5 Differentiation of Complex Functions

Differentiation of complex functions is defined as a strong differentiation. This requires a special relation between the real and imaginary components of derivatives (the CauchyRiemann equation).

Key words: holomorphy, Cauchy-Riemann equation, conjugate harmonic function

Summary

(1) Differentiability or holomorphy is defined as strong differentiability (5.1).
(2) Consequently. we have the Cauchy-Riemann equation (5.3).
(3) Real and imaginary parts of holomorphic functions are harmonic (5.6).
5.1 Differentiation. We have already discussed the meaning of differentiability of complex functions ($\rightarrow \mathbf{2 A . 8}$). Let us repeat the definition (Review 2A.4 and 2A.8). If the following limit exists ${ }^{117}$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}, \tag{5.1}
\end{equation*}
$$

we say f is differentiable at z. Note that this is a strong derivative $(\rightarrow \mathbf{2 A . 4})$. The limit is written as $f^{\prime}(z)$ or $d f / d z$ and is called the derivative of f at z. As usual. differentiability is local linearizability $(\rightarrow 2 \mathrm{~A} .1)$.
5.2 Differentiation rules are the same as in elementary real analysis: Differentiation of sums and products of complex functions can be computed with the aid of the ordinary rules used in the real analysis.
5.3 Cauchy-Riemann equation: Differentiability of $f(z)=u(x, y)+$ $i v(x . y)$ w.r.t. $z=x+i y .{ }^{118}$ where u, v, x and y are real. is very different from its differentiability as a function of x and y. Write (5.1) in the following form $f(z+h)-f(z)=f^{\prime}(z) h+o[h]$, or
$u(x+s, y+t)-u(x . y)+i[v(x+s, y+t)-v(x, y)]=(P+i Q)(s+i t)+o[s, t]$,

[^0]where $f^{\prime}=P+i Q$ and $h=s+i$ with P, Q, s and t being all real. The differentiability 5.1 implies that P and Q does not depend on the choice of s and t. so that (5.2) must be an identity w.r.t. s and t. Hence, we get $u_{x}=P, u_{y}=-Q, v_{x}=Q$ and $v_{y}=P$, i.e.,
\[

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} . \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} . \tag{5.3}
\end{equation*}
$$

\]

This set of equations is called the Cauchy-Riemann equation. central defining feature

Exercise

Cauchy 1827, Riemann 1851
(1) Demonstrate that

$$
\begin{equation*}
\frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \cdot \frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\frac{\cos \theta}{r} \frac{\partial}{\partial \theta} . \tag{5.4}
\end{equation*}
$$

(2) Let $f(r . \theta)=R e^{i \theta}$ (the polar expression). If f is holomorphic. then

$$
\begin{equation*}
r \frac{\partial R}{\partial r}=R \frac{\partial \Theta}{\partial \theta} \cdot \frac{\partial R}{\partial \theta}=-r R \frac{\partial \Theta}{\partial r} . \tag{5.5}
\end{equation*}
$$

Discussion.

(A) The cleverest way to derive the Cauchy-Riemann equation is to use the fact that the derivative $d f / d z$ is a strong derivative. Consequently. $\partial f / \partial x=\partial f / \partial i y$.
(B) Eren if the Cauchy-Riemann equation holds. it does not guarantee the holomorphy. Consider $f(z)=e^{-1 / \varepsilon^{4}}$ at $z=0$. At $z=0$ the CR equation indeed holds as $0=0$. but if $z=r e^{i \pi / 4}$. then obviously f diverges in the $r \rightarrow+0$ limit.
5.4 Holomorphic function: If $f(z)$ is differentiable at each point of a region $D . f$ is called a holomorphic function on $D .^{119}$ [When D is not open. f is called a holomorphic function on D. if it is holomorphic on an open set containing $D]$.

Exercise

(A) Are the following functions holomorphic?

(1) $x^{2}+i y$.
(2) $\left(x^{2}-y^{2}+3 x\right)+i(2 x y+3 y)$.
(B)
(1) Demonstrate that if $f(z)$ is holomorphic and its argument $(\arg (f(z)))$ is constant, then f must be constant.
(2) Demonstrate that if $f(z)$ is holomorphic. then $\overline{f(\bar{z})}$ is also holomorphic.
(C) Let f and g be holomorphic for all C, and $f^{\prime}=g \cdot g^{\prime}=-f, f(0)=0$ and $g(0)=1$. Find f and $g .[f(z)=\sin z]$
${ }^{119}$ Analytic function $(\rightarrow 7)$ is a distinct concept: f is analytic, if it can be Taylorexpanded. For a function on a real axis differentiability does not guarantee the analyticity (7.11). Miraculously. for a function on a complex plane differentiability implies Taylor-expandability as we will see later ($\rightarrow \mathbf{6 . 1 5}$).

5.5 Examples:

(1) Show that z is holomorphic. but \bar{z} is not. Cf. 10.15 Exercise (3).
(2) Show that $f(z)=x^{2}+y^{2}+2 i x y$ is not holomorphic anywhere on C (check that the Cauchy-Riemann equation 5.3 does not hold).
5.6 Re and Im of holomorphic function are harmonic: Let $f=u+i v$. u. v being real. be holomorphic on a region D. Then, we have a Cauchy-Riemann equation (5.3). If u and v are twice differentiable, ${ }^{120}$ then it is easy to see u and v are harmonic $(\rightarrow 2 \mathrm{C} .11)$ on $D . v$ is called the conjugate harmonic function of u.

Exercise.
(1) Is there any holomorphic function whose real part is $e^{x / y}$? See 5.8 also.
(2) Demonstrate

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2} . \tag{5.6}
\end{equation*}
$$

$5.7 \log |f|$ is harmonic : Let f be holomorphic on a region D without zero in the region. Then. $\log |f(z)|$ is harmonic as a function of x and y on D.
This is obvious from $\log |f|=\Re \log f(\rightarrow \mathbf{4 . 7})$.
The harmonicity of $\log |f|$ implies that $|f|$ cannot have any local maximum or minimum. This could be guessed from the nature of the Laplacian 1.13. or rigorously from 29.4-29.6. See the illustration of $\left|\exp \left(-z^{2}\right)\right| \cdot z=0$ is a saddle point.
5.8 How to construct conjugates: Suppose u is harmonic and its partial derivatives are given. Then. from the Cauchy-Riemann equation

[^1]$(\rightarrow 5.3)$ we have
\[

$$
\begin{align*}
& v(x, y)=\int v_{x}(x, y) d x=-\int u_{y}(x, y) d x+C_{1}(y) \tag{5.7}\\
& v(x . y)=\int v_{y}(x, y) d y=\int u_{x}(x, y) d y+C_{2}(x) \tag{5.8}
\end{align*}
$$
\]

where C_{1} and C_{2} are unknown functions. Compare these two expressions. and we can actually fix v up to an additive constant (the method seems to work invariably at least for physicists' problems). This is also a method to reconstruct a holomorphic function from its real or imaginary part.

Exercise.

(A) Let

$$
\begin{equation*}
u(x . y)=(x-y)\left(x^{2}+4 x y+y^{2}\right) . \tag{5.9}
\end{equation*}
$$

(1) Demonstrate that u is harmonic $(\rightarrow \mathbf{2 C} .11)$ on the ($x . y$) plane.
(2) Find its conjugate harmonic function.
(3) Write down the holomorphic function $f(z)$ whose real part is given by u.
(B) Find the holomorphic function whose real part is given by (additive constants are ignored)
(1)

$$
u=\frac{x}{x^{2}+y^{2}-2 y+1} \Rightarrow f(z)=\frac{1}{z-i}
$$

$f(x 0$ is obtained by setting $x=z$ and
$y=0$
(2)

$$
u=\frac{\sin x}{\cos x+\cosh y} \Rightarrow f(z)=\tan \frac{z}{2} .
$$

[^0]: ${ }^{117}$ This means that the limit does not depend on how z is approached.
 ${ }^{118}$ Henceforth. if f is written as $u+i v$. and z is written as $x+i y$ without any comments. u, v, x, y are understood as real quantities throughout this lecture notes.

[^1]: ${ }^{120}$ We will later prove that the real and imaginary parts of a holomorphic function are infinite times differentiable. so these assumptions are actually not needed (-6.12).

