ai<RI} (- '" .7r1 Ja{(:I(-al<r/} (- ...

for: E r. Xotice that I.: - al/I( - 01 < 1 for the first term on RHS. and > 1 for
the second term. Therefore. we may expand 1/« - z) to obtain

I(::} = 1 r f(z-a)'" j(<)d
27ii Ja{(,:IC:-o<l<R/} n=O (- a (- a '

1 1 ec (,-a)'" j(<)+ - 2: - --de
27ii 8{(':IC:-o<I<r/} n=O Z - 0: Z - 0: •

(8.13)

The power series are uniformly convergent, so that we mar exchange the order of
summations and integrations. 0

Exercise.
(A) Let

1
j(z) = (1 + :;2)(:: + 2)"

14"This could be a non-singular point.
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Check that its Laurent expansion around e = 0 for
(a) 1=1 < 1 is

!(=) =!~ (_1_ + (-l t2) z2n _!~ (_1_ + (-It) z2n+l. (8.15)
5.t- 22n+1 5.t- 22n+2

n=O n=O

This is the Laurent series needed to classify the singularity at z = 1. However, as
seen below. the expansion takes different forms according to the domain of z away
from the singularity.
(b) 1 < 1=1 < 2 is

1 oc (-1)" n 1 ec (_1)"+1 1 ec (-1)"2
!(=) = 5L 2"+1 z + 52: z2"+1 - 5L~ (8.16)

"=0 n=O "=1

(c)I=I>2is

1 X 22n + (_1)"+1 1 ec 2211 - 1 + (-1)"2
1(=) = 5" 2: :;2n+1 - 5" 2: :;2" . (8.1i)

"=1 11=1

(B) For 0 < 1:1 < oc

(8.18)

(8.19)Ill\'an = - cosnlfcosh(2coslf)dlf.
'Ii 0

(C) 1(:) = (= - 2)-1 - (= - 1}-1 There art> two isolated singularities 1 and 2.
Hence. the Laurent expansion around: = 0 changes its form in three distinct
regions. 1:1 < L 1 < 1:1 < 2 and 1:1 > 2. For 1=1 < L this is nothing but the
ordinary Taylor series. For 1 < 1:1 < 2. we haw

!(:)

For 1:1 > 2 we haw

1 1= 2(=/2 -1) :(1- 1/:;)
1 :;:;2 1 1

= - 2 - 4" - 8 - . ~ . - -; - z2 - •••

ec 2n-1 _ 1
f(:;) =2: .

"=2 z"

(8.20)

(8.21)

8A.9 Uniqueness of the Laurent expansion. This should be clear
from the normal convergence of the Laurent series: Compute the coef­
ficients of j(z) = 2:~: bn(z - o)" according to (8.11).

8A.IO Principal part. The negative power portion of the Laurent
series (8.10) is called the principal part of the series. The rest is some­
times called the regular part. Taylor's theorem (-6.15) tells us that
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if a function is holomorphic at a. the Laurent series around the point
does not have any principal part.

SA.It Examples. In contrast to the Taylor series, there is no general
method to compute the coefficients of the Laurent series. This is true
even for the regular part, since the function is not differentiable at the
expansion center. However, the uniqueness SA.9 implies that if the
reader can somehow get a Laurent series, then it is the Laurent series.

Exercise.
(A) Laurent-expand the following functions.
(1) I(z) = 5/(Z2 + l)(z + 2) has three poles of order 1 at i, -i and -2. Its Laurent
expansion around z = i in the range Iz - 11 < 2 is

I(Z)=~(-1)'12~i{(2i~n+1 - (2+~)n+1}(Z-i)'1-1. (8.22)

(2) I(z) = :/(z + 1)2(= + 2) around: = -l.

1
1(:)= =+1-2+2(=+I)-2(:+1)2+ ... +2(-1)n+l(z+lt+ .. ·. (8.23)

(3) 1(=) = =2 exp(l/=) around ==O.

(4) if:;) =exp(l/(l- z» around z =1.

oc (_l)n

1(:) = 2: 1(- -l)n'
n=O n. -

(B) Let f(:;) = exp[o(:; - :;-1)/2].

+OC
1(:) = 2: In(o)zn.

'1=-oc

where

(8.25 )

(8.26)

(8.27)1111'J'1(o) == - cos(n6 - O'sin6)d6
11' 0

is called the Bessel function of the first kind (-21A.21). I is called its generating
function (-21A.5).

SA.t2 Laurent expansion and Fourier expansion: Let j(z) be
holomorphic in the open strip -a < 9' z < a, and fez + 21l') = fez).
Then,

(8.28)
n=-oc
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with

en =~ {21r !(fJ)e- i nfldfJ. (8.29)
21r Jo

1.11e series converges normally in the strip (cf. 17.1, 17.12(3)). 0
[Demo} Let ( == ei z • Then the strip is mapped one-to-one to the annule e- a < 1<1 <
ea. Notice that I(z) is mapped to a univalent holomorphic function g() thanks to
the periodicity of I. Let us Laurent expand 9 around , =0 as

with

ec

g() = L en(n,
n=-oc

(8.30)

(8.31)

Xow, let us return to the original variable c. 1(::) = g(e i : ) and (8.30) becomes
(8.28) and (8.31) is translated into (8.29). 0

Discussion.
Let f(.:) be holornorphic in the region containing the unit disk 1.:1 :5 1. Let its
Laurent expansion be

Ole

1(:) = L A.n:
n

.
n=-x;

Then
ec

g(9) = L A n ei n 9

n=-x

is the Fourier expansion of J(e iB).

S.B Contour Integration

(8.32)

(8.33)

8B.1 Residue: Let 0: be a unique singularity of an analytic function
in U == {z : 0 < [z - 0:\ < R}. If the singularity is not a branch point
(-8A.3).

Res(a: 1) = 2
1.

{ j(z)dz
1r'l. Jar:

(8.34)

is called the residue of f at a. Notice that the value does not depend
on R as long as U contains only one singularity,

8B.2 Residue theorem: Let j be an analytic function holomorphic
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in a region D except at a finite number of points al' •.. , an, and aD be
piecewise Cl curve. Then

(8.35)

o
This is obvious from the Cauchy theorem 6.3 and the definition of
residues (8.34).

8B.3 How to get residues:
(i) If we have the Laurent expansion (-+8A.8) of f around a singularity
a: 2:: cn(z - a)". then

Res(a: f) ::::: C_l'

(ii) If a is a pole of order m of f. then

1 dm - 1

Res(a: f) ::::: (m _ I)! !~ dzm- 1 [(z - a)m j(z)].

In particular. if a is a pole of order 1 (simple pole). then

Res(a: f) ::::: lim(z - a)f(z).
z-a

(8.36 )

(8.37)

(8.38 )

Use l'Hospital's theorem to compute this.146 This can be demonstrated
easily with the aid of Cauchy's formula for derivatives (-+6.14).

Exercise.
(A) Check that the residues of the following functions are given as follows:
(1) :;.41(:;2- c2 )4. Its poles are at ±c and the order is 4. Both have the same residue
-1/(32c3

) .

(2) sin c, Poles are at 111i for any 11 e Z except O. All are order 1 and the residue
is given by (-l)Tl 121i.
(3) cot 1i;;/(:; - 0)2. The poles are at a and 1'1 e Z. The residue at n(:;e 0) is given
by 1/1i(n - 0)2. If a" Z. then it is second order and the residue is -1rlsin21ra. If
a E Z. then it is a third order pole and its residue is -1r/3.
(4) :;/ sin a. Poles are at 1'I1i for any 1'1 e Z except O. All are order 1 and the residue
is given by (-1 )"mt.
(5) cot z/(z - 1)2. The poles are 12 E Z. z = 1 is a third order pole and its residue
is -IT/3. (B) Find the residues (the answers are in the square brackets).
(1) cot z at z = O. [1]
(2) log(1 - ::)/ sin2 z at z =O. [-1]

146VHospital's theorem or rule is actually due to Johann Bernoulli. L'Hospital,
who got his calculus lesson from Bernoulli. wrote the first textbook of differential
calculus. Analyses des infiniment petits (1696).

132

yoshioono
Pencil



(3) zl(sin.:: - tan z) at z =O. [OJ.
(4) .::1 sin z at its poles. [mr for n E Z \ {O}]
(5) .;2n /(1 + .::)n (1'1 E N \ {O}). [(_1)ntl(2n)!/(n -1)!(1'I+ l)!J

8B.4 Rational functions of sin and cos: Let f(8, t) be a ratio
of two polynomials of s and t. 14i

[211'
1= J

o
j(cos8. sin e)d8 (8.39)

(8.40)

can be computed with the aid of the residue theorem. Let z = ei8 •

Then. the integral reads

I = ~ [ f((z + z-1)f2. (z - z-1)f2i) dz.
1, J8( l=j<l) Z

Since f is rational. the integrand is a rational function of z, Thus the
integration reduces to the problem of finding residues for the poles in­
side the unit disk.

Exercise.
(1 )

Solution.
12" dO 2r.

1- -
- 0 1 + 8cos2 0 - '3' (8.41)

I - ~lId: -~ f zd: (8 ?)
- 2 - 2 .4.

i 8{:11:19} 1 + 8 (:+r'):: i 2:4 + 5: + 2

The integrand has simple poles at ±2i and ±i1v'2. Hence,

1= 2r. [ReS(i/V2: f) + Res( -i/V2: f)J (8.43)

with both the residues equal to 1/6. Since the pole is simple, the residue can be
obtained easily with the aid of l'Hospital's rule (....SB.3):

(2) For a > b> 0

. ~ . (::-i/v'2).:: . 2z-i/v'2 1
Res(1/v2:f) = 11m ? 4 - 2 ? = lim 8 3 10 = -6'

:-;/./2 • .:: +0: +. :-i/./2: + z

I = r 1 se = -;=;r=1r=:=;;:Jo 0 + bcosO -/02 - b2

Xoting that cosO is an even periodic function of period 2r..

112
" 1 i 1 dz1=- dO=- .

2 0 a + bcos9 2 8{zllzI9} bz2 + 2az + b

BiSuch a function is called a rational function of s and t.
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Hence.

(

- 0 + .ja2 - b2
)

1 = 'ITRes b ; / .

Its calculation is similar to (1).
(3) For a > b> 0

I" dO 2'ITa
Jo (0 + bcos9)2 = (02 - b2)3/Z'

(8.47)

(8.48)

JfVI 8B.5 Integral of rational functions: Let P and Q be polynomi­
als. and the order of Q be not smaller than 2 plus the order of P. If Q
does not have any zero point on the real axis, then

(8.49)

where the sum is over all the poles of the integrand on the upper half
plane. This can be demonstrated with the aid of the contour in the fig­
ure. The contribution from the large semicircle vanishes in the R -- 00

limit (the condition 011 Q is required to guarantee this).

Exercise.
(1)

j O<: dr 7r
]- ----
-0 1+.1'4-2/2'

] = ~1: 1 ~~r4 = ~21Ti [Res (e
i 'l'r /4 :f ) + Res (e ih

/
4 :f )].

The residues can be computed with the aid of l'Hospital's rule as

Res (eir./4:f) =_1_._.
4e3r../ 4

(8.50)

(8.51 )

(8.52)

'''e know the integral must be real. so we do not need the real part of the residues.
'3Res(e ir./ 4:f) = -..;2/8.
(2) r: dx 'IT

l« 1 + .1'6 =3' (8.53)

In this case perhaps a better way to compute is 8B.8. See Exercise (3) there.
(3)

JO<: .1'2 5
1= 4 10 2 gd:r=-81l"·_o<;,:r + x +

The integrand has four simple poles at ±3i and ±i.

(8.54)

8B.6 Integral of rational function times sin or cos: Let R be
a rational function without any pole on the real axis and the order of
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the denominator is no less than the order of the numerator +1. The
definite integral

i: R(x){cosax or sinax}dx

(a > 0) is computed as the real or imaginary part of

JR(z)eiazdz = 271"i L Res(aj; R(z)eiaz),

J

(8.55)

(8.56)

where the sum is over all the poles of R in the upper half plane. We
can use the same contour as in 8B.5 to demonstrate the formula with
the aid of the following lemma:

8B.7 Jordan's lemma: Let f be rational.l'" and for (j E [0.71"]
f (Reif)) - a uniformly in the R - 00 limit. Then. for the semicir­
cle I in the figure

(8.57)

for any ex > O. (For ex < awe have a similar lemma using the semicircle
in the lower half plane.) 0
[Demo] Let Jl(R) be the maximum value of IfI on ~I' Then

r

Q
R.

Xotice that 20/ IT :5 sin 0 for 0 E [0. 1i /2]. so we can haw the following upper bound I
of the above formula

11 I

r r/2

• eia: f(:;)d:; :5 RJJ(R) l« eoRsin9dO = 2RJl(R) Jo e-aRsin9dO.

2RJl(R) ("/2 e2oR9/"'dO = rrJl(R) (1- e- aR ) < ~JJ(R).
Jo Q Q

'Ye know Jl(R) ...... 0 as R ...... cc. 0

Exercise.
(1)

I _jO<: cos .r d _ 2rr ( ~) -V3/2
- 2 :r - M cos 2 e .

-oc 1+:r+:r v3

I is the real part of the following integral

JOC eiz (1 v'3) 1· r.J = d: =2rriRes -- + -i; f = 2rri_e-·/2 - v 3/ 2 •
-0<: 1 + :; + :;2 2 2 V3i

(8.58)

(8.59)

(8.60)

(8.61)

148 Actually. f may be meromorphic (i.e .. there are only poles as singularities) on
the upper half plane including the real axis.
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"

(2) For a> 0

I 100 cos ax d 1r -aQ= :r = -e .
-00 X'1 +a'1 2a

{3}Fora>O

1
00 •

1 - X sm ax d _!!:. -em
- 2 2 x- e .

o a + x 2

This is the imaginary part of

1100
ze

i Q
:J = - 2 2 d::; .

2 -00 a +::;

The residue can be calculated just as the examples above.
(4)

100 sin r d 7r
-- x=-.

o.T 2

This is obtained from

8B.8 Integral of cos Zl1 or shun: Consider

(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

/ where D is given in the figure. The contribution from the portion of
the circle goes to zero as R - 00. so we get

(8.68 )

Hence. the integral is reduced to the calculation of

(8.69)

This can be reduced further to the calculation of the r-function (-9.1)
by changing the variable x - t = x",

This is an example of reducing the integral to other known inte­
grals.

Exercise.
(1) Fresnel integral:

(8.70)
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The integration path is the boundary of the fan shape of angle 1r/4. Without
computing the actual value. can you show that the integral is indeed well-defined?
(2)

lOt: cos(x3)dx = 2~r (~) .1/X; sin(x3)dx = ~r (~) . (8.i1)

For r. see 9. This is obtained from

Then. we use

l ex 3 11°C 1 (1)e-:r d« = - e-tr-2/ 3 =-r - .
o 3 0 3 3

(3) Show
f'X _I_d.T = 1i/n .

io l+;r fl sin(1i/n)

[Hint. A similar contour works.]

(8.i3)

(8.74)

1m
8B.9 Use of periodicity of e". The periodicity of e" (period 21ri)
can be used as in the following example. Compute

I
x eax

1= dx
-oc 1 + ex

for a E (0. 1). The path is shown in the figure. See 9.8 as well.

(8.75)\f,
\

" -----,I-;;..+---~;!Ioo
RiL-

8B.I0 Use of the residue to compute series: Ifwe have a holomor­
phic function which has poles at all the points of N or Z. we can use it
to convert the sum over integers to contour integrals. z-2 cot 1rZ is such
a function. Let Ss be the square whose vertices are at (±1 ±i)(n+1/2)
for any positive n E N. If f(Re t9

) behaves as orR] in the R - 00 limit.
then

x f(n) 1 102: -?- =-: f(z)z2 cot x zde - Res(O: f(z) cot 1rz/1rZ2), (8.76)
n=l n- 4t 8S,'\"

but the integral vanishes in the large square limit.

Exercise.
Compute the following sum

ex 1

L n2 +az'
n=1

(8.i7)

8B.ll Cauchy principal value of integral. Let f be a real function
defined on the real axis. and f (x) - 00 at c. In this case the integral
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of ! over an interval (a, b) containing c may not exist, but even in such
cases the following limit may exist

pib
j(x)dx =lim [l c

-
6
!(x)dx+l

b
!(X)dX] , a> 0, (8,78)

a 6-0 a c+6

If this is well defined, it is called the (Cauchy) principal value of J: j dx
(-14.17, BB.13).

Exercise.
Check

11 1
P -dx =0,

-1 X
(8,79)

---.>-- ---:1)--

8B.12 Simple poles on the real axis. Let Q be a function for
which z2Q(z) vanishes ill the z - 00 limit for Rz > O. Suppose there
are finite number of simple poles {bj } on the real axis. Then. if the
real integral near the singularities is interpreted as Cauchy's principal
values. we have

p I: Q(x)dx =27Ii [~Reslaj: Q(z))+ ~ ~ Resibi, Q(Z))] .

(8.80 )
where the sum over j is for all the singularities of Q on the upper half
plane. and the sum over k is for all the simple poles on the real axis. 0
[Demo] "'e choose the region D with indentations around the poles on the real axis.
\Ye can apply the residue theorem 8B.2 to D to get

(8.81)

Xow we magnify the neighborhood of a simple pole b on the real axis, Then. the
integral along the path ( can be written symbolically as

where C is the contour around the small semicircle ofradius 6(> 0) in the clockwise
direction. The first two terms give the principal value of J fdx near the singularity
b. using the Laurent expansion (-SA.S) of f around b

j f (( )d( = Jb-C +1 +i .
( ~6 ~

and the parametrization r =b+ 6ei ll , we have in the 6 -+ 0 limit

£f()d( = -1iiRes(b: f) + 0[61·
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21rif(x =F ie) = 100

f(y) d (8.86)
-:x, y -:r ± ie Y

1~-~ 100 1=
-x + ~+6 + c_'

(8.87)

8B.13 Plemelj formula: Let f be a function holomorphic on the
upper half plane and IfI "" Izl-~ as z ..... 00 on the upper half plane for
some positive e. Furthermore, if f is holomorphic in some nbh of z,
then

(8.88 )

(8.85)

The first two integrals combine to the principal value integral. In the third integral.
the holomcrphy of f near x allows us to deform C_ into a lower semicircle of radius
6. Th« exchange of the two limiting procedures I: - 0 and 6 - 0 is allowed. because
(8.87) does not depend on {y at all: we may let f .... 0 for each 6. "'e can explicitly
calculate the third integral just as in 8B.12. 0
Usually. we write (8.85) as (-+3.8)

1 . = p_l_ ± 1ri6(y _ x).
y-x=f'l€ y-x

lim j~ f(y). dy = P JOC f(y) dy =f i7r f(x).
~.....o+ - oc y - x ± 'l.€ - oc Y - x

[Demo] Cauchy's formula 6.10 applied to the upper large semidisk tells us

This is called the Plemelj formula. From this we obtain

6(x _ a) = _1_ ( 1 _ 1 )
21ri x - a - iO x - a + iO .

Here iO implies if. for infinitesimal f.(> 0). See 32C.13. 8B.16.

(8.89 )

SB.14 Kramers-Kronig relation. Let G(t) be the response of a
linear system to a perturbation F. Since G must be a linear functional
of F. it has the following general form:

G(t) = Jds¢(t - s)F(s),

where ¢ is called the response junction. Its Fourier transform

X(w) =Jdt¢(t)e-i.-Jt

(8.90)

(8.91)

is called the admittance. Due to causality. ¢(t) = 0 for t < O. Hence,

(8.92)
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(8.94)

J x(w)eiwtdw = O. (8.93)Je .
Since eiwt is analytic in w, this implies (see Morera's theorem ~6.16)

that X(w) is holomorphic in the lower half plane. Conversely, if X is
holornorphic in the lower half plane, then the causality is satisfied. 149

Since X is holomorphic in the lower half plane.

0= 1 x(z) dz;
Ic z-w

if t < O. To compute this by a contour integration ei....t ~ 0 for t < 0 is
needed for large Iwl. Therfore, 1m (wt) > 0 implies 1mw < O. Hence.
causality implies

w

i jX x(z)
x(w) = -P --dz. (8.95)

C, 1r -oc Z - w

Splitting the real and imaginary parts as X ::= X' - iX". the formula can
be written as

x'(w)
1 jO() X"(z)

(8.96)- -P --dz.
1r -oc z - W

X"(w)
1 jX X'(z)

(8.97)--P --dz.
1r -x Z - W

These are called the Kramers-Kroniq relation. ISO but had been known
to mathematicians like Hilbert long before. X" describes the dissipa­
tion part of the response. so it is more easily measured experimentally.
Therefore. the relation becomes useful to reconstruct the whole admit­
tance.

8B.15 Hilbert transformation. If

u(z)

v(z)

(8.98)

(8.99)

(8.100)

we say u and v are Hilbert transforms of each other. This can be
demonstrated with the aid of

1 jO() dz
1r2 -0() (x _ z)(z _ y) = 8(x - y).

149First pointed out by H. Takahashi in 1942. See Butsuri 40, 188 (1985) for an
interview [Japanese].

ISOIt is a kind of dispersion relations extensively used in high energy physics.
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This is formally demonstrable by the Plemelj formula and the Hilbert
transformation.
(1) For this pair.

8B.16 Delta function as Sato hyperfunction. (8.89) can be ob­
tained more directly as follows: Let j be real analytic. Take integration
paths C± very close to the real axis surrounding x E R. Then. Cauchy's
formula 6.10 gives

This is called the Parseval relation.
(2) Let j and 9 be a Hilbert transform pair. Then

f: j(t)g(t)dt = O.

1 j(z) J .--dz = P j(z)dz 1= 'f,1rj(x).
C'" Z - x

or

(8.101)

(8.102)

(8.103)

(8.104). 1 j(z) 1 j(z)21rzf(x) = - --dz + --dz.
c+ z - x c_ z - x

Flattening the paths toward the real axis. we could formally obtain

21rif(x) =l b
dxf(y) ( 1. _ 1. ).

a y - X - 1,0 y - X + 1,0
(8.105)

Thus we have arrived at (8.89). To define such a singular object as
the difference of boundary values F(x + iO) - F(x - iO) of analytic
functions has been proposed by Sato (in 1955). and is called the Sato
hyperjunction. 151

lS1 For the history. see !\. Kaneko. "The history of Sato hyperfunction, from a
private point of view," Surikagaku. March. p15. April. p22. May p29 (1986).
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