
6 Integration on Complex Plane

Contour integrals on C are defined, and Cauchy's theorem
is demonstrated. Derivatives of holomorphic functions can
be written in terms of integration. and this leads to a re­
markable property: analyticity = holomorphy. This is of
course untrue for real functions. Complex functions enjoy
this equivalence thanks to the strong nature of its differen­
tiability.

Key words: contour integral, Cauchy's theorem, orien­
tation. Cauchy's formula. Morera's theorem.

Summary
(1) An integral of a holomorphic function along a closed contour van­
ishes - Cauchy's theorem (6.3). The essence of the theorem is the local
linearizability of holomorphic functions (6.7).
(2) The converse of Cauchy's theorem holds (Morera's theorem 6.16).
(3) Holomorphic functions are infinite times differentiable (6.12). Deriva­
tives of any order can be written in terms of contour integrals (6.14).
(4) Holomorphic functions are Taylor-expandable (analytic) (6.15).
(5) Pay due attention to the orientation of the boundary curve (or the
right-hand rule) (6.4).

(6.2)

(6.1 )

where 11811 = max{lzk - zk-lll and (k is a point on the curve between
Zk and Zk-l'

({b) 6.1 Integration along contour. Let ,(t) (t E [a. b]) be a C1-curve121

on the complex plane. The integration of a function f =u + iv along
the curve (contour) is defined by

f(b)

((v.) 3/<-... , . This definition is equivalent to the following definition with the aid of
j l<- the Riemann sum:

Exercise.

121 \Ye should say more correctly a Jordan curve. Smoothness of piecewise Cl is

enough.
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(1) Let j be holomorphic in a region D which contains a real dosed interval [a,b].
Then.

l
b

1 1 z-aj(x)dx = -2' !(z)Log-bdz,
a ll't C z-

where the contour C is the boundary of D (d. Discussion in 4.1).
(2) Show

Ii !(Z)dZ\ S; il!(z)lldz\.

Here integration over Idzl is understood as the limit of an analogue of (6.2).
(3) Parametrizing the integral path as z = a + re i 9, demonstrate (n e Z)

(6.3)

(6.4)

(6.5)

D

~ )~
C='dD

Here er( n) =1 if 11 =-1. and zero. otherwise.
(4)

( -11 ~2 =-2 arctanR. (6.6)
lc +-

where C is the semicircle of radius R from R to -R for R < 1 in the upper half
plane.

6.2 Bilinear nature of integration f. The integration operator
J can be regarded as a linear operator (-.1.4) from the set of inte­
grable functions on C to C. and also as a linear operator from the set
of oriented curves on the complex plane to C: for integrable functions
f. 9 and oriented piecewise C1-curves /'/1./2

/

Here n. (J E C. and a. bEN. /1 + /2 is interpreted as the successive
trip along /1 and /2 in their specified directions. a/ is interpreted as
a-time repeated trip along /. -/ is interpreted as the trip along / in
the opposite direction specified by the definition of /. For example,
if two cycles share a portion on which the two cycles have opposite
orientations. then we can make a single larger cycle. Consequently,

!(oj + (Jg)dz - o! jdz + (J! gdz.

1.
I
J+b-;z jdz - a 11 jdz + bIz jdz.

t1 j(z)dz + tz j(z)dz =t j(z)dz.

(6.7)

(6.8)

(6.9)

6.3 Cauchy's Theorem. Let j(z) be a holomorphic function (-.5.4)
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on a closed region D122 whose boundary consists of finite number of
piecewise C1-curves. Then.

[ f(z)dz=O.
laD

(6.10)

o
Pay attention to the definition of the boundary in 6.4. The proof is
given by the combination of the following 6.5 and 6.6.

Exercise.
(1) Integrate exp( -3:) from 1 - 1fi to 2 + «i,
(2) Integrate cos 3: from 1f - 1fi to 21fi.

(6.12)

(6.11)l j(z)dz = O.

1(0: + 3)d;; = O.

[Proof by Goursat] It is easy to explicitly demonstrate (--+6.1 Exercise (3))

6.4 Orientation of the boundary. To specify the contour. we must
specify the direction in which we integrate along the contour. This is
called the orientation of a curve. The orientation of the boundary of
a set E is chosen so that the reader sees the inside of E always on
her left-hand side. when she travels along the boundary in the positive
direction (i.e.. the specified direction) of the contour. This is consistent
with the right-hand rule.

6.5 Cell decomposition of a bounded closed region: Let D be
a closed bounded region whose boundary consists of finite number of

• piecewise C1-curvesY3 Then. D can be decomposed into the 'cells' D,
~ which are the images of a rectangle K (0.1) x (0.1) by C1-maps. where
'\.S../ no two cells share their internal points. (Although intuitively obvious.

l' Um r;J +e" t the proof of this theorem is not at all simple.)

~ 6.6 Cauchy's theorem for a celL Let f(z) be a holomorphic function
~~ on a region E. and, is the boundary of a cell D( c E). Then

®

•

·cEJ

122Closedlless is required to get rid of any singularity from the boundary of D as
well as from the inside of D. However, actually a stronger form of the theorem
assuming only the continuity on the boundary of D holds.

123Henceforth a 'C1-curve' can always be replaced by a curve with length. A
necessary and sufficient condition for a curve ~I(t) to have length is that '1 is of
bounded variation.
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where 0.3 are constants. The cell D is the image of 1\". Decompose 1\" into four
identical squares. and their images Da• • · . ,Dd divide D into four cells. Then due
to the bilinearity of integral operation (-6.2)

Bence.

(6.15)

(6.14)

(6.13)

where Dm is the image of the square whose edge size is 112m and gives the largest
modulus of the integral among the four pieces in Dm - 1 • Since the size of Dm is
sufficiently small and J is holomorphic, we may write in D m

Here D, is the cell which gives the largest modulus of the integral among Da' ••• ,Dd.

Repeat the procedure rn-times. and we get

f(;;) =/(::0) + 1'(::0)(:: - ::0) + 01:: - zoJ. (6.16)

For any E there is a positive integer .Y such that if m > .Y. then lo[z - ::oJl < Eo(Dm )

in Dm • where 6(D m ) is the radius of D,«. 'Yith the aid of (6.12)

I~Dm jd;;1 =I~Dm 0[:: - .::o]d::1 s 2:' b(D m ) x const, s 4~ x const.. (6.1T)

(6.18)

where the constant is independent of m. From (6.15) and (6.17), we have

I~D fd::1 s E X con st..

where const. is independent of m. We know E is arbitrary, so the left-hand side
must be zero. 0
As can be seen from the proof. we cannot claim the theorem, if the
boundary of D does not have length.

6.7 The essence of Cauchy's theorem. Holomorphic functions are
locally linearizable (-+5.1). and any contour integral can be decom­
posed into the sum of contour integrals around tiny cells. Hence, the
essence of Cauchy's theorem is that contour integral of a constant and
z are both zero as used in 6.6.

6.8 Cauchy's theorem from Green's formula. The contour in­
tegral of j = u + iv on the complex plane can be written as

[ j(z)dz = f (udx - vdy) + i [ (udy + vdx).
laD laD laD

(6.19)
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Apply Green's theorem (-t2C.13(3)) to this and use the Cauchy­
Riemann equation (-t5.3). We will immediately see that the RHS
vanishes.

Exercise.
Let D be a bounded region whose boundary is piecewise smooth. Show that

(6.20)( Zdz = 2i x the area of D
laD

Or. equivalently, let C be a smooth simple dosed curve on the complex plane.
Demonstrate that fc xd: = is. fc ydz = -5. (6.21)

where 5 is the area encircled by C. Notice that 5 has a sign depending on the
orientation of the curve C. See 6.4.

6.9 Indefinite integral theorem.. Let j be a holomorphic func­
tion on a region D and 1 be a C1-curve in D connecting zED and an
arbitrary fixed point a E D. Then

P(z) = j j(z)dz (6.22)

is holomorphic in D and F' = [, [Obvious.]

6.10 Cauchy's formula. Let j be holomorphic on a closed region
D. 12

.,1 Then

j(z) = ~ ( !(() d(. (6.23)
271'2 le» ~ - z

(6.24)

(6.25)( f«) a; = { J«(} d(.
laD(-:: laL',(-::

Parametrize {Jr.:, as 1'(6) = .: + ee'", Then

That is. (......6.2)

o
[Demo] Choose a sufficiently small positive number e. Let U, be the disk of radius e
with its center at z, Since f«()/{( -.:) is holomorphic on D \ Z::,. Cauchy's theorem
implies

(6.26)

124 As is in the footnote of 6.3 we need not require that f is holomorphic on the
boundary of D: we have only to require the continuity of f on {JD. Furthermore.
D need not be singly connected.
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Since 1 is holomorphic. this implies

(6.27)

(6.28)

o

Discussion.
Let 1 be holomorphic in the unit disk D given by 1=1 ~ 1. Show

~ [ 1«() d( = 1(0),
211'1 laD ( - =

if 1=1 < 1. (Hint: Change the integration variable to (.)
What happens if 1=1 > 17 [Note: This is NOT for general region D. but only

for the unit disc.]

6.11 Who was Cauchy?125 Augustin-Louis cauchy was born in Paris
in the year the Revolution began (Aug. 21, 1789). His father, a bar­
rister and police lieutenant escaped the Reign of Terror (1793-4) to
live in Arceuil. as the neighbors of Laplace (-33.3) and Berthollet.
Lagrange (-3.5) reportedly forecast the scientific genius of the boy.
Cauchy thought pure mathematics was over. and the remaining task
was applied mathematics. He worked as a military engineer at Cher­
bourg for two years from 1811, but resigned due to ill-health. Lagrange
and Laplace persuaded him to leave engineering and to turn exclusively
to mathematics in 1813.

Cauchy was a politically ultraconservative royalist. and after Restora­
tion in 1814. he was appointed a member of the Paris Academy after
Monge and 'regicide' Carnot (father of Sadi Carnot) were expelled.

Spurred by Fourier's work on Fourier series (-17.18). Cauchy
tried to rationalize analysis. His results were published in Cour d'Analyse
(1821) and Resume des Lecons sur le Caleul infinitesimal (1823). In the
former. he introduced the concept of functions as maps. He proved for
the first time that continuous functions have primitive functions. The
proof itself is important. but the recognition that a proof is needed was
novel and more important. His course is almost the same as we teach
now in the introductory calculus courses (for example, €_6).126

He tried to unify methods to calculate definite integrals in 1825
(14 years after Gauss's letter to Bessel revealing Gauss' full knowledge
of complex analysis -8AA. Also see 6.17). Even in the proof of the

125See also B. Belhost, Auqusiin-Louis Cauchy. a biography (Springer, 1991).
126It is a famous story that Lagrange hurried home, and checked his celestial

mechanics book. when Cauchy published his work on convergence in 1820,which he
started around 1814. but after 1818 when he knew Fourier's work (-+1.7) he was
convinced that his program to rationalize calculus was meaningful.
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residue theorem. Cauchy did not denote complex numbers with single
letters. but always wrote in the two real number form, x + iy. Al­
though this paper of 1825 is now regarded as the historic starting point
of complex function theory, Cauchy did not recognize so at least for a
very long time. because his main purpose was to unify and streamline
the methods of calculating definite integrals (-.8)with the aid of the
changing of the order of double integration used extensively by Laplace,
Legendre. and others.

His life was quiet until the July Revolution of 1830. He refused
to take the oath of allegiance to the new king who replaced a Bourbon
king. and went into a self-imposed exile of 8 years. In 1832 he real­
ized the relation between complex analysis and power series (-.7.1.
7.10). Especially. he realized the relation between the radius of con­
vergence and the singularity (published in 1837) (-.7.3). Now, there
was a chance to relate his integration theory and the Taylor expansion
theory. but it took for him for about 20 years to clearly recognize as a
mathematical object 'analytic function:

He returned to Paris in 1838 to resume his work at the Academy.
In 1851. he introduced the concept of differentiability (5.1 strong differ­
entiability in our terminology -.2A.8). which was Riemann's starting
point in his thesis (1851) (-.7.15).

Devoutly catholic. he was a social worker in the town of Sceaux (his
house is still there on the corner next to Mary-Curie High School), and
occasionally criticized scientists for research that he considered dan­
gerous to religion he was absolutely correct in this respect. because
institutionalized religions and science cannot be compatible in a con­
scientious and at the same time intelligent person. Cauchy published
789 papers. and died in 1857.

Cauchy provided the first phase of rigorous foundation of calculus.
He also gave an important contribution to group theory.

6.12 Infinite differentiability of holomorphic functions. If f
is holomorphic 011 a closed region D. then f is infinite times differen­
tiable inside of D. and the derivatives are holomorphic there.

The proof is given in 6.13-6.14. As the reader will see the kernel
is that differentiation can be written in terms of integrals. Generally
speaking. differentiation 'magnifies' small scale features, making the
function less differentiable (recall that differentiation maps en-cl~s

into en-I-class). In contrast. integration 'coarse-grains' a function.
Hence. it is crucial that differentiation is expressible with the aid of
integration.

6.13 Derivative can be computed through integration. If f
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is holomorphic on a closed region D. then for 't/z E Do12i

,Ii f(C)
f (z) = -2' d( (( )2 '

1f'~ 8V - z
(6.29)

where V (c DO) is any singly connected open set containing z whose
boundary 8V is a C1 curve. 0

Notice that the result can be obtained by formally exchanging the
order of integration and differentiation.
[Demo] We have only to compute the derivative 'with the aid of Cauchy's formula
6.10. Ler c and c + h be in V; this is always possible, since V is an open set and
b can be very small. We have

f(:; + h) - f(:;)

h
(6.30)

(6.31)

where
J(h) =~ [ d( f«)

-2"i},w «-::)2«-.::-h)·
(6.32)

Le-t () be the distance be-tween or and [c. :+h}.128 Since there is a positive number
.11 such that IfI < -'1. we haw' a bound

(6.33)

where 10'1 'I is the circumference-of F. Hence. in the h -+ 0 limit, J vanishes. 0

6.14 General formula for derivative. Let f and V be the same
as in 6.13. Then

(6.34)

o
Again notice that the result can be obtained by formally differentiating
the integrand by exchanging the order of integration and differentiation.
[Demo] For 1'1 = 0 (-+6.10) and 1 (-+6.13) we know the formula is correct. Letus
assume that the formula for n =k - 1 is correct. Then

Pk-ll(:; + h) _jfk-ll(=) (k -I)!1 [1 1]
=-------:..--:'--~---'~= d(f () - .

h 21rih 8\-' «-z-h)k «-z)k
(6.35)

12iThis denotes the open kernel of D. That is. the largest open set in D.
128The distance between two sets A. and B is the infimum of the distance between

the point in A. and that in B. i.e.. distance (A..B) == inf{p(a. b) : a E A. bE B}.
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Since

(6.36)

(6.3i)

CJ

Exercise.
(1) Let D be a region containing the origin. Show

1 r r»: (ZI1)2
211i JeD n!(11+1 d( = n!

r sing this relation. demonstrate

(6.38)

(6.39)

(2) Show for a holomorphic function f in the region containing the unit disk that

~ I" f(e iO
) C05

2 ~d(1 =2/(0) + t(O).
1i Jo - (6.40)

6.15 Holomorphic functions are Taylor expandable.P? Note
.that for some c E C 130

1 ec (z - c)'I1

(-z=E((-C)fl+1
(6.41)

is uniformly convergent (~A5.11). so that we can put this formula
into Cauchy's formula 6.10 and integrate termwisely (~A5.10). The
result is the following Taylor series expansion of j around c thanks to
the integral expressions of derivatives in 6.14:

cc 1'1'1)( )
j(z) = 2: Ie (z - cr.

1'1=0 n.
(6.42)

We have arrived at a very remarkable conclusion: if a complex func­
tion is differentiable in a region. it can be Taylor-expanded in it: that

129Brooks Taylor. 1685-1731.
130The reader should remember

_1_ = 1 +;; +;;2 + ... + +ztt + ...
1-:

for 1=1 < 1.
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is. it can be written as a convergent power series around any point in
the region. This strong result is solely due to the strong definition of
differentiability (--+2A.4).

6.16 Morera's theorem - converse of Cauchy's theorem.P' Let
D be a singly connected region, j be continuous on aD and

where -: is an oriented ('1 curve in D from a E D to z ED, The condition (6.43) and
the linearity of integration with respect to the 'algebra' of oriented curves (.....6.2)
implies that F does not depend on the choice of the path connecting a and c. Hence,
F is holomorphic. 0 y:/

o

(6.44 )

(6.43)

F(::} =! tus«.

[ dzj(z) = 0
leu

for any connected re~ion U C D such that au is a C1 curve. Then, j
is holomorphic in D. 32 0
[Demo] If we can show that there is a holomorphic function F such that F' = f,
we are done (.....6.1-2). Consider

6.17 Who was Gauss?133 Carl Friedrich Gauss was born on April 30.
1777 in Braunschweig, Although he studied at University of G6ttingen
from 1795 to 98. he was already the first rate mathematician, and
completed his number theory masterpiece (Disquisitiones Arithmeti­
cae) when he was 20 (the printing of this famous book. which Dirichlet
carried wherever he went. started in April. 1798. but was interrupted
several times. and was published only in 1801).

He obtained his PhD in 1799 from University of Helmstedt with
the thesis on the existence of the roots of algebraic equations, This was
his favorite topic. which he proved several times with different methods
in his life. The thesis avoided the use of imaginary numbers. because
he was afraid that he might not get PhD due to conventional profes­
sors. Therefore. the statement was that any algebraic equation can be
factorized into first or second order factors.

After his PhD. from 1799 to 1807. he was fully supported by Prince
Ferdinand of Braunschweig. and could concentrate on mathematics un­
til he was 30. Almost all his great accomplishments started during this

131 Giacinto Morera. 1856-1909.
132Morera's theorem still holds even if we restrict U in (6.43) to be triangles or

rectangles ill D.
133heaYily relying on T. Takagi. Kinsei Sv:ugaku Shidan (Tales from Modern Math­

ematics History) (Kyoriru. 1933). See also W. :K. Buhler. Gauss. a biographical
sketch (Springer. 1981). All of his offsprings seem to be in the ,(S.
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(6.45)

(6.46)

lel41niJuJ::i..

'happiest time of my life' (according to old Gauss in his 70s,"for math­
ematics unhindered and uninterrupted time is mandatory" ).

After 1807, he was a professor and the chief astronomer at Gottingen,
and 'could not have any time to do big work.' "When my head is com­
pletely occupied by the effort to grasp a shadow of the spirit floating
in the air comes the time to give a lecture. I must jump up and switch
my attention to a completely different world. The pain is beyond any
expression· .. ." In his memoir mixed with the calculations on elliptic
functions one finds, "Del' Tod ist mil' lieber als ein solches Leben."

From 1816 he participated in the field work to make the map of
Hannover. It is a famous story that he was attempted to check the flat­
ness of the space. In 1828 Gauss invited Wilhelm Weber to Gottingen,
and for a few tens of years they collaborated on the study of electro­
magnetism. He died on May 22. 1855 in Gottingen. His monument
carries 'Mathematicorum princeps,'

As we see in Discussion in 8A.4, Gauss had already known the
main part of complex function theory by 1811, but he never published
it. He should have known elliptic function theory. but he did not pub­
lish it, Later Abel and Jacobi constructed the theory. expecting that
Gauss should have known most results. Gauss knew non-Euclidean ge­
ometry. but he did not publish it, He avoided debate and argument
with reactionary conservatives (recall what he did in his thesis). His
seal had one tree with a couple of fruits with the motto 'pauca sed
matura,'134

Gauss wrote in his diary on January 8. 1797 that he started to
study lemniscate in conjunction to

r dx
U = Jo Jl- x4'

He was trying to generalize trigonometric functions for some time using
the analogy

1:£ dx
arc sinx = J 2'o 1- x

This was the starting point of his study of elliptic functions. In this
study (and in many others) he did a lot of experimental mathematics
using numerical studies. He loved numbers; for example, when one of
his acquaintances died. he computed the life span of the deceased in
days on the back of the notice, In one of his note he gave e- 1r up to 50
decimal places. His computations were extremely elegant and clever,
often exploiting number theory. His mathematics was inductive; he was
an explorer of the universe of numbers,

He developed fast Fourier transform (~32B.12), one of the best

J34cf.. paucity, maturity.
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numerical integration schemes (1814 -+22A needed to perform pertur­
bation calculation), the least square approximation method (1821-3 in
order to study the motion of planetoids), etc. His theory of curved
surfaces (1827) was during his map making activity, and his potential
theory (1839-40) was related to his electromagnetism study.

His pure and applied mathematics were inseparably intertwined,
that is. his applied mathematics was the true applied mathematics; we
saw such examples recently in Kolmogorov.
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