
4 Complex Functions

The shortest path between two truths in the real domain passes through
the complex domain. J. Hadamard

Elementary complex functions are reviewed. Remember
that logarithm is an infinitely many-valued function. and,
consequently. some care is needed to interpret a B• For ex­
ample. V1 + V1 is not equal to 2V1.

Key words: complex function. exponential function. en­
tire function. logarithm. many-valued function. power.

Summary
(1) Some functions are multi-valued and need extra care (4.7-10).
(2) Except for this. we may treat complex functions just as real func­
tions.

4.1 Preliminary. We already discussed complex-valued functions on
C in 2A.8. A map from a region in C to C is called a complex func­
tion.
Remark [Why complex numbers?] i is called the imaginary unit.
because it was. as a number. long thought to be fictitious. However.
there are many reasons to regard C as the most natural number system
for 'applied mathematics': for example. a general n-th order polyno­
mial P( x) has n roots only on the complex plane (that is. an equation
P( x) = 0 is solvable only when x is allowed to be a complex number
-.6.17): A general normal square matrix T (i.e.. T"'T = TT'" holds)
is diagonalizable by a unitary transformation only when the matrix is
considered on C.
Historical remark.
The name 'imaginary number' (nombre imaginaire) is due to Descartes. The name
'complex number' (komplex Zahl) is due to Gauss (.....6.17). The existence of
complex numbers was accepted first in conjunction to the third order equation
x 3 =15.1' + 4. If Cardano's method is applied. the root is give by

x = \12 + J-121 + \12 - J-121.

but the equation clearly has a root x = 4. Bombelli used

2±J-11=(2±i)3
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and showed that the above formula indeed expresses 4. That is. he for the first time
demonstrated that 'actual numbers' (real numbers) could be obtained through the
use of imaginary numbers.P?

4.2 Exponential function. For z = z + iy E C, where z, y E R,
its exponential function is defined by

eZ == eZ(cosy + i sin y). (4.3)

We can explicitly check. using the properties of (real) trigonometric
functions. eiYl ei yz = ei(Yl +Yz), so that for Zl' Zz E C, eZ1e2 2 = e Z1+Z2

(addition theorem). Using this, we can check the differentiability of eZ
:

Hence. e' is holomorphic (~2A.8. 5.4) for any z E C. A function
holomorphic everywhere in C is called an entire function. e' is an en­
tire function. It is easy to demonstrate:
(i) e= = e"f.
(ii) de' / dz = ei .
(iii) e' ;:j: 0 for any z E C. This is obvious from e'e:" = 1.
(iv) lel'+iYI = e", or !eiYI = 1 for any real y.
(v) ei2n

1:" = 1 for any integer n. The primitive period of e' is said to be
21l'i.

Discussion [Elementary functions]. A function u'(':) determined by an irre­
ducible complex polynomial P( u·. .:) = 0 is called an algebraic function. Therefore.
the ordinary polynomials (called rational integral functions) and the ratio of poly­
nomials (called rational junctions) are algebraic functions. Algebraic functions.
exponential functions. logarithmic functions. trigonometric functions. their inverse
functions. and the functions made from these functions through finite number of
compositions are called elementary functions. Elementary functions which are not
algebraic functions are called elementary transcendental junctions.

4.3 How Euler arrived at Euler's formula. With the aid of the
addition theorems for trigonometric functions. he first noted that

(cos z ± isinx)(cosy ± isiny) = cos(x + y) ± isin(x + y). (4.5)

Hence. he realized that for any positive integer n

(cos z ± i sin z t = cos nz ± i sin nz,

l09R. Xagaoka. Sugaku Seminar. 1986 July. p36.
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that is,

cos nz - ~{(cosZ+iSinzt+(COSZ-iSinzt} (4.7)

sin nz - ;i {(cosz + i sin z]" - (cosz - isinz)f1}. (4.8)

Then. he took an 'infinitely small' z and 'infinitely large' number 71
such that 71z = v in these formules.l!? Since cos z = 1 and sin z = z.
we get. noting that (1 + v /71)n = e'', for example, cos v = (eit' + e-ir ) /2.
In this way he arrived at the famous formula.

Discussion [Non-standard analysis].
The reader should haw realized that in the above. infinitesimals are treated as such
(not as limits). It is a wry productive way of using infinitesimals just as physicists
like. However. it was hard to put the concept of infinitesimal on a firm ground.
This became only possible after the introduction of 'non-standard models of real
numbers' by A Robinsou.P! The analysis based on the nonstandard mode! of reals
is called the non-standard analysis. With its aid. what Euler did can be justified.
To undersrad what really 'non-standard' means. you need rudimentary knowledge
of formal logic.

Exercise.
Let c =.1' + iy. Demonstrate Euler's formula e" = e"(cosy + i sin y) by showing the
following formulas:

as 11 -. X.

log I(1 + ;)"I -. x

arg (1+;)" -. y mod 21T

(4.9)

(4.10)

4,4 Who was Euler?112 Euler's analysis textbook Introductio in
analysin infinitorum (1748) was extremely influential beyond 1800, so
that his notations such as sin. cos. e. 7L i. L:, etc .. became conventional.
He. not Newton. wrote down the so-called Newton's equation of motion rEl
for the first time. and laid the foundations of continuum mechanics in- 0
eluding fluid dynamics (but see dalembert 2B.7).

Leonhardt Euler was born in BaseL Switzerland, on April 15, 1707.
He revealed a photographic memory by reciting Aeneid page by page
by heart. In 1720 he enrolled at the University of Basel and graduated
with first honors two years later. His master's thesis in 1724 compared
the natural philosophies of Descartes and Newton. Euler convinced Jo­
hann Bernoulli to tutor him in mathematics and natural philosophy for

I1°Here the words between' and ' are his.
111 A. Robinson. Non-standard an.alysis (North-Holland. 1966).
112This entry is mainly based on p486- of R. Calinger. Classics of Mathematics

(Prentice-Hall. 1995).
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one hour on Saturday afternoons. Bernoulli quickly recognized Euler's
genius and helped convince his father to allow his son to concentrate on
mathematics. After failing to get a physics position at Basel, he joined
the St. Petersburg Academy of Sciences in 1727, boarding at Daniel
Bernoulli's home (cf. 1.6).

He became the first professor of mathematics, succeeding D. Bernoulli
in 1733. who returned to Switzerland. From 1733 to 1741, Euler im­
mersed himself in research with enthusiasm despite hostility from the
Russian nobility and from the Orthodox Church which ofposed Coper­
nican astronomy. He precisely computed (2) =L(1/n ) = 1r

2 /6 (see
Discussion below). He gained an European-wide reputation with this
and with his first book Mechanica (1736). During this period he found
ei:r = cos x + i sin x and eill" + 1 = 0 (-+4.3). He also introduced beta
and gamma functions (-+9.1).

In 1741 he accepted the invitation of Friedrich the Great to join the
Brandenburg Society (Berlin Academy of Sciencesafter 1744) (-+2B.7).
He was the director of its mathematical section from 1744 to 1765. He
was at the peak of his career during this period. In the mid-1750s
Euler tutored Lagrange (-+3.5) by correspondence and selflessly with­
held from publication the part of his work on the calculus of variations
(-+3.2-4 )80 that Lagrange might receive due credit for his contribution
to the subject.

After disagreeing with the king over academic freedom. Euler re­
turned to Russia in 1766. where Catherine the Great made him a gen­
erous offer. A cataract and its maltreatment made him totally blind by
1771 (he had lost his right eye sight in 1735). but his productivity at
least in number of pages increased: he dictated books to a small group
of collaborators. doing calculations in his head involving as many as 50
decimal places. He died of a brain hemorrhage in 1784.

Euler was chiefly responsible for differential equations. and calcu­
lus of variation with Lagrange. He pioneered differential geometry and
topology (Euler's polyhedral formula: l' - e + f = 2). His colleagues
dubbed him "analysis incarnate:' His disciplinary intuition never failed
when he used infinite series. even though its general theory was to be
created by Cauchy (-+6.11. 17.18(2»). Euler found the prime num­
ber theorem in 1752. although he could not prove it, which was to be
rediscovered and proved by Gauss (-+6.17). Most of his number theo­
retic results appeared in his correspondence with his best friend in St.
Petersburg. Christian Goldbach (famous for his conjecture: every even
number is a sum of two prime numbers, This is mentioned in Hilbert's
8th problem (-+20.4). and is still open).

Discussion.
(1) Euler often used 'algebraic formalism' (the belief that algebraic expressions are
always correct whatever numbers replace the symbols in them) to obtain nontrivial
resuits. The following ill~strates his approach to compute «2) (-+7.15), etc. [An
example of the 'modern version' of 'algebraic formalism' is illustrated in 17.3a Dis-
cussion.]
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Euler tried to extend the factorization of polynomials to more general func­
tions. Sine has zeros at 1111" for all 11 e Z. Therefore. he guessed

sin z oc :: (1 - ~:) (1 -4:2 ) ••••

(4.12)

\Ye know sin z :::: z for small z. so that the proportionality constant should be 1:

sin e = z (1 - ;:) (1 - 4:2 ) ....

Admitting this relation (which is actually correct) and expanding the both sides in
the Taylor series. we obtain

:;3 {( 1 1 1 ) }.:: - 3! + ... =::; 1 - r.2 + 4r.2 + 9r.2 + ... :;2 + ' .. . (4.13)

Comparing the coefficients on both sides. Euler obtained

1 1 r.2

«2) == 1 + 22 + 32 + .., = 6' (4.14)

In this way the value of the zeta function for even positive integers can be obtained.
Obtain (4) = ,,4/90.
(2) Show

t" log(l- x) dx = _ ,,2.
Jo.t' e (4.15 )

4.5 Complex trigonometric functions: For real x we know (-+4.3)

(4.16)
2i

ei:r _ e-i:r

sinx= ----
2

cos x =----

Therefore. the following definitions for "i/z E C are suggested (thisis an
analytic continuation -+7.10):

(4.17)
2i

e i : _ e-iz

sinz =----cosz =

These functions are entire functions (-+4.2). We can easily demon­
strate:
(i) cos z = cos z. sin z = sin z.
(ii) sin(zl +Z2) = sin Zl cos Z2+COS Zl sin Z2. COS(Zl +Z2) = cos Zl cos Z2­
sin Zlsin Z2. Other complex trigonometric functions such as tan. sec,
etc.. can be defined analogously.
(iii) sini z + 2mI') = sin z, cost Z + 2mr) = cos z, where n E Z, 271' is the
primitive period of these functions. .
(iv) dsinz/dz =cosz. dcosz/dz = -Sll1Z.
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(v) COS2 z + sin2 z = l.
(vi) sin 2z = 2 sin z cos z.
In short. all the real formulas can be straightforwardly extended to
complex cases (this is due to the principle of invariance of functional
relations (-7.6)).

Discussion.
If f has a Taylor expansion around a real point whose coefficients are all real, then
J(:.) = f(;)·113

Exercise.
(1) Is Icos c] s 1 correct?
(2) Is Im(e i Z) = sin z correct?
(3) Demonstrate

[(11-1)/2]

sinn8= L (_1)k( n )Si1l2~'+18COSn-2k-16. (4.18)
k=O 2k + 1

and
[n/2)

cos n6 = L (-1)~' C~.) sin2~' 8COSn- 2k 6.
k=O

Here [Xl implies the largest integer not exceeding X (the Gauss symbol).
(4) Demonstrate

, ? • h2
(

. ) sin _.2' ,sm!l
tall .r + I!I = + I--::----'--:-:--

cos 2.r+ cosh 2y cos 2x + cosh 2y

(4.19)

(4.20)

4.6 Complex hyperbolic functions. Complex hyperbolic functions
are defined by

e' + e-:
cosh z = --­

2

e: - e-:
sinh z = 2 (4.21)

Other complex hyperbolic functions as tanh z etc., can be defined anal­
ogously.
(i) cosh z = coshz, sinh z = sinh z.
(ii) dcoshz/dz =sinh z. dsinhz/dz =coshz.
(iii) cosh'' z - sinh2 z = l.
(iv) sin iz = i sinh z, cos iz = cosh z,
Again. in short. all the real formulas can be straightforwardly extended
to complex cases (this is due to the principle of invariance of functional
relations (-7.6)).

113To complete the demonstration. we need 7.6.
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Exercise.
Show

cosh i: =cos c, sinh iz = i sin;

tan iz =i tanh z; tanh iz = i tan z

(4.22)

(4.23)

4,7 Logarithm: e' = w can be solved for any wEe \ {OJ. Let
the polar form (-a4.6) of w be Izl(cosargz + isil1argz) = Izleiargz.
Logarithm is defined as the inverse function of e', so we define

log z =log Izl + i arg(z). (4.24)

Here log Izi is computed as the usual real logarithm. arg z is mul­
tivalued. and consequently log z is multivalued. When we choose the
principal value of arg z (i.e .. Arg z: -a4.7). the value of log z is written
(sometimes) as Log z and is called the principal value of log z:

Logz =log Izi + iArg z: (4.25 )

log is an example of many-valued functions. In a nbh (not including 0)
of z( '* 0) (4.24) defines infinitely many maps. They are called branches
(-8A.3-4). Thus log is an infinitely many-valued function (-8A.4).

Discussion.
Let

f(;) == Log; - Log(= - 1). (4.26 )

where Log is the principal value of log. Describe the function ¢(x) defined by

0(.1') == lim ~[f(x + if) - f(x - if)].
<-+0 _ill

(4.2i)

where e is a positive number tending to O. and x is real (8B.16 may be a hint. See
also 6.1 Exercise (1).).

4.8 Warning: log(0:/1) is not simply equal to log 0: + log /1. In par­
ticular. log z2 is not equal to 2log z: even the sets of possible values
are different. However. log z2 and log z + log z have the same sets of
possible values. but the equality between these quantities is generally
false. Even log 1 + log 1 = log 1 is false.

Exercise.
(1) log 4 [= 2Log2 + 2mri].
(2) log[(l + i)/V2] [= 1i/4 + 2n1l"i].

4.9 Power. as is defined by

0:
8 == exp(/1loga).
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Due to the many-valuedness (-4.7) of 109 a. aZ describes many single­
valued functions. On the other hand. z generally describes a single
many-valued function. For zb (b E R) we have three different cases:
(i) If bE Z. then the multiplicative uncertainty of zb, Le., eb2nlri (n E Z)
is always 1. so zb is single-valued.
(ii) If b E Q \ Z, then there exists the irreducible fraction represen­
tation b = plq (p. q E Z, q :I 1 and q > 0). Hence, the multiplica­
tive uncertainty factor eb2

'1l1f i (n E Z) takes different values only for
n = O. 1. ... , q - 1. Consequently, zb is a ~-valued function. For ex­
ample. when we write .j'i, this means ZI/ • so it is a double-valued
function. For example. vT =±1. not 1.
(iii) If b E R \ Q. then eb21l1fi is distinct for all the values of n E Z.
That is. in this case zb is an infinitely many-valued function.

Exercise.
(A) Find all the values of the following (n E Z):
(1) (-2)v'2 [= 2v'2{cos((2n + 1}V27r) + i sin(2n + 1)V27r)}]
(2) 1-; e2" " ].

(B) Compute ii and find the range of IiiI.
(C) Is labl :5 lal lbl correct?

4.10 Examples and warnings. If a complex (non-integer) power
function is involved. we must compute them before applying any op­
eration to it. For example. when we wish to compute log as we must
compute 0 3 =exp(,810go) first.
(i) ilogi and log s' are different.
(ii) vT + vT =2vT fails to be true.
(iii) (zbY= zoe is not generally true. even when b.c E R.
(iv) (ZlZ2)O = zlz2 is not generally true. where ZI.Z2.0 E C.
(v) 21 has infinitely many different values which can be indefinitely large
or indefinitely close to O.
(vi) do: / dz = OZ log a holds only when the same branch (-8AA) of
log Q: is used on both sides.

4.11 Inverse trigonometric functions: Solving (4.17). we can easily
demonstrate

arcsin z - i log(-iz + Jl - z2).

arccosz - ilog(z + Jz2 - 1).

(4.29)

(4.30)

Here V and log must be understood as many-valued functions (-4.7.
4.9).
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APPENDIX a4 Complex Numbers

a4.1 Complex number. A complex number is an expression of the
form a + ib, where a. b E R and i is called the imaginary unit. 1l4 The
set of all the complex numbers is denoted by C. The property of 'i' is
fixed by the following arithmetic rules, which force i 2 = -1.

Discussion.
Discuss the relation (due to Hamilton) between a + ib and the matrix

1m

b

o
(4.31)

Consider. for example. multiplication. This 'justification' of complex numbers is
due to Cayley,

a4.2 Arithmetic rules of complex numbers. Let a = a + ib and
p =c + id. where a. b. c. dE R.
(i) a = p ¢:::::::> a = c and b = d.
(ii) a ± p = (a + c) ± i(b + d)
(iii) ap = (ac - bd)+ i(ad + bc)
(iv) alp = (ac + bd)j(c2 + d2 ) + i(ad - bc)j(c2 + d2 ).

Thus Q + ib is no more a symbol but actually the sum of a and i x b.l l S

Notice that ap =0 ¢:::::::> a = 0 or p = O.

Exercise. Find the real and imaginary parts (.....4.5-6).
(1) Sill 2i [= i sinh 2]
(2) cost 1 + i) [= cos 1cosh 1 - i sin 1sinh 1J
(3 )

[
sin 4 - i sinh 2 ]

tan(2 - i)
- 2(cos2 2 + sinh 2 1) ,

a4.3 Real part, imaginary part, Let a = a + ib with a. b E R.
a is called the real part of a and is denoted by !Ra. ib is called the
imaginary part of Q' and is denoted by ~Q'. If!Ra = 0, then Q' is called
a purely imaginary number.

a4.4 Conjugate complex number. Let Q' = a + ib E C. a - ib
is called the conjugate complex number of a (or complex conjugate of
a) and is denoted by a.

114 This form was given as a general expression of complex numbers by d'Alembert
(.....2B.7) ill a prize paper. but the popularity of complex numbers was never
large until Gauss's proof of the fundamental theorem of algebra (....a4.6, 6.17).
d'Alembert himself remained silent about this in the Encyclopedie.

115These rules imply that with + and x , C becomes a commutative field. Its zero
element is 0 + iO and its unit element is 1 + iO.

95



0) a =a.
(ii) a + f3 = a +{3.
(iii) af3 = 0.{3
(iv) !Ra= (a + a)/2. $Ja = (a - 0.)/2i.

a4.5 Complex plane. If on a plane with rectangular coordinate axes
a complex number a = a + ib is represented by a point (c, b)~ then the
plane is called the complex plane. The abscissa is called the real axis,
and the ordinate is called the imaginary axis.

Discussion.
Let Q. :3. and 'I be distinct complex numbers. A necessary and sufficient condition
for these three points on the complex plane to make a regular triangle is

(4.32)

Exercise.
(1) Draw the images of lines parallel to the real (imaginary) axis due to 1/:; (->10.3).
(2) Demonstrate that

if 1::1 < 1 (....10.12).

1:; - °1a:; _ 1 < 1. (4.33)

1m a4.6 Polar form of complex number, modulus and argument. A
point on a complex plane may be represented by the polar coordinates
(T. fJ) with the origin and the real axis as the pole and the generating
line. For 0: = a + ib r = Ja2 + b2 = J0:0. is called the absolute value
or the modulus of 0: and is denoted by lal. fJ =arctan(b/a) is called
the argument of 0:. and is denoted by argo: (this is defined for a =I 0).
0: = r(cos fJ + i sin fJ) is called the polar form of 0:.

The set of all the complex numbers satisfying Izl = 1 is called the
unit circle.

Exercise.
(1) The absolute value should be computed as [e] =..;;=0.. For example, try to
compute the absolute value of (1 + 2i)/(3+ 5i).
(2) Find the polar form of (1 + i)n + (1- i)n.

(3) Let:r E Rand 0 be a complex constant. Compute the derivative of arg(x +0)
with respect to z,

a4.7 Principal value of argument. The argument of a complex
number z (=I 0) cannot be chosen uniquely. because arctan is only lo­
cally one-to-one. When the value is chosen in (0.271") or (-71".71"], this is
called the principal value of the argument, and is denoted by Arg z.
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a4.8 Elementary properties of absolute values
(i) lal = 0 ¢::::? a = 0,
(ii) aa= lal2 ,

(iii) lat'l = lall,8l·
(iv) lal '" 1131 s: la +/31 s: lal + 1/31,116
where the second inequality is called the triangle inequality.
(v) l?Ral ::; [o]. ISal ::; lal·

1<,..

a4.9 Graphic representation of arithmetic operations: See the
figures.

a4.10 Limit: We define

lim an = a ¢=:> lim Ian - a)1 = O.
n.....x n-+x

(4.34 )

Or. more precisely. we say {an} converges to a. if for any positive e we
can find a positive integer N such that

(4.35 )

a4.11 Convergence of series: Consider an infinite series L~o ai,
Define its partial sum as /3n =L~o ai, We say that the series is con­
vergent if the sequence {t'n} converges.

116 a "" b means the absolute value of the difference of a and b.
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