
5 Differentiation of Complex Functions

Differentiation of complex functions is defined as a strong
differentiation. This requires a special relation between the
real and imaginary components of derivatives (the Cauchy­
Riemann equation).
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Summary
(1) Differentiability or holomorphy is defined as strong differentiability
(5.1).
(2) Consequently. we have the Cauchy-Riemann equation (5.3).
(3) Real and imaginary parts of holomorphic functions are harmonic
(5.6).

5.1 Differentiation. We have already discussed the meaning of differ­
entiability of complex functions (-t2A.8). Let us repeat the definition
(Review 2A.4 and 2A.8). If the following limit exists ll i

li f(z+h)-f(z)
h~6 h '

(5.1)

we say f is differentiable at z. Note that this is a strong derivative
(-t2A.4). The limit is written as j'(z) or df jdz and is called the
derivative of f at z. As usual. differentiability is local linearizability
(-t2A.1).

5.2 Differentiation rules are the same as in elementary real
analysis: Differentiation of sums and products of complex functions
can be computed with the aid of the ordinary rules used in the real
analysis.

5.3 Cauchy-Riemann equation: Differentiability of fez) =u(x, y)+
iv(x. y) w.r.t. z = x+iy.1l8 where u. v. x and yare real. is very different
from its differentiability as a function of x and y. Write (5.1) in the
following form fez + h) - fez) = j'(z)h + o[k]' or

u(x+s, y+t)-u(x. y)+i[v(x+s, y+t)-v(x, y)] = (P+iQ)(s+it)+o[s, t],
(5.2)

11 i This means that the limit does not depend on how z is approached.
118Henceforth, if f is written as u + ic, and z is written as x + iy without any

comments. u. 1" z . yare understood as real quantities throughout this lecture notes.
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where l' = P + iQ and h = s + it with P. Q, sand t being all real.
The differentiability 5.1 implies that P and Q does not depend on the
choice of sand t. so that (5.2) must be an identity w.r.t. sand t. Hence,
we get U x = P, U y = -Q. V;r = Q and v y = P, i.e.,

ou ov
ox = oy' (5.3)

This set of equations is called the Cauchy-Riemann equation.

Exercise
(1) Demonstrate that

a a sin (J 0 a . a cos (J a- =cos(J- - --. - =sm(J- + ---. (5.4)o.t or r o(J ay ar T a(J

(2) Let l(r.8) = Reia (the polar expression). If I is holomorphic. then

on oe en oe
ra;: =R {)8' 88 = -rRa;:. (5.5 )

Discussion.
(A) The cleverest way to derive the Cauchy-Riemann equation is to use the fact
that the derivative dlld:; is a strong derivative. Consequently. of 18x =8/18iy.
(B) Even if the Cauchy-Riemann equation holds. it does not guarantee the holo­
morphy. Consider f(:;) =e- 1/

z 4 at z =O. At z =0 the CR equation indeed holds
as 0 = O. but if :; =rei r. /4. then obviously / diverges in the r - +0 limit.

5.4 Holomorphic function: If f(z) is differentiable at each point
of a region D. f is called a holotnorphic function on D .119 [When D is
not open. f is called a holomorphic function 011 D. if it is holomorphic
on an open set containing D].

Exercise
(A) Are the following functions holomorphic?
(1) :1'2 + iy.
(2) (x 2 - y2 + 3.r) + i(2.ry + 3y).
(B)
(1) Demonstrate that if f(;;) is holomorphic and its argument (arg(j(z») is con­
stant. then I must be constant.
(2) Demonstrate that if f(;;) is holomorphic, then 1(=) is also holomorphic,
(C) Let I and 9 be holomorphic for all C. and f' = g, g' = -I, 1(0) = 0 and
g(O) = 1. Find I and g. [/(;;) = sin .:::.]

119'Analytic function' (-7) is a distinct concept: f is analytic, if it can be Taylor­
expanded. For a function on a real axis differentiability does not guarantee the
analyticity (7.11). Miraculously. for a function on a complex plane differentiability
implies Taylor-expandability as we will see later (-6.15).

99

yoshioono
Typewritten Text
Cauchy 1827, Riemann 1851

yoshioono
Typewritten Text
central defining feature

yoshioono
Callout
This is not about a single point; 
Think about z + f(\theta) z^2 



5.5 Examples:
(1) Show that z is holomorphic. but z is not. Cf. 10.15 Exercise (3).
(2) Show that !(z) = x 2 + y2 + 2ixy is not holomorphic anywhere on
C (check that the Cauchy-Riemann equation 5.3 does not hold).

5.6 Re and 1m of holomorphic function are harmonic: Let
! = u+iv. u. v being real, be holomorphic on a region D. Then, we have
a Cauchy-Riemann equation (5.3). If u and v are twice differentiable.P?
then it is easy to see u and v are harmonic(-2C.ll) on D. v is called
the conjugate harmonic function of u.

Exercise.
(1) Is there any holomorphic function whose real part is e"/Y? See 5.8 also.
(2) Demonstrate

(
{)2 {)2 ) I 12 I I 12

{);r2 + {)y2 J(:: ) = 4 J (::) . (5.6)

5.7 log IfI is harmonic: Let f be holomorphic on a region D without
zero in the region. Then. 10glf(z)1 is harmonic as a function of x and
yon D. 0
This is obvious from log lj'] = Rlogf (-4.7).
The hannonicity of log IfI implies that IfI cannot have any local max­
imum or minimum. This could be guessed from the nature of the
Laplacian 1.13. or rigorously from 29.4-29.6. See the illustration of
Iexp( _z2)1· z = 0 is a saddle point.

5.8 How to construct conjugates: Suppose u is harmonic and its
partial derivatives are given. Then. from the Cauchy-Riemann equation

120\\"e will later prove that the real and imaginary parts of a holomorphic func­
tion are infinite times differentiable. so these assumptions are actually not needed

(-6.12).
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(5.9)

(-5.3) we have

v(x.y) - Jv:r(x~y)dx = - JUy(x~y)dX+Cl(Y)' (5.7)

v(x. y) - Jvy(x. y)dy =Jux(x~ y)dy + C2(X)~ (5.8)

where C1 and C2 are unknown functions. Compare these two expres­
sions. and we can actually fix v up to an additive constant (the method
seems to work invariably at least for physicists I problems). This is also
a method to reconstruct a holomorphic function from its real or imag­
inary part.

Exercise.
(A) Let

u(x . y) =(x - y)( X
2 + 4xy + y2).

(1) Demonstrate that u is harmonic (-+2C.1l) on the (x.y) plane.
(2) Find its conjugate harmonic function.
(3) Write down the holomorphic function f (;;) whose real part is given by u.
(B) Find the holomorphic function whose real part is given by (additive constants
are ignored)
(1 )

x 1
u = 2 2 => J(;;) =--.'

:1' + y - 2y + 1 :; - l

(2)
sin r z

u = => J(:;) = tan e-,
cos r + cosh y 2
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