
3 Calculus of Variation

Variational calculus is the study of linear response of a func­
tional (a map which maps a function to another object, say,
a number). We discuss the classical Euler-Lagrange theory,
and then reconsider the theory from the functional differen­
tiation point of view. A necessary and sufficient condition
for a functional to have a minimum and direct methods to
variational calculus are briefly discussed.

Keywoods: functional. Euler- Lagrange equation, Lagrange
multiplier, variable end point case, functional derivative,
delta function. second variation, Legendre's condition, Noether's
theorem. Vainbergs theorem. direct method.

Summary
(l) Calculus of variation is the calculus on a function space (3.1, 3.7).
(2) Euler-Lagrange equation is a necessary condition for extremity
(3.2). A sufficient condition for extremity is more involved than the
ordinary calculus case (3.14).
(3) III terms of functional derivative (3.7-9). the parallelism between
the ordinary calculus and variational calculus becomes explicit (3.10­
13).
(4) Variational principle is practically useful (3.18.3.19). so remember
that there is a way to costruct a variational functional (if any) for a
given equation (3.17).

3.1 Variational calculus The study of the linear response (-2A.1.
2A.4) of a functional (a map which maps a function to another function
or to a number is called a functional) is called variational calculus. The
essence of calculus of variation is the differential calculus of functionals.
This point will be made more explicit later through the introduction
of functional derivatives (-3.7-9). A typical problem of variational
calculus is to extremize a given functional.

The best introductory book of calculus of variation is: I. M. Gel'fand
and S. V. Fomin. Calculus of Variation (Englewood Cliffs, 1963).

Initially, it was believed that any extremum problem had a so­
lution. Riemann relied on a variational formulation of the Laplace
equation to demonstrate the fundamental theorem of conformal trans­
formation (-10.11). However, soon later Weierstrass pointed out that
it is not always the case. Consider, for example, the following problem:
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minimize 11

v(x)2dx

under the condition v(O) =0 and v(l) = 1.

(3.1)

3.2 Theorem [Euler]. Let 8[f] be a functional on the set of C1_
functions on [a,b] such that f(a) =A, f(b) =B (fixed) defined as

(3.2)

where L is a C2-function of its variables. A necessary condition for g to
give an extremal value of 8 is that g satisfies Euler '5 equation (or the
Euler-Lagrange equation)( -+3.5: 4.4 for some history; for a sufficient
condition see 3.14):

(3.3)

o

3.3 Proof of Euler-Lagrange equation. A necessary condition for
f to give an extremal value with respect to the small change92 of f is

88[1) =8[f+6j) - 8[j) =l b

dx [~~8j+ ;~8f'] =0 (3.4)

for any small 6f (see the above footnote). Integrating this by parts, we
get (note that [,f = 0 at the boundaries)

rb [8L d8L]Ja dx oj - dxof' 8j =O.

Thus. the quantity in the square brackets must vanish.93

(3.5)

92This statement is actually tricky. \Ve must fix a method to evaluate the size of
a function. or we must be able to tell whether a function f and 9 are close or not.
'We measure the size of 1 in the present context in terms of the nOMn 11/11 (-20.3)
which is the sum of the largest value of IfI in the relevant domain and that of 1f'1.
This is called the C1-norm. 65 = 0 in (3.4) means, more precisely, that 116511 is
much smaller than 116/11. or 116511 =0116/11·

93More precisely: if continuous functions a and t3 satisfy

l b
[O(X)h{X) + t3(x)h'(x)]dx = 0

for any C1-function on [a.b] such that h(a) = h(b) = 0, (3 is differentiable and
0- 3' =O. See Gel'fand and Fomin, Lemma 3 in Section 3.
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Discussion [Canonical distribution].
The canonical distribution function

(3.6)

of statistical mechanics can be obtained as the solution to the following conditional
maximization problem: Maximize entropy

under the condition

s =- Jplnpdf

E= JHpdf. 1 =Jpdr.

(3.7)

(3.8)

Here. H is the system Hamiltonian. and af is the phase volume element (the Liou­
ville measure). Z and .3 are introduced as the Lagrange multipliers.

The above formulation is for classical cases, but with the replacement of Jdf
with Tr . we can easily obtain the quantum counterpart. The formula for the entropy
was first given by Gibbs. Later. the same formula was used to define information
by Shannon.

The reader might be tempted to conclude that in this way We can found sta­
tistical mechanics on the Baysian statistics. and can dispense with the principle of
equal probability. However. the principle is already implicit in (3.7) in the choice
of the volume.

3.4 Conditional extremum, Lagrange multiplier. Let S[j] be
a functional. We wish to extremize this under the condition that
G[J] ;;:: O. where G is another functional. A necessary condition for
S[J] to be extremal is as follows. Define I[r >.] ;;:: S[fJ + >.G[f]· Ex­
tremize 1 w.r.t. 1 and >.. This condition would give 1 as a function(al)
of >.. Insert this into S. and fix >. with the auxiliary condition. The
result gives the extremal value of Sunder G ;;:: O.

8I 01
61 ;;:: O. 0>';;:: O. (3.9)

The parameter >. is called the Lagrange multiplier.

3.5 Who was Lagrange 194 Lagrange was born in Turin in 1736,
where he stayed until 1766. In the mid-1750s he began to establish
his reputation. and began his correspondence with Euler (-4.4), who
became his tutor praising his work on variational calculus. and with
d'Alembert. who became his political counselor. As a poorly paid pro­
fessor of the Royal Artillery School at Turin from 1755-66, he worked

94:'1ainly based on R Calinger. Classics of Mathematics (Prentice Hall, 1982,

1995).
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relentlessly to the extent to harm his health, sustained by his associa­
tion with Euler and dAlembert (-2B.7). He brought the calculus of
variation to maturity and applied it to mechanics.

In 1766. Lagrange succeeded Euler as director of the mathemati­
cal section of the Berlin Academy. The years in Berlin were extremely
productive for Lagrange. He contributed to the three-body problem.
various number theoretical problems! and his 1770 memoir opened a
new era in algebra (group theory).

When Friedrich the Great died in 1787, he accepted an invitation
of Louis XVI to join the Paris Academy of Science. A year later he
published his classic. Mecanique analytique. This was the first book of
mechanics without any geometrical argument.

Shy. diplomatic, and amenable. Lagrange not only survived the
Revolution but was treated throughout with honor and respect. In
1790 he served on the committee which proposed the metric system. In
1794 he helped to establish Ecole Polytechnique. He taught elementary
mathematics at Ecole Normale (with Laplace (-33.3) as his assistant).

He was the last great mathematician of the 18th century. He
opened the abstract mathematics of the 19th century. He tried to
give a sound foundation to calculus. which was to be given by Cauchy
(-6.11). Weierstrass (-13.3b). and others. To denote derivatives
with' was due to Lagrange.

3.6 Variable end points, transversality. Consider

S[J] = l b

dxL(f.j'.x)dx. (3.10)

but now with the unspecified end point values of f. An elementary
calculation gives

65 = l b
dt (L f - :t Lr ) 6f(t)+Lr6f(t)I~+(L - LrJ')t=bob-(L - LrJ'}t=a ba.

(3.11)
The first order variations must be killed to be extremal. so f must obey
the Euler-Lagrange equation (-3.3).

We still have first order terms at the end points. A realistic sit­
uation is that the end points are constrained on prescribed curves Ca
and Cb. Hence 6flt=a = c~(a)6a and 6flt=b = cb(b)bb. Putting these
conditions into (3.11). we get the following so-called transversality con­
ditions:

(L + Lf'(c~ - J')Jt=a =O. [L + LJ'(db- j')]t=b =O. (3.12)

These equations give the boundary conditions for the Euler-Lagrange
equation to single out its solution.
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3.7 Functional derivative. As we noted in 3.1, calculus of varia­
tion is essentially the differential calculus on a function space.95 As
a preliminary step. let us review the differentiation of a scalar valued
function of a vector S(J). Its (strong) derivative (-+2A.4) is the gra­
dient of S and is a vector gradS = (8S/8!l,···, 8S/8!n)' We have

n 88
68 =E8!i ok (3.13)

Compare this with the formula (3.4). The parallelism becomes almost
perfect. if we regard the value f(a) of f at x = a as the a-component
of a vector f (see 20.21 for the idea). In this case a is a continuous
parameter. so that the summation in (3.13) must be replaced by an
integration over the parameter. and we have the form something like:

J oS
fJS = dx fJ!(x/!(x). (3.14)

Here the integration kernel 68/8f(x) is called by physicists the func­
tional derivative of 8 with respect to f. Its functional form can be read
offby comparing this formula and the standard variational formula such
as (3.4). Hence. the calculation in the proof of Euler's theorem tells us
that

for 8 given in 3.2.

68 8£ d 8£
6f(x) = 8f(x) - dx8f'(x)'

(3.15)

3.8 Delta function. We ought to be able to differentiate any (well­
behaved) functional of f w.r.t. f. For example f itself is a functional
of f just as the indentity map maps a vector v to itself. Because
Otli /8tl] = 6ij (the identity matrix). we expect the functional derivative
of f w.r.t. f itself should be an identity operator (or the integration
kernel corresponding to the identity). We introduce 6 as follows

bf(x)
6f(y) =6(x - y). (3.16)

For any (integrable) variation 6!. (3.4) in the present case reads96

8f(x) =Jdy6(x - y)6f(y)· (3.17)

95 A set with a certain structure is often called a space. In the case of functional
analysis. it is often a linear space. That is. linear combinations of the elements in
the space are again in the space.

96The reader must remember that the definition of the delta 'function' is insepa­
rable from the definition of the integral being used (-20.25).
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6(x - y) is called the delta function,9i and later mathematically rational­
ized by Schwartz as a generalized function (-+14). We will encounter
this object later in many other contexts.

3.9 Formal rules of functional differentiation. With respect to
the functional differentiation, the ordinary integration and differentia­
tion just correspond to procedures to make linear combinations of the
components of the vectors. so that we may freely change the order as

6f'(x) d
6f(y) = dx 6(x - y).

or

6f~Y) l b

dxf(x) = l b

dx6(x - y).

Furthermore. the chain rule holds as

6~~~~)) = P'(f(x))6(x _ y),

(3.18)

(3.19)

(3.20 )

where F is a function. Hence. we can obtain Euler's equation 3.2 quite
mechanically as follows:

65[1] _ Jdx [...!!.!:.-6 _ st. d _] _ ~_.!!:- ot:
6f (Y) - af (x) (x y) + al'(x) dx

6
(x Y) - af (y) dy al'(y)'

(3.21 )
Here integration by parts has been used.

3.10 Intuitive introduction to minimization of functional I.
Suppose we wish to minimize a well-behaved functional 5[j]. 3.9 tells
us that the essence of Euler's theorem 3.2 is that the necessary condi­
tion is

65
6f =O. (3.22)

This is quite parallel to the ordinary calculus (-+A3.19). Therefore. it
is tempting to seek more parallelisms. To this end we need an analogue
of the second derivative.

3.11 Second variation. If the change of 5[j] can be written as

S[j + h] = S[j] + Cf?dh] + Cf?2th] + o[\lhll] , (3.23)

97 Physid sts seem to believe that this was introduced by Dirac. but actually, this
has been used for more than 100 years.
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where 'PI is a linear functional and 'P2 is a bilinear form, we say 8 has
the second variation. In physicists' way. we can write

1 J 8
2
8

'P2[hJ = 2 dxdy 6f(x)8f(y) h(x)h(y). (3.24)

Actually. we can formally compute the second functional derivative as
explained in 3.9.

3.12 Legendre's condition. If we can write

S[f] =l b
dxL(f(x)·t(x).x). (3.25)

then the second variation can be written as (after integration by parts,
taking into account h( a) = h( b) = 0)

where

(3.26)

(3.27)

A necessary condition for 'P2 to be nonnegative is

P? o. (3.28)

3.13 Intuitive introduction to minimization of functional II.
Legendre wished to establish a necessary and sufficient condition for
the minimization of S[1]. Naturally. he guessed that the nonnegativity
of the second variation as a sufficient condition. Therefore. he wished
to claim that P ? 0 in 3.12 was a sufficient condition. but failed to
prove the assertion. Actually. the assertion is false. because the condi­
tion is only local. That is. if we change 1 only locally in space, indeed
P ? 0 implies the positivity of the second variation. However. a small
change of 1 need not be spatially locally confined. and for such changes
P ? 0 does not guarantee the positivity of the second variation. We
need a supplementary global condition. The final form of a sufficient
condition reads:

3.14 Theorem [Sufficient condition for minimum w.e.t. O"­
norm]9S A sufficient condition for 9 to give a minimum of (3.2) is

98Gel'fand and Fomin. Section 24 Theorem.
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(1)+(2)+(3) below:
(1) 9 satisfies Euler's equation (3.3).
(2) {flLI{)f'2(g~g/~X) > O.
(3) The interval [a~ b] does not contain the conjugate point99 of a.D
We need (3) to exclude the global pathology. (To understand the mean­
ing of (3) consider the shortest distance between the points on a great
circle of a 2-sphere.) The global condition cannot be derived easily by
a formal consideration alone.

Discussion. Discuss the relation between the conjugate point and focus in ge­
ometrical optics.

3.15 Noether's theorem.P'' Let the functional S in 3.2 be invari­
ant under the following one to one map 90 : (z. f) - (z", r), where
z" = c.p(x. I. a) and r = 'l/J(x. I. a) such that x = z" and I = r for
a = 0.101 That is. S[/] = S[r]. We assume the transformation is
differentiable with respect to a. Then. along each stationary curve. the
following quantity is constant:

(3.29)

Here A denotes the partial derivative w.r.t. a evaluated at a = 0.0
This should be easily demonstrated. if we look at the calculation in 3.6.

3.16 Usefulness of variational principle. As we see in 3.18. if
we could cast a (partial) differential equation in the variational prin­
ciple form (i.e.. if we know the variational functional whose Euler's
equation (-3.2) is the desired equation). then there is a means to get
its solution numerically. at least approximately. Hence. to construct a
variational principle (if any) is of practical importance. The following
Vainberg's theorem tells us when we can expect a variational principle.

3.17 Vainberg's theorem. Suppose
(1) N is an operator from a Hilbert space (-20.3) into its conjugate
space.
(2) N has a linear Gateaux102 derivative DN(u, h) at every point of the

99Let g and iJ be two solutions of (3.3) starting from point a. The conjugate point
of a is the crossing point of 9 and 9 in the limit of iJ - 9 in the C1-norm (-3.3
footnote).

100The theorem can be restated as: If a system is invariant under a continuous
symmetry operation. then the corresponding generator of the symmetry operation
is an integral of motion.

101 That is. {go} is a one parameter transformation group, and a = 0 corresponds
to t he unit element.

102 A functional S[i1 is said to be Gateaux differentiable if there is a linear operator
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ball Ilu - uoll < £103 for some positive e.
(3) The scalar product (hl~ DN(u. h2 ) ) is continuous at every point of
D.
Then. a necessary and sufficient condition for N(u) = 0 to be the
Euler-Lagrange equation of a variational functional in the ball D is the
symmetry

(hb DN(u, h2 ) ) = (h2 , DN(u, hd).

A desired variational functional is given by

F( u) = - Jdt 10
1

dAuN(Au).

Here - is only cosmetic. 0 104

(3.30)

(3.31)

3.18 Direct method. The Euler-Lagrange equation often becomes
a complicated partial differential equation. so a method to use approxi­
mation sequence directly in the variational functional was conceived.l'P
For a functional S[J]. let us assume that it has an infimum inf f Sri] =
J..l > -00. Then. due to the definition of infimum. there is a sequence
{in} such that S[in] - u. Such a sequence is called a minimization
sequence.
'I'heorem.l'" If this sequence has a limit j. and S is lower semicontinuous.l'"
then

o
limS[InJ = S[j].

n
(3.32)

3.19 Ritz's method. To construct a minimization sequence, Ritz
used a complete function set (practically an orthonormal basis -20.10
) {un}:

n

In = L CjUj'
j=l

(3.33 )

Qsuch that for a function f. 9 and for sufficiently small A N[f+Ag] ::::: N[t]+AQ[t]g.
This is a much weaker condition than the strong differentiability (-+2A.4).

103 11 II is the C1 norm we discussed in the footnote of 3.3.
104 Actual applications can be seen in: R. W. Atherton and G. M. Homsy, "On the

existence and formulation of variational principles for nonlinear differential equa­
tions". Studies Appl. Math. LIV. 31-60 (19i5). and the references cited therein.
For ODE see I. A. Anderson and G. Thompson. The inverse problem of the calculus
of variations for ordinary differential equations. Memoirs of Am. Math. Soc. 98.
Kumber 4i3 (1991).

105 Already Euler used it.
106Gel'fand and Fomin, Section 36.
107That is. for E > 0 there is 6 > 0 such that for any hsuch that Ihl < 6 S[f +

h]- S[fl > -E.
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Let fJn be the minimum of S[/n] obtained by varying the coefficients in
In' Then. obviously {fJll} is a monotonically decreasing sequence.

Theorem. IfS[/] is continuous, and the function set {Un} is complete, lOS

then fJn converges to the desired minimum fJ.

3.20 Why variational principle? The study of variational calcu­
lus was initiated to understand or to organize classical mechanics. The
fundamental equation of motion is given as Newton's equation of mo­
tion. But why is this the form chosen by Creator? Under the strong
influence of Christianity they thought the equation had to be a spe­
cial one. for example, characterized by a sort of maximum or minimum
principle. Thus a variational principle was pursued. Such a reasoning
may sound irrational. but all the creative activities must have irrational
components. We should not forget that Newton was a serious student of
alchemy (his hair contains large amount of mercury, because he tasted
reaction products) and the Bible chronology: his research was almost
a religious activity to glorify God: he was a devout Unitarian. John
Keynes wrote that Newton was the last magician.

3.21 Hamilton-Jacobi's equation, Jacobi's theorem, etc. These
are best understood in the context of classical mechanics. so they will
not be covered here. Although there is 110 balanced modern textbook
of classical mechanics. read the first and the last chapters of Landau­
Lifshitz. Classical Mechanics to start with. For a more serious student.
V I Arnol'd. Mathematical Methods of Classical Mechanics (Springer,
1979) is recommended. Especially read all the appendices.

l08Roughly speaking. this means that any function can be described as a linear
combination of this set of functions (-+17.3).
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