
7 Analytic Continuation

If a Taylor expansion of an analytic function around some
point is given, this series completely and globally determines
the analytic function. With a review of power series, ana­
lytic continuation is introduced to construct analytic func­
tions.
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Summary
(1) If two analytic functions agree on infinitely many points whose
accumulation point is inside the domains of both functions, then they
are actually identical (Theorem of identity 7.5).
(2) This theorem is the key to analytic continuation and completion
(7.7-9).
(3) Analytic function is completely determined by its property on an
arbitrarily small open set in its domain (7.10).

7.1 Motivation to study series and sequence, analyticity. We
have learned a remarkable fact that holomorphic functions are Taylor­
expandable (Taylor's theorem 6.15). Taylor-expandable functions are
called analytic functions. Or, more precisely. a function f : D - C is
said to be analytic in a region D, if it is Taylor-expandable there.

7.2 Review of power series. A (formal) power series around Zo E C
is a series of the form L:~=o an (z - zo)n. [Without loss of generality, we
may consider the case with Zo = 0 to study its convergence.]
For the series L:~=o an z", the number R defined by

lim sup lanl l
/
n= 1/R (Cauchy-Hadamard's formula) (7,1)

n~oc

is called the convergence radius of the series. l 35

The disk of radius R (the convergence radius) around the expan­
sion center Zo of a power series L: an(z - zot is called its convergence

135lims_oc sup ex means lims-x{sUPn>Nan}. That is, find sUPm>nam = bn.
then make limn-x bn • This limit is al,,:-ays well defined (may be +00. but in
such a case the limit is definitely larger than any positive number) because {bn } is
monotonically non-increasing.

114



disk. Its boundary is called the convergence circle.
(L) 2:;=0 a71z

n converges absolutely and uniformly to a holomorphic
function J(z) such that an = J(n)(O)/n! for Izi < R, where R is the
radius of convergence of the series.
(2) The power series is termwisely differentiable, and the resultant
power series converges to f' (z) in the open disk D,
(3) Let 2::=0 GnZ

71 be a power series converging to j(z). Then, for z
such that Izl < R

(7.2)

o

Discussion. Tse of generating function to compute the sum of series.
This is a discrete version of integral transformations like the Laplace transformation
(....33).
To compute

~ 1
S =~ -n":""(7-1+-1~)

we use
ec

G(:) = L .:;11-1 = (1 _ :)-1.
11=1

Integrating this twice from zero to :. we obtain

ec 1L n(n+1):71+1 =(1-:)ln(1-=)+::.
11=1

(7.3)

(7.4)

(7.5)

Hence the desired sum is 1.136 Such a formal calculation is often useful. In this case
the calculation is not only formal but mathematically respectable. Can you justify
all the formal steps?

Exercise.
(A) Let 1=1 < 1. Show137 that for any complex number a

(1+:)° =f (:):11,
...=0

1360f course. in this case. a cleve way is to realize

111
n(n+l)=;-n+l

(7.6)

137Formally. Return to this problem after learning singularities to justify the
formal justification.

115

yoshioono
Pencil

yoshioono
Callout
Newton already did this



7.3 Convergence circle must contain a non-holomorphic point.
Let j be a holomorphic function in a region D which contains the ori­
gin, The convergence radius R of its Taylor series around z = 0 is
the minimum distance between z = 0 and the points where j(z) is not
holomorphic (Cauchy realized this. and was a breakthrough. -6.11).
o
[Demo] Suppose the radius of convergence R is larger than the minimum distance
between the origin and the nearest non-holomorphic point of f(;;). Then. the series
defines a function which is holomorphic in 1.:1 < R (see Taylor's theorem 6.15). but
this means that the function does not have any non-holomorphic point within the
disk contrary to the assumption. 0

where

(0) =a(o - 1)'" (0 -n + 1),
n n!

the binomial coefficient (for n = 0 this is defined to be 1).
(B) Expand the following function in powers of z - l.
(1) ::/(z + 1).
(2) log::.

(i.i)

(7.8)

Discussion.
Vivanti's theorem. The singularity of the positive real coefficient convergent se­
ries is on the real positive axis.

7.4 Convergence radius is a continuous function of expansion
center: The radius of convergence of the Taylor series of a holomorphic
function depends continuously 011 the position of its expansion center.
(This should be obvious from 7.3).

Discussion. It is a good occasion to review the radius of convergence.
Consider the power series Lan':".
(1) If a" #= O. and if

}. I a" I1m --
n-x; Gn+l

converges, then it is the radius of convergence p. This formula seems to be due to
d' Alembert.

For example. 1+ z+ 2.::2 + +nzn +... has p =1. The radius of convergence
of 1 + z + 2!.:2 + ... + n!:;n + is zero.
(2) [Cauchy-Hadamard's formula] (discussed in 7.2)

(7.9)

For example. if an = (2 + (-1 )n)n. then (1) does not work, but this formula gives
p =1/3. (For lim sup see 7.2 or Al.10)
(3) Let G and b be positive teals. Discuss the convergence radius of

1 + a: + (bz)2 + (a.::)3 + (b::)4 + ... + (az)2n-1 + (bz)2" + ....
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7.5 Theorem of Identity: Let f and 9 be holomorphic on a re­
gion D. and {an} be a sequence whose accumulation point a is in D.
If f(a n } =g(an ) for all n, then f =9 on D. 0

That a E D is crucial. For example. sin(1/z) is not identically
zero. and its zeros accumulate at the origin. but there the function is
not holomorphic.

This follows from the fact that the zeros of holomorphic functions
(~ 0) are all isolated and no accumulation point exists in its domain.

7.6 Principle of invariance of functional relations: 7.5 implies
that if f = 9 holds on an infinite set and f = 9 is also true on its
accumulation point. then actually f = g.

7.7 Function element. Let U be a region. and f be a holomor­
phic function on V. (f. U) is called a function element. Two function
elements (fl. Ud and (h. V2 ) are said to be equivalent. if fl == 12 on
Va == U1 n V2• This definition of equivalence is sensible because of the
identity theorem 7.5.

7.8 Direct analytic continuation, indirect analytic continua­
tion. Let (f.U) and (g. V) be function elements. If f = 9 on un V
and V rt. U: (g. V) is called the direct analytic continuation of (f, V).
If we can find a finite chain of direct analytic continuations between
(f. U) and (g. V). we say (g. V) is called the indirect analytic contin­
uation of (1. V). Both continuations are collectively called analytic
confirmations.

Discussion.
Along the unit circle centered at the origin. directly analytically continue the Taylor
expansion of v= around c = 1:

(7.11)

to:: =1 again. Show that the result is -P(::: 1) (d. 8A.3).

7.9 Uniqueness of direct analytic continuation: Let (g.V) and
(h. W) be both direct analytic continuations of (f. U). V nV nW ::f 0
and V nW be connected. Then (h. W) is a direct analytic continuation
of (g. \I). 0
[Demo] X == [" n r n W is an open set in l' n W. and 9 == h on X. Since 9 and
hare holomorphic on l'n1r. the theorem of identity 7.5 tells us that h == g there. 0

7.10 Analytic function. The totality of the function elements which
can be analytically continued from a function element (f. V) is called
the analytic function determined by (f. U). To make this totality is
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called analytic completion. The procedure uniquely defines an analytic
function from a single function element. Notice that 'analytic function'
is a global concept in contrast to 'holomorphic function' (-5.4). In a
certain sense an analytic function is a function whose total information
resides in any small piece of its domain like 'holography.'

In practice, analytic functions are functions which can be expanded
into Taylor series. Clearly recognize that the equivalence of holomor­
phy and analyticity is almost a miracle. Needless to say, this is untrue
for real-valued functions on R.

Exercise.
(1) Gauss' hypergeometric function is obtained by the analytic completion of the
following series (-240.4):

~ (o)kC3h k
Fto: 3./.:;) =.t- kl ( ) Z.

k=O' 1 k

(7.12)

(7.13)

where (>,h =.\(.\+ 1)··· (.\+ k -1) and (.\)0 = 1. What are the following functions
(they are elementary functions ......4.2 Discussion)?
0) F( -po 3. J. c ),
(ii) .:F(1.1.2.:.:).
(iii) F(n/2.-n/2.1/2.sin2:r),
(iv ) sin-1:r =:rF(1/2.1/2.3/2.:r2 ).

(2) Show that

d 03
-dF(0.3.-,.=)=_·F(0+1.3+1. I+1..:).:.: .,

More generally. (For I' see 9. but the reader needs only I'(o +1) = of'(o ) here.)

d" . f(o+Tl)r(J+n)r(,)
d:.:TlF(o.J./.:.:)= r(o)f(J)fh+n) F(o+Tl.8+n,i+ n. a). (7.14)

7.11 Natural boundary. Analytic continuation cannot always al­
low a function element (-7.7) to be extended to the whole complex
plane. The boundary beyond which analytic continuation is impossible
is called the natural boundary of the analytic function. For example.

(7.15)

(such a series with very sparse distribution of the exponents is called a
lacunary series) defines an analytic function whose natural boundary
is the unit circle centered at the origin. This can be seen from the fact
that the series diverges when z - exp(27l"nlm!) along the radius (m is
a positive integer. and p E {O. L ... ,m! - I}). Actually. Hadamard's
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gap theorem says the following:
Theorem [Hadamard].
Let

00

j(z) = L CnIlZ
Il Il•

11=0

If
1· . f nll+l 1lmm -- > ,

n-oc nil

then the convergence circle of j is its natural boundary.l3S

Discussion [Lee-Yang circle theorem].l39
Let -1 ::; a ij ::; 1 and {i. j} C {1.2.... ,71 }. Make the following polynomial

(7.16)

(7.17)

(7.18)

t4...re. (
zen:>,r

P(:;) = L .:IXI II II aij'

xc{l.· ... n] iEX JEX

where IXI is the cardinality of X (the number of elements in X). and the terms of
order 0 and n are 1 and c". respectively, Then. all the zeros of P is on the unit

circle 1=1 =1.0
In the original statistical mechanical context (T. D. Lee and C. K. Yang.

Phys. Rev. 87.410 (1952)). P is the grand canonical partition function ofthe Ising
model. and =is the (complex) fugacity. In the thermodynamic limit, we must take
the n ...... ore limit. Then. P(.::) becomes an entire function (--+4.2) and below the
critical temperature T; the zeros are dense on the unit circle everywhere. Hence,
In P (the thermodynamic potential) consists of two analytic functions inside and
outside the unit circle, Generally speaking. phase transition is associated with the
non analyticity of thermodynamic functions on the complex plane (as a function of
complex temperature. complex fugacity. etc.).

7.12 e oc but not C: functions. Suppose we have two real ana­
lytic functionsl'" f and g crossing at x = a. Then. grafting f and
9 smoothly near a. we can make a function which is not analytic but
infinite times differentiable. Thus. infinite times differentiability is not
enough to guarantee the analyticity. e-1/x(1-x) is a famous example of
such a function.

7.13 Values of analytic functions, Riemann surface. Even if
we start with a single function element (f. U), its analytic continua­
tion to a nbh of some point 0:. even if it exists. may not be unique.

138lim inf is defined analogously as lim sup (--+7.2) with sup replaced with info
I39See D. Ruelle. "Is our mathematics natural? The case of equilibrium statistical

mechanics:' Bull. Amer. Math. Soc. 19, 259 (1988) for the shortest proof of the
theorem.

140 Analytic functions which are real on the real axis is called real analytic

functions.
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Hence, in general. an analytic function takes multiple values at a given
point on its domain. Thus. 'analytic function' is not a function defined
on a region of complex plane in the usual sense of the word 'function'
(as a map). However, it cannot assume uncountably (-Al.16) many
values (see the next theorem). We can conceive a space on which a
given analytic function becomes a function in the usual sense of the
word 'function' as a map. The space is called the Riemann surface for
the given function. This is a two-dimensional object which may not be
realizable in 3-space just as Klein's bottle.

See the real and imaginary parts of zl/2. Two branches (see also
8A.4 Discussion (B)) hand h are plotted.

/
/

Its Riemann surface is illustrated below.

J~

7.t.. /"o.itho'" cj r1u.. 1 (fA7 T/

• (r

If 1\ .rAad" w : .To /1 JuR..<I

JW1 Cot;"c/cJ..t writ. ~ ro:1.

-->--_.,.
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7.14 Poincare-Vivanti's theorem. The multiplicity of an analytic
function must be countable (-A1.16, 17.18(4»). 0

Intuitively. this can be seen from the smoothness of analytic func­
tions and the fact that direct analytic continuation can be done along a
piecewise linear curve. There are at most countably many (-Al.16)
such curves on the complex plane.

7.15 Who was Riemann?141 Georg Friedrich Bernhard Riemann
was born on September 17. 1826 in a small village on the Elbe near
Liineburg. He was the second of six children of a poor pastor. He was
educated by his father before he entered the gymnasium. When he was
fourteen. he lived with his grandmother in Hanover and entered the
third grade of the gymnasium there. After his grandmother died, he
transferred to the second grade of a gymnasium in Liineburg in April, rpl
1842. The principal of the school recognized his mathematical genius LJ:..1
and lent his math books. Riemann always returned the books within a
couple of days. so the principal was surprised but found that Rieman
understood them. He became familiar with Euler's work in those days.

He entered University of Gottingen in April. 1846 as a Linguis­
tics and Theology major to get a job as quickly as possible to support
his parents and siblings. He also attended Gauss' (-6.17) lectures I£J
on the least square method. His desire to study mathematics became
irrepressible. and he finally asked for his father's permission to switch
his major. In those days Gauss was about 70. and gave only a few
applied mathematics courses. so he was disappointed and moved to the
University of Berlin in 1847.

In Berlin. Jacobi (algebra and analytical mechanics), Dirichlet
(number theory. integration theory. PDE). Steiner. and other professors
gave lectures on their new results. Dirichlet aimed at logical rigor and
avoided calculations as much as possible. This style met Riemann's
taste.

In the spring of 1849. he returned to Gottingen. and was attracted
to Weber's experimental physics course. Weber recognized his genius
and became his patron. Riemann did not get any direct instruction
from Gauss. but was strongly influenced by the atmosphere created by
the great mathematician. For example, Riemann accepted the idea of
'ether' which Gauss also had.

In November 1851. he submitted his thesis entitled. The foundation
of general theory of functions of one complex variable. He defined holo­
morphic functions in terms of the Cauchy-Riemann equation (-5.3).
The idea of conformal maps (-10) was also conceived. He also in­
troduced Riemann surfaces (-7.13). Gauss praised the thesis: Mr.

141 ~Iainly based on K. Kobori, Great Mathematicians of the 19th Century (Kobun­
don, 1940).
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Riemann's thesis clearly tells us that his study is thorough, that he has
a sharp brain, and that he has a magnificent and rich creativity. From
every point, the thesis is a precious accompishment and far surpasses
the standard of doctoral theses. When Riemann visited Gauss after
the exam, Gauss told him that he had similar thoughts (-+6.11, 8A.4
Discussion (A)), and that he had a similar aim.

He next started preparation for the Habilitation paper. He chose
to study Fourier series (-+11), but this was not an easy task. Fortu­
nately. Dirichlet visited Gottingen, who checked Riemann's manuscript
together, and "Professor Dirichlet gave me detailed suggestions with
kindness I could not imagine when I took into account the difference of
our social statuses. I pray Professor will remember me forever." (from
a letter to his father). He submitted his paper, The expressibility of
functions by trigonometric series. in December 1853. The Riemann
integration appeared for the first time in this paper (-+ 17 .18( 3)). In
those days he was an assistant of Weber.

The famous Habilitations exam was held on June 10, 1854 (-+2).
He introduced (1) the concept of manifold. (2) a new definition of dis­
tance through the quadratic form. and (3) the concept of curvature. 142

He became a lecturer in 1854. His first lecture was on PDE and
its applications to physics. He had eight students ("I am glad that I
have so many students:' (from a letter to his father)). In 1855. Dirichlet
succeeded Gauss. Dirichlet made effort to make Riemann an associate
professor. but failed. He finished his study of elliptic functions which
was started in ca. 1851. His lecture on elliptic functions attracted only
three participants including Dedekind. He became an associate profes­
sor on January 9. 1857.

In 1857 he completed "On the number of prime numbers less than
a given number:' He introduced the zeta function (-+9.9)

oc 1
((s)=L:-.

i=l n~
(7.19)

and conjectured that all the zeros in the strip 0 < Re s < 1 are
on Re s = 1/2 (the Riemann conjecture). With Dedekind, he is the
founder of analytic number theory. Dirichlet died on March 9, 1859.
Riemann became a full professor on July 30. 1859. He got married
on June 3. 1863 with his sister's friend Elise Koch. but this was his
last happy period. He became ill in August. Weber persuaded the
government to support his stay in Italy to recover his health. He had
a wonderful time in Italy, befriending Italian mathematicians, Betti,
Beltrami. and others.

142This is a generalization of Gauss's curvature. but the new aspect was to write
it in terms of the metric tensor.
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His health never recovered fully, and in June 15, 1866, he went on
his third Italian trip to rest at Selasca on Lake Maggiore. He died there
in July. 1866.
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