
2 Differentiation Revisited

Every graduate student knows what differentiation is, or
does she? The essence of differentiation is the study oflinear
response. Many elementary properties of derivatives can be
understood naturally from this point of view. Furthermore.
this interpretation frees us from the elementary definition
of derivatives, and paves the way to variational calculus and
functional differentiation. However, these topics are post­
poned to 3. In this section. we review differentiation, vector
analysis. and curvilinear coordinates.

Key words: differentiation, chain rule. derivative as sus­
ceptibility. strong derivative, differentiation of complex func­
tion. partial differentiation. dAlemberts solution for wave
equation. moving coordinates. gradient, nabla. divergence.
curl. Laplacian. Gauss-Stokes-Green's theorem, Poincare's
lemma. converse of Poincare's lemma. Helmholtz-Hodge's
theorem. Helmholtz-Stokes-Blumental's theorem. curvilin­
ear coordinates. metric tensor.

Summary:
(1) To compute (strong) derivatives is to study linear responses (2A.l.
2A.4.2A.8).
(2) The reader must be able to change freely the independent variables
in PDE (2B.3. 2B.6).
(3) ID wave equation in free space can be solved via change of vari­
ables. The result is the famous dAlembert's solution (2B.4).
(4) Geometrical meanings of grad. di» and curl (2C.l, 2C.5, 2C.8)
as well as their coordinate-free definitions must be understood clearly
(2A.5. 2C.6. 2C.9).
(5) Gauss-Stokes-Green's theorem 2C.13, Poincare's lemma 2C.14,
and its converse (when the domain is singly connected) 2C.16 are cru­
cial.
(6) If curl and div both vanish. the vector field is (essentially) constant.
This can be shown by the Helmholtz-Hodge decomposition 2C.17.
(7) The reader should be able to demonstrate various formulas of vector
calculus (2C.19).
(8) Differential operators in orthogonal curvilinear coordinates 2D.3
must be understood without difficulty (2D.7. 2D.9, 2D.I0).
(9) Do not use \7 as a simple operator except in Cartesian coordinate
system (2C.12).
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2.A Elementary Review

2A.l What is differentiation? Let f be a function defined on an
(open) interval I. and a E I. If the following limit, denoted by f'{a)~

exists. we say f is differentiable at a:

f ' ( ) - l' f(x) - f(a)a - 1m .
:r-a X - a

(2.1)

f' (a) is called the differential coefficient of f at a. If f is differentiable
at x =a. then we have64

bf(a) == f(a + 6a) - f(a) :::: j'(a)8a. (2.2)

That is. we study the response of f against a small change of its vari­
able. If a linear approximation of the response is reasonable for suffi­
ciently small Sa. we say f is differentiable. In other words. the essence
of differentiation is the study of the linear response of f to a small per­
turbation of independent variables. This point of view will be exploited
later (-+2A.4. 3.7). but we must note two immediate consequences of
linearity. 2A.2 and 2A.3.

Exercise. Perhaps. we should check our working knowledge of elementary cal­
culus first.
(A) Discuss whether the following statements are true.65 If corect, prove the state­
ment.
(1 ) Pm is a polynomial in the following formula:

am (1) 1 p. (If' I(mj,dx m f = Im+l m • •••• • ). (2.3)

where m is a positive integer.
(2) Let f be a differentiable function. If 1'(0) = 1. then I is monotonic in a
sufficiently S111all neighborhood of O.
(3) Let f be a ex function with limz - x f(:r) =O. Then. lim;r_iX f'(x) =O.
(B) Elementary differentiation questions:
(1) Let I = e' cos t and y = e' sin t. Compute d2yjdx2 as a function of t.
(2) Compute the limits

I. (1 x)1m ---- .
z-O x sin3 x

. (l+x)l/z-e
hm .
z-O x

(2.4)

(2.5)

64=: is used informally. but in these notes accurate meaning can always be at­
tached. In the present case. =: means equality ignoring o[6a].

65B. R. Gelbaum and J. M. Olmsted. Counterexamples in Analysis (Holden-Day,
1964) is a useful book when you wish to think a delicate thing.
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$f(x+e) -f(x) =0 \implies \frac{f(x+e)-f(x)}{e}=0 \implies f[(x) =0$  

Kepler also knew this sort of differentiation.
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(3) Compute dm(e-1/Z')/dx m at x = 0 for all positive integers rn.
(C) How many times are the following functions differentiable?
(1)

!(x)=x9
/
4forx2:0,Oforx<O (2.6)

(2)
f(x) = x 3 for x 2: O. 0 for x < 0 (2.i)

(3)
f(x) = Ix1 3

. (2.8)

(4)
Y = e- 1/ ZO - z ) for z E [0,1]. 0 otherwise (2.9)

(5)

f(.r} = x" sin.! (/(0) = 0). (2.10)
x

where n is a positive integer.
(D) Orthogonal polynomials
They will be discussed ill a unified way ill 21. but here, let :IS check some formulas
related to them (generalized Rodrigues' formulas -21A.6)
(1) Demonstrate that P~a .3) (;r) defined as follows is an n-th order polynomial (called
Jacobi's polynomial-21A.6) (a . .3 > -I):

(2.11)

where a. J E R.
In particular. Tn(x) == «(2n )!!j(2n _1)!!)p~-1/2.-1/2)(x) are called the Cheby­

chev polynomials (-21B.9). and p~o.O\x) == Pn(x) are called the Legendre poly­
nomials (........ 21B.2).
(2)

is an n-th order polynomial called the Hermite polynomial (-21B.6).
(3) Tn(x) =costn arccos r ) (Chebychev's polynomial) satisfies (-21B.9)

2 d2u du z
(I-x )--x-+n u=O.

dx2 dx

(4) Laguerr s polynomial

.rlOl(x} =~(_I)r(n +a) x
r

n "-' n - r r!
r=O

satisfies
d2u du

:r-z + (a + l - x )-d +nu=O.
dx x
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(E) The following is a collection of standard special functions. They will not be
stressed in the notes. but the reader should have enough analytical muscle to con­
firmed the relations in the following.

T is the Gamma function (-9). but we only need

f(x+ 1) = xr(x)

for positive real x (-9.2).
(1) Show that

(
x ) m 00 (_l)k (X)2k

Jm(x) = '2 f; k!f(m + k + 1) '2

satisfies
d

2u
Idu ( m

2
)- + -- + 1 - - u =O.dx 2 X d» x 2

Jm is called the Bessel function of order m (_27A.l).66
(2) Show that

(=)v 'X (::/2)2"
1v (x ) = '2 ~ n!f(1I + 11 + 1)

satisfies
a2

u 1 dU ( 11
2

)+ -- - 1 + - u =O.z d« .1'2

Iv is called the modified Bessel/unction (of the first kind) (-27A.23).
(3) Demonstrate that

In(x) :.;: ['fJn+ I /2(X).

which is called the spherical Bessel function (-27A.25). satisfies

d
2

u +~du + (1- 11(11+1)) u=O.
d;r2 ;r dr .1'2

(4) Show that Whitaker's function

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

M" (x) = xli+1/2e-:r:/2 f: f(2/1 + l)f(Jt - K + 11 + 1/2)x"
·Ii n=O f(211+ 11 + l)f(l1- K + 1/2)71! (2.23)

satisfies
d

2
u + (_! + ~ _ 11

2
- (1/4)) u =O.

dx 2 4 X ;r2

(5) Show that Kummer's confluent hypergeometric function

ec (o)n':"
F(o."x) = L -(-)-,

n=O 'n11•

(2.24)

(2.25)

66Bere. m can be any integer: if m < 0, terms with m + k + 1 ::s 0 are ignored.
See 27A.2.
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satisfies

for any p E [O.lJ. This property can be used to define the convexity, This is a
simple case of Jensen's inequality: f is convex if and only if

Discussion.
(A) A convex function is a function such that the set {(x. y) : y ~ f(x}} is a
C011\'ex set. 6, A convex function must be a continuous function. The concept of
convex function is very important in physics. esp .. in statistical physics. In 1873
Gibbs characterized the family of equilibrium states of a system which is compatible
wit h thermodynamics as follows (in modern words): The totality of equilibrium
st ares of a simple fluid is a once differentiable manifold. which is the graph of a
convex function c' (internal energy) of S (entropy) and \' (volumej/"
(1) If f is convex between a and b. then

pfr&.j -t .lib)
(

d2u du
x-+ h -x)- - au =O.

dx2 dx

Here (o)Tl =0(0 +1)'" (0 + Tl - 1), etc. with (0)0 =1.
(6) Demonstrate that (cr. 27A.28)

satisfies
d2u-'- + (e2:r _ v2)u =O.
dx 2

[Hint: see Exercise (1) above or 27A.l.]
(7) The following Kelvin's function

ee (_l)Tl (:;)4Tl
ber z =L «2n)!}Z '2

Tl=O

satisfies
dZu 1 du .
-+---IU=O.
dx? 3.' d»

j(pa + (1- p)b) $ pf(a} +(1- p}j(b)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2,31 )

(2.32)

where L;Ai =1 and Ai ~ O. (2) Show that e", -logx. x9 (q ~ 1) are convex.
(3) A periodic convex function is a constant.
(4) Let f and 9 be convex, Then. 9 0 J is convex.69 [Note that J and 9 need not be

er A set A is a convex set if for any z. yEA the segment connecting x and y is
inside A.

68R. T. Rockafeller. Convex Analysis (Princeton, VP, 1970) is the standard refer,
ence of the topic. Its use in statistical physics is explained in the introduction by A.
S. Wightman in R. B. Israel. Cont!exity in the Theory of Lattice Gases (Princeton
rr. 19(9).

69(g 0 f)(.r) == g(f(x)). i.e.. the compositin is denoted by o.
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differentiable.]
(5) For :r > 0 if xf(x) is convex, so is f(l/x). This is obvious. if r(x) exists. Is
this true even if f is less smooth?
(B) Pathological continuous functions.
(1) Weierstrass function. The first example of nowhere differentiable continuous
function was given by Weierstrass (-13.3b). An example is70

ex: 1
f(t) =2:, sin((r!)2 t ) .

r=O r.
(2.33)

The convergence is uniform. so that the limit must be a continuous function. To
prove the nondifferentiability at any point. a detailed estimate is needed. See Korner
Section 11. The lesson we should learn from such functions is that if we differen­
tiate a function repeatedly many times. then we could encounter bizarre functions.
because differentiation magnifies details (and generally reduces differentiability).
(2) Takagi function. Let D(x) be the distance between s: and the closest integer
to it (That is. D(:r) = dist{x. Z»).
(i) Illustrate the graph of D{:r).
(ii) Define

x 1
T(x) =2: 2nD(2

nx).

n=O

(2.34)

This is called the Takagi function. which is continuous. but nowhere differentiable.
The function has self-similaritv,"!
Is any curve (except lines) which is self-similar nowhere differentiable?
(3) Koch curves. :\lany beautiful examples of bizarre curves can be found in B B
Xlandelbrot. The Fractal Geometry 0/ Nature (Freeman. 1983). A simple example
of nowhere differentiable (and consequently without length) curves is a Koch curve
constructed by a self-similar substitution as illustrated below.

2A.2 Chain rule. Suppose the input to a system 9 (henceforth, a

7°The original Weierstrass' functions are

with b being an integer and b]« and a sufficiently large.
il (To the instructor) Its Hausdorff dimension is 1.
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(2.36)

~-

7(-{~JJ
?(1(J

~--> fliIAy

re5pcJl1.re c/
t'tJp{Y/F-e

system and its response function are denoted by the same symbol) is
x and we feed the output of 9 into another system f. Then the linear
response of f to a small change in x must be the linear response of f
to the 'linear response of 9 to the change of x,' This is the essence of
the chain rule. Let F = fog (i.e.. F(x) = f(g(x))). Then,

d(f 0 g)(x)jdx = f'(g(x))g'(x). (2.35)

Exercise.
(1) Let F be a differentiable function. and define a sequence {x n } through Xn+l =
F(xn). Compute dxn/dxl' In particular. if F(x) = 2x for x E [0.1/2] and 2(1- z )
for x E (1/2.1]. then Idxn/dx11 = 2n- 1. This implies that X n for large n (a long
time asymptotic result) is extremely sensitive to a small change in the initial con­
dition Xl. This is an important feature of deterministic chaos. Indeed. for this F.
{.1'n} is a typical chaotic sequence.
(2) Demonstrate Leibniz formula (.....A3.14) with the aid of the binomial theorem.

2A.3 Linear responses can be superposed. If there are sev­
eral parts to be changed by perturbation. then the overall perturba­
tion effect is the superposition (.....1.4) of all the responses of each
part calculated as if other parts are intact. The simplest example is
d(f g) jdx = t'9 + f g': the change of f 9 is the sum of the change of
each part keeping the rest constant. Consider the following example:

d ~9(1)
-d h(x. t)dx.

t J(1)

where f. 9 and h are all well behaved. There are three places affected
by the modification of the parameter t. Hence. the result should be the
superposition of all three independent changes:

h(g(t). t)g'(t) - h(f(t). t)f'(t) + [Dlt) ah~. t) dx.
- Ji (1 )

Exercise.
(A) Compute

d 110
l! td . cosh tx dx .

t sm r

(B) Let I be a continuous function.
(1) Compute

d /%2/2

-d f(t)dt
x -:r2/2

(2.37)

(2.38)

(2.39)

(2) Find
1 1%+t

lim -2 I( slds.
t-O t x-I
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(C) Let X(t) be a non-singular matrix whose elements are all differentiable. Demon­
strate

~detX(t)=detX(t)Tr[X(t)-lX'(t)J. (2.41)

[Hint: Use the following important relation: det X(t) =exp(TrlnX(t)).J

2A.4 Generalization of differentiation, strong derivative. If
we have a device to measure the size of the perturbation Sa and the
size of its effect of (i.e.• if we can reasonably say they are small (for
example. if these quantities are vectors. we know how to evaluate their
magnitudea'"), then even if f is not an ordinary function and if a is not
a number. we may be able to define the linear response. The relation
between of and Sa should be linear. That is. if the response to 6la of
f is denoted by od and that for 62a 621. then for any numbers a and
/3. the response of f to nOla + /362a is given by aod + /3021 (-1.4).
If a relation between Sa and tif satisfies this relation. we introduce a
symbol D f and write

tif = Df[a]8a. (2.42)

Here the dependence of Df on a is denoted by [a]. If such Df ex­
ists. we say f is strongly differentiable. and Df[a] is called the strong
derivative of f (at a). Notice that the linear operator (-1.4) D f[a] is
independent of the choice of the perturbation Sa. This independence
characterizes the strong differentiability.

We write D f[a] = f' (a) when f is an ordinary real scalar function
on a real number set R (-2A.l).

2A.5 Differentiation of function on space. Consider a smooth
function f : R 3

- R. Changing r E R 3 slightly. we can study the lin­
ear response of f( r). which is a scalar 6f and must be a linear function
of Sr. The derivative Df must be a vector such that (cf. 2A.6)

tif::::: Df· Sr .

The vector Df is called the gradient of f at r (-2C.2).
If f is a function of x and y. we can write

of = (fr' fy)(ox. 6y)T.

(2.43)

(2.44)

Here T denotes the transposition of the vector. Thus. we may write

(2.45)

2A.6 Warning. The existence of D f is much stronger than the con­
dition for the existence of each fx and fy (-2B.2).

72We need a norm (-3.3 footnote. 20.3)
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(2.46)
(

£i.r.

D!=df = ~
dx ~

lh:

2A.7 Differentiation of vector valued function. Let f = (Ill /Z, hf·73

Then. Df must be a 3 x 3 matrix whose each row is grad fi (i = x, y,
or z):

Componentwisely. we can write

(2.47)

This is. of course. consistent with the formal expression

df
df = dx dx.

As we will see. the trace of Df is called div f (-+2C.6).

(2.48)

Discussion: Hessian. Let i(xl.··· xn} be a twice differentiable function. The
matrix

( (Pi )
Hess(f) =.\fatr. OXiOXj {2A9}

is called the Hessian of f at (.rl.··· .xn ). If the point is an extremal point. then
the Hessian determines its nature.

Exercise.
(Al Compute Ds: for the following vector fields on R 3

:

(l) v = (eY - .r costr c). 0. .:: cos{x.:)).
(2) v =(y2 sin c, 2J' y sin c..r y2 cos z).
(B) If we superpose the two Coulomb electric fields due to point charges of +q and
-q at the origin and at (d. O. 0). respecti....ely. we can get the electric field created
by an appropriate dipole moment. Find the matrix .4 such that the electric field
due to the dipole moment p located at the origin is given by Ap.

2A.8 Differentiation of complex functions. A map from C to
itself is usually called a complex function. If the following limit exists74

1
. f(z+h)-f(z)
im h .h.....O

(2.50)

i3'Yhenever the components are written, we interpret the vectors to be column
vectors.

i4This means that the limit does not depend on how the origin is approached on
the complex plane.
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we say f is differentiable at z. or f is holomorphic at z, The limit is
written as f' (z) or df / dz and is called the derivative of f at z, Re­
member that this is a strong derivative (-2A.4). The condition that
the limit does not depend on the direction along which the point z + h
reaches z is exactly the linearity requirement of the response. See 5.1­
4. 6.15.

Exercise.
(1) Show that I(::} =z is not strongly differentiable. In complex analysis, we sim­
ply say f is not differentiable (-5.1).
(2) ::nzm is strongly differentiable only when m = O.

2.B Partial Differentiation Revisited

2B.1 Partial differentiation. We have already used 0/Ot. etc .. in 1.
For simplicity. let f(x. y) be a real-valued function defined in a region
D C R 2

• and (a. b) ED. If f (x. b) is differentiable at a with respect
to x. we say that f(x. y) is partially differentiable with respect to x at
(a. b). and the derivative is denoted by fx (a. b). More generally. if f is
partial differentiable in D with respect to x, we may define f;r(x. y):

f.r(X,y) = lim f(x + h. y) - f(x. y) = of =o;r/.
h-O h ox

If we write z = f(x. y). f;r(x. y) is written as oz/ox. fx(x. y) is called
the partial derivative of f with respect to x. Usually. we do not explic­
itly write the variables kept constant (in this case y). We can analo­
gously define fJf(x. y)/fJy.

Discussion [Hadamard's notation]. Hadamard intoduced a convenient set of
notations to describe analysis of multivariable functions of x = (Xl,··· ,Xn ) . Let
0= (01.02 .•.•• On). We write

-

., ·t. II ,. I
.\ - .'j ..
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Then. the partial differential operator is written as follows:

DO f(x) =II :o~J(X)= 8;;~X).
i xi X

(2.54)

(1) The multinomial theorem reads

n '" TI! IVIxl = L...., '''Ix .
IV J'.

(2.55)

where the summation is over all N such that lSI = n.
(2) Taylor expansion reads

(2.56)

Of course. fll') == D'\' f. For example.

x·1\'
e1zl

= ""­L- 'rl'
]'~ ... ~

(2.57)

2B.2 Warning. Even if Ix and t, exist at a point. I need not be
continuous at the point.

Exercise.
(I) Xlake or sketch such an example.
(2) If fry is not continuous. then fZ ll = fyz is not guaranteed. Compute fzy and
fyz at the origin for

xy(.r2 _ y2 )
f(x.y) = 2 2 for (x·y):F (0.0) (2.58)

x +y

with j(O.O) = O. If you wish. use Mathematica for this problem and report what
you find.

(2.60)
o ex 0 oY 0 0 0-=--+--=-+-.
ox ox oX ox oY oX oY

02'l/J 202'l/J
ot2 - C ox2 = O. (2.59)

where c is a positive constant. This is a ID wave equation (-1.2,
alD.ll). In this formula, %x is the partial differentiation with t
being kept constant, which is not explicitly written. We wish to change
the variables from [z, t) to (X. Y) such that X =x +ct and Y = x - ct.
Now. Y is kept constant, when we write a/ox. With the aid of the
chain rule

2B.3 Change of variables. Suppose f is a well behaved function
of x and t satisfying
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and

(2.61 )

Or

~ = ~ {.£. + c~}. ~ = _!{.£. -c~} .ax 2 at ax ay 2 at ax
That is. we can rewrite the wave equation in the following form:

821/J

8X8Y = O.

This implies that 8'lj! / 8Y is a function of Y alone:75

81/J
DY =¢(Y).

(2.62)

(2.63)

(2.64)

Hence. '1/.1 must be a sum of the function of Y only and X only. In other
words. the most general solution of (2.59) is given by

7fJ(x. t) = F(x + et) + G(x - et). (2.65 )

(2.66 )

where F and G are differentiable functions. Notice that F(x + et)
denotes a wave propagating in the -x-direction with speed e without
changing its shape. We have found a general solution to the wave equa­
tion:

2B.4 D'Alembert's solution for J-space wave equation. Con­
sider (2.59) on the whole l-space R and for all time t E (0. +(0) with
the initial condition 'll(x.O) = f(x). and 8t'll(x.0) = g(x). where f is
C2 and 9 is C1.'6 Then

1 1 l x
+

c1

u(t. x) = -2 [f(x + et) + f(x - ct)] + -2 g(s)ds.
c x-ct

This is called d 'Alembert's formula and is a C2-function. This is actu­
ally the unique solution of the problem.
[Demo] From (2.65) the functions F and G in the general solution are determined
as follows:

F(x) + G(x) = j(x).

cF'(:r) - cG'(:r) = g(x).

(2.67)

(2.68)

n'\Ye assume well-behavedness of functions as much as we need to avoid technical
complications.

76 em denotes rn-times continuously differentiable functions.
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From (2.68) we get

liZF(x) - G(x) =- g«)d( + coast,
c Zo

(2.69)

(2.72)

Sth!"!,,,-,f, e J

f/I1c,,··d f;

where Xo is an arbitrary base point. From (2.68) and (2.69), we can solve F and G
as

F(x) = ~ [J(X) + ~1: 9«)d(] , (2.70)

G(x) = ~ [J(X) - ~1: 9«)d(] . (2.71)

Here the integration constant in (2.69) is absorbed into the choice of xo. This gives
the desired formula.

Discussion,
(A) Formally apply the method to derive d'Alembert's formula to the initial value
pro blern u(x. 0) = f (x) and 8y11 (x. 0) = g(x) of the Laplace equation to derive

1 i l z
+

i ll

u(x. y ) = '2 [f (x + iy )+ J(x - iy)]- '2 . g(s)ds
z-,y

The formula tells us that the fate of the solution is determined by the behavior of
the functions on the complex plane, For example. if f(x) = 1/(1 + x 2 ) . then sin­
gularities appear in the solution which cannot be controlled by the initial condition
(not well posed -28.3).

(B) Solve the forced ID wave equation on R

(
8

2
(
2)

8t 2 - (:Jx2 U =Q(x. t)

with the initial condition 11 = J(x) and at u = 0 (Use x ± t) (-30.7).

(2,73)

(2.74)

Exercise.
(A) For a ID wave equation. if the initial condition is nonzero only 011 a compact
subset of R, then so is the solution for any t > 0 (-30.3).
(B) All the spherically symmetric solutions to the 3-wave equation

{:J2 u
- -e2..:lu =0at2

in the whole space-time have the following form (see 2B.4 for..:l. esp., (2.158)):

( ) F(~I- et) + F(jlrl + ct)
u):.t= 11'1 • (2.75)

(C)
(1) Find the solution to the J-space wave equation (e = 1) on R with the following
initial data:

Ut=O = <:osh-2 a, atlIt=o = cosh-2 z tanh ,r. (2.76)
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(2) Find the solution to the l-space wave equation (c = 1) on R with the initial
condition

Ut=O =0, otU11=0 =A sechz, (2.77)

'Write A in terms of the total energy (-+a1D.12 or 30.4).
(3) Illustrate the solution of the waveequation for the following initial displacement
with zero initial velocity.

( I )
( It )

(D) Obtain the solution under the Cauchy condition given on the line x = tu
as u(:r..r/a) = 1(3:) and Otu(:r.x/a) = g(x). 'What happens if a =±c?
(E) Find the general solution to
(1)

(2)

02 u cPu
.<:l 2 - {) 2 =sin z cos t.ot .r

(2. i8)

(2.79)

2B.5 Wave equation with boundary condition. Consider the
initial value problem for l-space wave equation on [0,L]

(
(J2 a2

)at2 - c2 ax2 u == O. x E (0. L). t E (0.00).

The initial condition is

au
1L == f(x). at == g(x). for t == O. x E [0. L].

(2.80)

(2.81 )

where f is a twice and 9 is a once differentiable function. and the
boundary condition is u == 0 at x = 0 and x == L for all t > O. In this
case the boundary condition implies from (2.65) F( -ct) + G( ct) = 0
and F(L - ct) + G(L + et) == 0 for all t > O. Thus F(x) = -G( -x) and
F(x + L) == -G( -x + L),ii Following 2B.4. we get

1 [ .i: ]u(t.x) == - f(x + ct) - f(-x + ct) + - g(Od( .
2 C -Z+c1

"F(x) = -G(-x+2L)=F(x+2L).
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We notice that F(x) =F(x +2L). That is, F must be a periodic func­
tion of period 2L. This is the source of Daniel Bernoulli's idea (-+1.6).

See the following example. (71H ,'j 4i1 -Ya-p(t: cj:~,( 'I 1j"...~J

U IA -7' Ile··J

(2.83)

(VeUAA/Iil

(~, EZ?1,-Jr.)

-L

t

A~~ov<s iJw7c../..{",f

8~J 821/J
aT =D8X2' (2.84)

Thus. we understand the meaning of (2.83): it is a diffusion process
advected by the flow of constant speed c to the positive z-direction.

2B.6 Moving coordinates. Consider the following equation

81/' 81/' 82
1/J

~+cT=D~.ot o» ox-
where c and D are positive constants. If c = O. the equation is 2D
diffusion equation. which should describe the relaxation of 1/J back to
'equilibrium.' Let us rewrite this equation with the aid of the moving
coordinate X = x - ct. To do so. the easiest way is to rewrite the
equation in terms of t and X as the new independent variables. It is
advantageous to introduce new time T =t to minimize confusion. We
get

Exercise.
(A) Rewrite the following equation with the aid of the moving coordinate X =x-vt,
and find the general solution

0; + t' ::. = F(x - t·t). (2.85)

where F is a well-behaved function.
(B) Consider the following (original) Fisher equation:

{)t' {)2t:at = D {);r2 + v{l - tb). (2.86)
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(1) Rewrite the equation as seen from the moving coordinate with velocity e.
(2) Find the equation for a steady moving front propagating with speed r,
(3) How can you show that there is such a wave front for sufficiently large v?

2B.7 d'Alembert 1717-1783.i 8 He was born as an illegitimate son
of a salon hostess and a cavalry officer~ abandoned on the steps of the
Saint Jean-Le-Rond in Paris by his mother, but was quickly located
by his father. who found him a home with a humble glazier, named
Rousseau. His father. though never revealed his identity, provided an
annual annuity of 1200 livres and also helped him to enroll a prestigious
school. College de Quatre-Nations, where he developed an aversion for
religions. He started his mathematical study in ca 1738. He learned
mathematics largely by himself. later writing that mathematics was the
only occupation really interested him.

In 1739. he started submitting papers to Paris Academy of Science.
and was elected a member in 1741. In 1743, he published his most fa­
mous scientific work. Traite de Dynamique. in which he formulated his
principle, From 1744 for three years he developed partial differential
equations as a branch of calculus, inventing the wave equation (-30).
His study of fluid dynamics is also a breakthrough (e.g.. d'Alemberts
paradox). However. d'Alemberts quickly written papers were poorly
understood. When Euler (-4.4) refined these ideas and wrote mas­
terful expositions that did not give dAlembert ample credit, he was
furious,

After 1750. his interest turned increasingly beyond mathematics.
and served as the science editor of Encuclopedie for seven years. but he
resigned in 1758. due to his article on Genevan pastors who "no longer
believe in the divinity of Jesus Christ. ,. .... He was accepted to the
French Academy in 1754. He worked zealously to enhance its dignity
and was made perpetual secretary in 1772. As his scientific and literary
fame spread. Friedrich the Great wanted him to be the president of the
Berlin Academy in 1764. dAlembert recommended Euler for the posi­
tion, This healed a rift that had developed for more than a decade. He
subsequently declined the offer of Catherine the Great as well, refusing
to leave the cultural capitol. Paris.

D'Alembert. though himself discouraged about the future of math­
ematics, helped encourage Lagrange (-3.5) and Laplace (-33.3) to
launch their careers.

He stressed the importance of continuity, which led him to the con­
siderations of limits. Almost alone in his time. he understood deriva­
tives as ratios of limits of quotients of increments, He clearly recognized
that all the complex numbers call be written as the sum of real and

i8~Iainly based on p479- of R. Calinger. Classics of Mathematics (Prentice-Hall.
1995). Read the original for his much more colorful private life. etc.
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imaginary parts.

2.0 Vector Analysis Revisited

2C.l Gradient. Suppose we have a sufficiently smooth function f :
D -- R. where D C R 2 is a region. We may imagine that f(P) for
P E D is the altitude of the point P on the island D. Since we assume
the landscape to be sufficiently smooth, at each point on D there is a
well defined direction n of the steepest ascent and the slope (magni­
tude) s(2 0). That is. at each point on D, we may define the gradient
vector sn. which will be denoted by a vector grad f (cf. -bf 2A.5).

Exercise.
(1) Compute grad(r- 2 ) .

(2) Compute grad (fg).

2C.2 Coordinate expression of grad f. Although grad f is mean­
ingful without any specificcoordinate system (i.e.. the concept is coordinate­
free). in actual calculations. introduction of a coordinate system is of-
ten useful. The 3-space version of gradient reads as follows. Choose a
Cartesian coordinate system O-xyz.

or

df .af .af kafgra =t-+J-+-.ax ay az

(2.87)

(2.88)

2C.3 Remark. Xote that to represent grad f (in 3-space) in terms of numbers. we
need two devices: one is a coordinate system to specify the point in D with three
numbers. which allow us to describe f as a function of three independent variables;
the other device is the basis vectors spanning the three dimensional vector 'grad r
at each point on D (i.e.. spanning the tangent space at each point of D). In prin­
ciple. any choice is fine. but practically. it is wise to choose these base vectors to
be parallel to the coordinate directions at each point. In the choice of 2C.2, the
coordinate system has globally the same coordinate directions at every point on
D. and the basis vectors of the tangent space are chosen to be parallel to these
directions, so again globally uniformly chosen. Nonuniformity of the choice of the
basic vectors causes complications. We must be very careful (-2C.7 l 2C.12 for a
warning). especially when we formally use operators explained below.
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(2.89)

2C.4 Nabla or del. (2.88) suggests that grad is a map which maps f
to the gradient vector at each point in its domain (if f is differentiable).
We often write this linear operator (-+1.4) as V. which is called nabla, 9

but is often read 'del' in the US. We write grad f = Vf. V has the
following expression if we use the Cartesian coordinates

n a
L ek!31 '
k=l UXk

where Xk is the k-th coordinate and ek is the unit directional vector in
the k-th coordinate direction.

2C.5 Divergence. Suppose we have a flow field (velocity field) u
on a region D E R3. Let us consider a convex region (-+2A.l Dis­
cussion (A)) V c R 3 which may be imagined to be covered by area
elements dS which can be identified with a vector whose magnitude
IdSI is the area of the area element. and whose direction is parallel to
the outward normal direction of the area element. Then u . dS is the
rate of the volume of fluid going out through the area element in the
unit time. The area integral

{ dB·uja,-

(2.90)

is the total amount of the volume of the fluid lost from the region V.
The following limit. if exists. is called the divergence of the vector field
u at point P and is written as di» u:

" _ . fai' U . dB
dn u = lim IVI .

11'1--0

where the limit is taken over a nested sequence of convex volumes'"
converging to a unique point P. di» u is the rate of loss of the quantity
carried by the flow field u per unit volume (Le.. the loss rate density).

See Section 1.5 of Jackson. Classical Electrodynamics (Wiley. 19i5) for similar ex­
amples.

79':\abla' is a kind of harp (Assyrian harp).
80 wit h piecewise smooth surfaces

Discussion
The electric displacement satisfies dit: D = p (-+alF.10). where p is the charge
density. At the boundary of two media I and II is a surface charge of density 0'.

Let n be the unit normal "ector of the interface pointing from I to II. Show

I

p/I(box

(2.91)(D/-DII)·n=O'.
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(2.92)

2C.6 Cartesian expression of div. From (2.90) assuming the ex­
istence of the limit, we may easily derive the Cartesian expression for
div. Choose as V a tiny cube whose surfaces are perpendicular to the
Cartesian coordinates of O-xyz. We immediately get

di Bux Buy Bu;zvu=-+-+-.
ax By az

diu has the following coordinate-free definition:

di» u = Tr (~:) .

Exercise. Find the vector potential (....2C.16) for rlr3, if any.

(2.93)

2C.7 Operator div. (2.92) again suggests that di» is a linear op­
erator (-41.4) which maps a vector field to a scalar field. Comparing
(2,89) and (2.92) allows us to write

diu u =V'. u.

This'abuse' of nabla is allowed only in the Cartesian coordinates (why?
-42C.3). Generalization to n-space is straightforward.

Exercise. Compute dit·( r Ir).

2C.8 Curl. Let u be a vector field as in 2C.5. Take a singly connected'"
compact surface S in R 3 whose boundary is smooth. The boundary
closed curve with the orientation according to the right-hand rule is
denoted by as (see Fig.). Consider the following line integral along
as: .

[ u - dl.
las

where dl is the line element along the boundary curve. Let us imagine
a straight vortex line and take S to be a disc perpendicular to the line
such that its center is on the line. Immediately we see that this integral
is the strength of the vortex whose center (singular point) goes through
S. Therefore. the following limit. if exists, describes the 'area' density
of the n-component of the vortex (as in the case of angular velocity,

81 A region is singly connected. if. for any given pair of points in the region, any
two curves connecting them are homotopic. That is. they can be smoothly deformed
into each other without going out the region.
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the direction of vortex is the direction of the axis of rotation with the
right-hand rule):

• J85 u· dl
n· curl u = lim lSI ' (2.94)

151.....0

where the limit is over the sequence of smooth surfaces which converges
to point P with its orientation in the n-direction. If the limit exists,
then obviously there is a vector curl u called curl of the vector field u.

2C.9 Cartesian expression of curl. If we assume the existence
of the limit (2.94). we can easily derive the Cartesian expression for
curl u. We have

or

curl u = (au; _ auy. aux _ au:; . a·ux _ auy) .
ay oz oz ax ay ox

t J k
curlu = ax Oy 0:; = \7 xu.

U x uy U:;

(2.95)

(2.96)

This 'abuse' of the nabla symbol is admissible only with the Cartesian
coordinates (-2C.3).

Componentwisely. we can write (with the summation convention)

(2.97)

where €ijk is defined as €123 =1 and €ijk = sgn(ijk). where sgn(ijk) is
the sign of the permutation: if (ij k) is obtained from (123) with even
number of exchanges of symbols. it is +1. and otherwise _1. 82 Notice
that

(2.98)

A useful formula is

(2.99)

(The summation convention is implied.)

Exercise.
(1) Let tl =(:r2.:._xy3::2.xy2::). Compute div » and curl v,
(2) Show

dir(jv) = grad f· tI + [di» »,

cur/(ftl) = gradf x tI + [curl»,

82e.g.. (213) =-1. and (312) =+1.
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(3) Compute
(2.102)

(2.103)

(4) Show
f)2

curl curl u =grad divu - L ~ 2 u.(??)
oz:•

See 2C.12 about the Laplacian applied on a vector.
The coordinate free definition can be written as follows. Compute

the strong derivative du j dx (-2A. 7) . Denote its skew symmetric
part83 as (dujdx)_.84 Then

(dU) 1
dx _ v = '2 cur l U x v, (2.104)

where v is an arbitrary 3-vector. See alD.6.

(2.105 )

(2.106)

Discussion
Let us study the motion of a small vector e near the origin flowing with a flow field
specified by v. "'e haw

/~ \V If e is 'mall. it> deformation is gomn~~ : .•.

(~/ de = v(e) _ v(O} = (dV) e.
1// dt dr 0

where the (strong) derivative of the velocity field is evaluate at the origin. For a
wry small time M. we can solve this equation as

elM} = (1 +bt (~:)Je(O}. (2.10i)

\Ye can separate the velocity derivative into the symmetric (+) and anti (or skew)
symmetric part (-) as

where

(~;) 0 = (~;) + + (~:) - '

( ~: ) ± == ~ [(~: ) 0 ± (~:)~] .

(2.108)

(2.109)
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Ignoring higher order terms, we can rewrite (2.107) as

(2.110)

This tells us that we may separately study the effects of the symmetric and of the
skew symmetric parts.
(1) Demonstrate that the symmetric part changes the volume of a (small) cube
C spanned by es, ey, and e:. The changing rate of the volume is given by div tI

(-2C.6).
(2) Demonstrate that the skew part does not change the volume of the cube C. It
rotates the cube with the angular velocity curlv/2. This is (2.104) above.

2C.I0 Potential field, potential, solenoidal field, irrotational
field. If a vector field u allows an expression u = grad ¢, then the field
is called a potential field and ¢ is called its potential. A field without
divergence. di» u = O. is called a divergenceless or solenoidal field. The
field without curl. curl u =O. is called an irrotational field.

2C.l1 Laplacian, harmonic function. The operator D.. defined by

ill == di» grad I (2.111)

is called the Laplacian. and is often written as \72 . il is defined for a
scalar function. A function f satisfying ilf = a in a region D is called
a harmonic function in D (-5.6). According to our understanding
of the Laplacian (-1.13) a harmonic function is a function which is
invariant under the spatial moving average (-29.4-5). Hence, intu­
itively. no local extrema should exist. Graphs of harmonic functions.

(a.)
(t.)

2C.12 Laplacian for vector fields. If weformally calculate curl curl u
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in the Cartesian coordinates. then we have (.....(11)

curl curl u = grad div u - \72u .

Since the formal calculation treating \7 as a vector is legitimate only in
the Cartesian coordinate system (cf. 2C.3), this calculation is meaning­
ful only in the Cartesian system. In particular, \72u = (.a.u~,-" .a.uy • .a.uJ
is meaningful only in this coordinate system. However, the other two
terms in the above equality are coordinate-free. Hence, we define .a.u
as

.a.u == grad diu u - curl curl u. (2.112)

2C.13 Theorem [Gauss-Stokes-Green's theorem]. From our def­
initions of divergence and curl (-2C.5. 2C.8), we have85

(1) Gauss' theorem.

f u· dS = j div U dr, (2.113)l a\· t:

where V is a region in the 3-space and dr is the volume element.
(2) Stokes' theorem.P"

r u. dl = rcurl u· dS. (2.114)las ls
where S is a compact surface in 3-space.
(3) In 2-space. Stokes' theorem reduces to Green's theorem (.....6.8)

f r (a.u av)
laD{udx + 'udy) =lD - ay + ax dxdy.

where u and v are differentiable functions of x and y.

(2.115 )

(2.116)is v· dS

Exercise.si

(A)
(1) Let 5 = {(x.y.z) 14.1'2 + y2 +: = 1. -3 S; z} and v(.1'.y.z) = (3xy + 7y +
.1'.y.z+3). What is Isv·dS?
(2) Let 5 ={(x,y•.:) Ix:? + y2 + 4:6 =4,0:5 z} and v{x,y,:) = (e ll,z.x2). What
is Is v . dS?
(3) Compute

85Here the boundaries 8l·. 85 and 8D below must be sufficiently smooth, and
the vector field must be (piecewise) Cl.

86 George Gabriel Stokes. 1819-1903.
8iFrom K Fukaya. Electromagnetic Fields and Vector Analysis (Iwanami, 1995),

p98.
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for S ={(x. y•c) Ix2+ y2+4.:6 =4,0 :5 z} and v(x, y, z) =(eY, z, x2+ cos y) (this
is not a misprint).
(B) Prove Green's formula (??) (-16A.19).

2C.14 Poincare's lemma."
(1) div curlA = 0,
(2) curl grad ¢ = O.
[Demo] Let" be a compact region of R 3 whose boundary av is sufficiently smooth.
Notice that a21' = 0. With the aid of the Gauss-Stokes-Green theorem (-2C.13),
we haw

[ dr dit: curl A = [ curl A . dS = [ A . dt. = o. (2.117)
lv lav la2 \ '

To demonstrate (2). take a surface S whose boundary as is sufficiently smooth.
Then, Stokes' theorem and the definition of grad tell us

r curl grad 0 . dS = r grad 0 . dt. = O.
ls las

(2.118)

11"\

tJp
SO

d$

2C.15 Remark: differential forms. Notice that these relations are
due to the topologically trivial fact that the boundary of a boundary
is an empty set (02V =0). These are examples of the general formula
d2w = O. where w is a differential form. L M. Singer and J. A. Thorpe,
Lecture Notes on Elementary Topology and Geometry (Scott. Foresman
and Company. 1967) is strongly recommended. B. Schutz. Geometrical
Methods of Mathematical Physics (Cambridge UP, 1980) is less modern,
but may still be good for physicists who are not interested in elegance
and depth of mathematical ideas. The Gauss-Stokes-Green theorem
has the following unified expression

r dw = [ w.
1.'1 la.\!

(2.119)

(2.120)

where M is a n-manifold (which must be sufficiently smooth). and w
is a differential form. Notice that this is a natural extension of the
fundamental theorem of calculus:

[ df = f (b) - f (a) (= r 1).
l[a.b] l[al,[bj

Poincare's lemma ~w = 0 follows from Ej2M = 0. d and 0 are, in a
certain sense. dual (Good symbols reveal deep relations. This duality
is the duality between cohomology and homology. The references cited
above will tell the reader about this a bit.).

2C.16 Converse of Poincare's lemma holds.

88Henri Poincare. 1854-1912.
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(1) If a vector field F is irrotational (Le., curl F =0) in a singly con­
nected region, there is a potential function </> such that F =grad </>.
(2) If a vector field F is solenoidal (i.e., div F = 0) in a singly con­
nected region. then there is a vector field (called a vector potential) A
such that F =curl A. 0
(1) can be demonstrated easily by calculation. Do not overlook the
importance of the shape of the region. In the language of differential
forms. the converse of Poincare's lemma can be written as: if dw = 0 =>
there is a differential form </> such that w = d</>
[Demo of (1)J Define

<t>(x) _11

dtF(ta; + (1 - t)a;o) . (:t - :to). (2,121)

The assumption of (1) implies that for any closed curve C in the region Ie F ·de =O.
That is. the line integral of F along a smooth curve in the region D connecting two
points :to E D and ;r E D does not depend on smooth paths connecting these two
points. Hence 0 is a well-defined function of e. Check that actually grad ¢ =F.
Perhaps the clearest way to demonstrate (2) is to use the Helmholtz-Hodge theorem
2C.17 below. The condition of (2) with the aid of 2C.14 implies that F can be
written as (2.124) with ~o = 0 such that 0 - 0 at infinity. We will see later that
only 0 == 0 satisfies this condition (-Liouville's theorem 29.13).

Exercise
(A)
(1) Show that the following 3-wctor field has a vector potential and construct it.

v = (ell - xcos(x:).O.:cos(x:)).

(2) Show that the following 3-vector field has a scalar potential and find it

v = (y2 sin c. 2xy sin c. xl cos e),

(2.122)

(2.123)

(3) Find the vector potential of v =(_y/(:r2+ y2). x/(x2+ y2). 0).
(4) Find a potential for tl =j(r)r.
(B) Construct an example of an irrotational vector field on an appropriate domain
which does not have any scalar potential.

2C.17 Theorem [Helmholtz-Hodge]. Let F be a vector field which
is once differentiable. and its first order derivatives vanish at infinity.
Then. there is a scalar field </> and a solenoidal (i.e., div A = 0) vector
field A such that89

F = grad </> + curl A. (2.124)

o
This call be rewritten with the aid of 2C.14 as

89"'e need a condition to control the 'size' of F near infinity: For example.
IFI "" 1/r2 is a good condition. Such a condition is needed because we must solve
the Poisson equation to find 0 and A (cf. 26B.4).
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2C.18 Theorem [Helmholtz-Stokes-Blumental]. Let F be a vec­
tor field which is once differentiable, and its first order derivatives vanish
at infinity. Then. there is the following decomposition of F:

F =U + V, curl U =0, div V =O.

o

Discussion.
Check the following formal result: Let

(2.125)

l!I(r)

A(r)

= _2... r divF dr.
41r k r

= 2... rcurlF dr.
41r Jv r

(2.126)

(2.127)

where r is the distance between the volume element dr and r. Furthermore, V is
the finite domain containing the supports of curlF and dirF. Then

F =grad 0 + curlA. (2.128)

2C.19 Formulas of vector calculus.
(1) grad A . B:;;:: (B· \7)A + (A· \7)B + B x curl A + A x curl B.
(2) dil'{A x B) :;;:: curl A· B - curl B . A.
(3) curl(A x B):;;:: (dilIB)A - (divA)B + (B· \7)A - (A· \7)B.
In particular. curl(A x r/2):;;:: A. if A is constant.
(4) (C· v)(A x B):;;:: A x (C· \7)B - B x (C· \7)A.
(5) C· grad(A· B) :;;:: A· (C· \7)B + B . (C· \7)A.
(6) di1'(gradj x gradg) :;;:: O.

Exercise.
Demonstrate all the formulas. In curI(A x r/2) = A. A must be constant. If not.
what is the result? [Perhaps. the componentwise demonstration like (2.104) is the
easiest .J

2.D Curvilinear Coordinates

2D.l Curvilinear coordinates, metric tensor. The role of a co­
ordinate system in 3-space is to assign uniquely a numerical vector
(ql . q2. q3) to each point in R3. Thus the Cartesian coordinates of the
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point x1.x2,x3 are unique functions of (ql,q2,q'J). Let (ql + dql , q2+
dq2. q3 +dq3) be a point an infinitesimal distance away from (ql~ q2, q3).
The distance between these two points ds can be written as the follow­
ing quadratic form:

2 '" i'ds =L.. gijdq drj,
t,j

where
ox k oxk

gij ..- ~ oqi oqj'

which is called the metric tensor.

(2.129)

(2.130)

2D.2 Riemann geometry. The Riemann geometry (-+7.15) is the
geometry determined by the metric tensor. M. Spivac, Comprehensive
Introduction to Differential Geometry (Publish or Perish, Inc., Berkeley.
1979). vol. II. Chapter 4 contains Riemann's epoch-making inaugural
lecture (English translation) with a detailed mathematical paraphrase
of the lecture. "What did Riemann say?". According to Dedekind.P"
Gauss (-+6.17) sat at the lecture which surpassed all his expectations.
in the greatest astonishment. and on the way back from the faculty
meeting he spoke to Wilhelm Weber (Riemann's lifelong patron). with
the greatest appreciation. and with an excitement rare for him, about
the depth of the idea presented by Riemann.

Read for a nice introduction to Riemann geometry an overview by
Kazdan in Bull. Amer. Math. Soc. 33, 339 (1996).

2D.3 Orthogonal curvilinear coordinate system. At each point
(ql. q2. q3). call the direction of the tangent to the z-th coordinate the
i-th coordinate direction at (ql. q2. q3) [e.g.. the direction ofthe tanfent
to the second coordinate is the direction parallel to (ql , q2 + dq2,q ) ­
(ql , q2. q3 )]. If at every point all the coordinate directions are orthogonal
to each other. we call the coordinate system an orthogonal curvilinear
coordinate system. In this case. the metric tensor is always diagonal at
every point:

gi) = (2.131 )

where

90 Julius Wilhelm Richard Dedekind, 1831-1916.
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2D.4 Cylindrical coordinates. (ql, q2, q3) = (r, ip, a), and

x =reos <p,

y = r sm c,
Z = z.

From (2.132) we have hI = L h2 = r, and h3 =1.

2D.5 Spherical coordinates. (ql,q2,q3) = (r,O,rp), and

x = r sin 8cos rp.
y = T sin Bsin ip,

z = r cosB.

(2.133)

(2.134)

From (2.132) we have hI = 1. h2 = r, and h3 = r sinO.

2D.6 Elliptic cylindrical coordlnates.P' (ql.q2. q3) = ({,1].rp), and
for some positive real c

x =eJ(e - 1)(1 _1]2) cos rp.

y = cJ({2 - 1)(1 - 1]2) sin rp.
z = e{1].

From (2.132) we have

(2.135)

(2.137)

Je - 1P Je - 1]2 . IhI = e {2 -1 . h2 = C 1-ry2' ha = Cy({2 -1)(1- ry2). (2.136)

where { and 1] can also be defined as

{= Tl + T2. 17 = rl - r2 •

2c 2c

Discussion.
(A) Compute hi (-+2D.3) for the toroidal coordinates (a. 8•..;) where

x = CSillh a cos,p _ csinh a sin,p ~ _ csin 8
cosh a - cosh ,3' Y - cosh Q - cosh J' ~ - cosh Q - cosh ;3 . (2.138)

Here a E [0.oc), 3,..p E (-Ti, Til. What is the general shape of (j = constant surface?
(B) Introduce u and v variables that are related to p and z as

(2.139)

91This is a natural coordinate system for the Schrodinger equation for Ht molec­
ular ion.
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such that u =const. and l' =const. curves are orthogonal on the ip, z)-plane, and
~ /l'-. P = 0 is among such curves. Rotating the plane around the z-axis, we can make

I; surfaces orthogonal to each other. Therefore. if we introduce the rotation angle .p.

I~~ (Ii. t· • .;) is a orthogonal curvilinear coordinate system in 3-space. Its relation to the
'" z: usual Cartesian system is given by p = Jx2 + y2 and e = tan-lex/v).

"
" x = Fl(u.t')cos;p, (2.140)

1\ »p y = Fdu,t·) sin 't", (2.141)

z = F2 (u. v). (2.142)

(1) For this system show that

(0!u1)Z+(0:uZ)2. h2 = (OFl)Z (OF2)2hI = u u or + or ,h3 = p.

(2) For elliptic cylindrical coordinates. the choice is

p = aJ(11 2 - 1)(1- v2), z = auv

(2.143 )

(2.144 )

2D.7 Gradient in orthogonal curvilinear coordinates. Consider
an infinitesimal cube whose apices are at (q1 + fh dq1. i + e2dq2. q3 +
e3dq3). where ei = 0 or 1. The lengths of the edges of the cube are
Ih1dq11. Ih2dq2 1. and Ih3dq31. From the geometrical definition of grad
(-2C.l). we have

o·~ l~ l~ 1~>'- c,2 (grad¢h = -h n r (grad¢)z = -h !:l ')' (grad¢)s = -h 8 3' (2.145)
~ D 1 oq 2 oq- 3 q

h.l. cI { 2 Here. 1. 2 and 3 denote the components of the vector in the 1. 2 and 3
coordinate directions, respectively.

(J'" Exercise.
(A) Find the velocity and acceleration components along the coordinate directions
of a particle in
(1) spherical coordinates.
(2) elliptical cylindrical coordinates.
[Hint. Find the relation between the unit vectors of the curvilinear and Cartesian
coordinates.]
(B) Demonstrate

. 0 1 0 sin 'P 0= sm(Jcos..;- + cosfJcos't"-- - -.--.or r f)(J r sin (J o;,p

. fJ' 8 fJ' 1 8 cos ry 8= sin sin ~-+COS Sln'P----.--,y OT r f)(J T Sill e 8ry .

o . 111 8= cosO- - smll--,
8r r ofJ
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(2.149)

2D.8 Volume element in orthogonal curvilinear coordinates.
From the consideration above obviously the volume element dr is given
by

Exercise. Compute the volume element for the elliptic cylindrical coordinates.

2D.9 Divergence and curl in orthogonal curvilinear coordi­
nates. From the geometrical definitions of these quantities (-+2C.5,
2C.8). we get

. 1 [0 0 0 ]di» A = h
1h2h2

oql (h2haA1) + 8q2(hah1Az)+ oqa (h1h2Aa) ,

(2.150)

(curl Ah = h2~3 [O~2 (h3A3 ) - o~a (h2A2)] . (2.151)

(curl Ah and (curl Ah are obtained from (2.151) by cyclic permuta­
tions of the indices. Notice that in these formulas Ai are the actual
projection of the vector A on the i-th coordinate direction.

Exercise.
(1) Compute curl and dir of A = r'1er . where €r is the unit coordinate vector par­
allel to the radius in the spherical coordinates. How about if e , is the unit vector
parallel to the radius in the cylindrical coordinates?
(2) Show in the spherical coordinates that

1 (
cot 8€.;) er

cur =--.r r'1 (2.152)

(2.154)

2D.IO Laplacian in orthogonal curvilinear coordinates. Com­
bining (2.145) and (2.150). we get for the Laplacian (.6. == divgrad)

1 [8 h2ha 8 0 hah 1 0 0 h1h2 0]
.6. = h1h2h3 Oql T Oql + OQ2 h; 8Q2 + oqa -;:;; oqa . (2.153)

For the cylindrical coordinates. we have

188 182 82

.6.=--r-+--+-.
r or or r2 Ot.p2 8z2

Notice that
100 82 18
--r- = -+--.
r 8r 8r or2 r or
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For the spherical coordinates, we have

10 20 1 26.=--r -+-Lr2 or or r 2
(2.156)

with

Notice that
10 20 EP 20102

--r - = -+--= --rr2 ar or or2 ror r ar2 •

(2.157)

(2.158)

Exercise. Derive the formula for the Laplacian in the elliptic cylindrical coordi­
nates.
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