
APPENDIX al CONVENTIONAL PHYSICS EXAMPLES

Notice: This is not a course of physics, so the contents of this Appendix
will never be stressed in the course. This Appendix should not be
regarded as a substitute of a course on physics of continuum bodies
and classical fields: it is a mere quick reference to refresh the reader's
knowledge.

These Appendices give actual (physical) situations where represen­
tative PDE arise. Derivation of many PDE is considered from the
point of view of the local description of conservation laws. After all,
the equations of motion are expressions of the conservation of mo­
mentum. the diffusion equation is an expression of mass conservation.
etc. '(niqueness of the solutions is discussed from the physics point
of view. Vector analysis is freely used. so those who have some diffi­
culties should consult 2C. Most topics in these appendices are basic
and rather dull (= conventional physics). Since the lecturer has no
interest in most of these problems. they will not be discussed in this
course.

alA Balance Equation

Key words: continuum. volume element. conservation law,
flux density.

alA.! Continuum description. Macroscopic objects are often treated as con­
tinuum bodies. This description is valid when the motion or the deformation of
the body is extremely gentle at the microscopic level. Therefore, the motion must
be sufficiently slow. and the deformation must be sufficiently small (i.e.. the rela­
tive displacement of adjacent molecules or atoms must be much smaller than their
sizes).33.34

alA.2 Volume element. The basic element of continuum description is the vol­
ume element. whose size is much smaller than the macroscopic representative scale

33Consequently. in many cases in which continuum description is admissible, we
may safely assume local thermodynamic equilibrium.

341t should not be forgotten. however. that continuum mechanics treats macro­
scopic bodies as a collection of geometrical points. so the microscopic rotational
degree of freedom is completely ignored. To describe microscopic degrees of free­
dom. the general strategy is to introduce more fields such as the field of an order
parameter in statistical physics.
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(say. the smallest scale of the macroscopic observation), but much larger than the
atomic scale. Thus the volume element contains macroscopic number of atoms or
molecules. The existence of a length scale ( much larger than the microscopic length
scale (e.g.. the atom size) a and much smaller than the system size (or represen­
tative macroscopic scale) L is the prerequisite for the concept of volume element
to be meaningful. This is also the condition that makes continuum descriptions
meaningful.

alA.3 Local conservation law. All the basic equations of conservation laws
haw the following form:

increase in a volume element = net influx + production rate. (1.61 )

which is generally called the balance equation (.....alA.7). If a quantity under con­
sideration is a conserved quantity. then there is no production or source term (the
second term in RBS). To make the first term in RBS explicit. we need the concept of:

alA.4 Flux density, A flux density of a quantity is a vector whose direction
is the direction of the flow of the quantity. and whose magnitude is the rate of
the quantity passing through the unit surface whose normal coincides with the flow
direction. The flux density often consists of two parts. the advective and conductive
parts. The advective part is the reversible (macroscopic and/or mechanical) part:
something is carried by a flow. passively riding on it. Thus advection flux density
= density x flow velocity (.....alA.6). The conductive part is due to microscopic or
irreversible effects (......alB.l).

alA.5 Sign convention for flux, "going out is positive.". Take a small
area element 35 on the surface of a volume. The sign of the flux through this area
element is said to be positive. if the flux density vector j points outward through
the area. That is. if j . n > O. where n is the outward normal unit vector of the
area element. then we say the flux is positive. Under this convention the net influx
to a volume element can be written as -dirj (..... 2C.5).

alA.6 Examples of flux density. If there is a flow whose velocity is e. which
carries a quantity whose density is p. then its flux density carried by the flow is
pv. This is the general form of the advective flux density. Suppose p is the mass
density. Then. pv is the mass flux density. if v is the velocity field of a fluid (this
velocity field should be the average velocity (=total momentum/total mass) of the
particles in the volume element). Therefore. pv is also the momentum density.
There must be a corresponding flux density: pt·::v is the (advective) flux density of
the z-component of the momentum (-alE.l).

alA.7 General form of local conservation law. For any flux density j. divj
is the rate of decrease of the quantity carried by the flux per unit time per unit
volume (-2C.5). That is. this is the rate of loss of the density p due to the flux
at the point the divergence is calculated. If the quantity cannot be produced or

35 An area element is specified by a vector parallel to the outward normal vector
of the area with the length equal to the area.
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annihilated (i.e.. conserved as mass in the non-relativistic situation), we must haw

()p d"8t =- 1t~J. (1.62)

This is called the local conservation equation. If the quantity could be produced (or
dissipated). then we add the source term o which is the rate of production a > 0
implies production. and a < 0 loss} of the quantity per time per volume:

8p d"8t =- It' 3 + a,

This is the general form of the balance equation.

alB Diffusion Equation and Laplace Equation

(1.63)

Key words: diffusion equation. advection. conduction. Laplace
equation. reaction-diffusion equation. conservation of prob­
ability

alB.l Linear phenomenological law. For spatially gently varying situations
the conduction flux density (-alA.4) is often assumed to be proportional to the
gradient of the density of the quantity to be transported. This is the linear phe­
nomenological lau. of transport.
(i) If t here is a spatially gently inhomogeneous temperature field T. there must be
a heat flux density i proportional to grad T (-2C.l). Thus

j =<n qrad T, (1.64)

(1.65)

where x is called the heat conducti1lity. This is called Fourier's law.
(ii) If there are spatially gently inhomogeneous distributions of chemicals c, in a
medium. there must be diffusion currents i, of these substances:

ij = - L,Dijgradcj.
j

where D ij are called diffusion constants. This is Fick s law. The off-diagonal coeffi­
cients are especially called cross-diffusion constants. The matrix AIatr.(Dij) must
be symmetric according to Onsager's reciprocity principle.s" and must be positive
definite due to the second law of thermodynamics. In particular. all the diagonal el­
ements must be positive. However, some off-diagonal elements could be negative.37

361. Onsager. Phys, Rev. 31. 405 (1931); 38. 2265 (1931): S. R. de Groot, and
P. Mazur, Non-Equilibrium Thermodynamics (Dover. 1984).

3i T his negativity could cause interesting pattern formations in reaction-diffusion
svsterns (-alB.4). See. for example. Y. Kuramoto. Chemical Oscillations. Waves.
dnd Turbulence (Springer 1984).
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(iii) Other examples of conduction include the Newtonian viscosity (_alE.3). and
Ohm's law (-alF.16).

alB.2 Heat conduction, diffusion equation. If there is a change 6T of tem­
perature T. then there is an (internal) energy density change of pC6T, where p is
the mass density. and C is the specific heat. Hence, the energy conservation law
(.....aIA.7) has the following expression:

8pCT .-at =-dn' (-/'i gradT). (1.66)

If all the materials constants p. C and K can be regarded constant, we reach

~ =DT~T, (1.67)

where DT ::: K IpC is called the thermal diffusion constant. An equation of this type
is called the diffusion equation and was derived for the first time by Fourier (.....1. 7).
Where t here is strong dissipation. we often encounter this or related equations (e.g..
Stokes' equation for viscous fluid -aIE.IO).

a1B.3 Laplace equation. We expect that the system reaches a steady state if
the boundary condition is fixed. The steady temperature distribution of a uniform
body must obey the Laplace equation according to (1.67):

j.T = o. (1.68)

Any function satisfying this equality is called a harmonic function (.....2C.ll).

ocot = D~c + f(c). (1.69)

This type of equation is called Fisher's equation after R. A. Fisher39 who used this
equation to study the propagation of an allel type in a population in population ge­
netics. or the Fisher-KPP equation after Kolmogerov.t" Petrovskir'! and Piskunov
who studied in depth the propagation waves in this equation. There are many in­
teresting equations which exhibits various spatio-temporal pbencmena.V

alBA Reaction-diffusion equations, Fisher's equation. If there are chemical
reactions. the source term must describe their effects. The source terms are often
modeled with naive mass-action laws. For example. if there is a ternary reaction 2A
+ B -+ C. then 0'.4 =-2kc~CB and O'B =-/.;C~CB = -O'e with /.; being some posi­
tin' constant (rate constant). where C.4 is the concentration of A. etc. In this way
many nonlinear source terms can be modeled or interpreted as chemical reactions."
\Ye have. generally.

38In lower spatial dimensions. there is a complication due to concentration fluc­
tuation. and such simple laws of mass action do not hold.

39Ronald Aylmer Fisher. 1890-1962.
40 Andrei Nikolaerich Kolmogorov, April 3. 1903 (Tambovj-October 20, 1989

(Moscow). See V. M. Tikhomirov. Russ Math Surveys 43(6) 1-39 (1988).
41Iyan Georgievich Petrovskii, 1901-1973.
42For beautiful examples. see H Meinhardt. The Algorithmic Beauty of the Sea

Shell (Springer. 1995). which contains a disket for PC.
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(1.70)

alB.5 Conservation of probability. Let P(x) be the probability density of an
event x (that is, the probability of all event specified by the parameter between s
and x-s-d« is given by P(x )dx). Suppose the probability is time dependent. Since the
total sum (integral) ofthe probability density must always be unity (J P(x )dx = 1).
if x changes continuously. then P must obey a conservation law (-alA.7):

ap di- = - It')p.at
where j p is the probability flux density. Many statistical mechanically interesting
examples have this form. The Smoluchowski equation and the Fokker-Planck equa­
tion are discussed in Appendix alC.

al C Diffusion and Brownian Motion

Key words: Brownian motion. Smoluchowski equation.
Schrodinger equation. Fokker-Planck equation.

alC.l Diffusion equation and Brownian particles. Suppose there is an en­
semble of numerous non-interacting particles undergoing random motions (Brown­
ian motion) which we wish to describe collectively. The most natural way may be
to use the probability density distribution P(x. t) which tells us that the fraction of
particles in the volume element ddx (in d-space) at time t is given by P(x.t)ddx. P
obeys (1.70).

We may imagine that the ensemble of particles is an ideal gas. because the
particles do not interact. Thermodynamically. the induced flow velocity due to the
uneven pressure is written with the aid of the chemical potential /1 of the particles
as -D grad /1. where D is a phenomenological constant called diffusion constant.
/1 must be the chemical potential of an ideal gas. that is. /1 = +kBTln(pressure),
where kB is the Boltzmann constant. and T the absolute temperature. For conve­
nience. henceforth. we will use the energy unit for which kBT is unity. The pressure
at position x at time t is proportional to the number density of the particles (re­
call p = TlRT/l'). which in turn is proportional to P(x.t). Therefore. ignoring an
additive constant. we get

/1 = In Pt x, t).

Since the probability is advected by the probability flow, we conclude

jp = P(x.t) x (-Dgrad lnP(x.t)) = -DvP.

Putting this into (1.70). we obtain a diffusion equation

oP =D.:lP.at
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alC.2 Smoluchowski equation. IfBrownian particles are in a sufficiently viscous
fluid and are under an external force field F, then its equation of motion, which is
overdamped. reads

~~ = "'yF + (noise). (l.i4)

alC,l may be considered as the case without the external force. Therefore, the
probability flux density consists of two parts: j p = "iFP - Dr;P, the systematic
part (the advection part ......alA.4) due to the external force P x IF and the noise
contribution (1.72) (the conductive part -+alA.4). (1.70) becomes

lJP
- =D,j"P- "'y\' (FP)at .

This is called the Smolucho'UJski equation.43

(1.75)

alC.3 Smoluchowski equation vs, Sehrddinger equation. A Smoluchowski
equation with a conservative external force IF = -grad r.::

can be rewritten as

where

e::; =die (P grad r.:) + D~P, (1.76 )

(1.77)

t' =Per'/ZD. (1.78)

(1.77) is an Euclidized Schrodinger equation with the potential l' _ At-/2 ­
(\'T)2/4D.

alC.4 Fokker-Planck equation. A more general theory for Brownian parti­
cles does not assume the overdamped situation like the Smoluchowski equation
(.....alC.2). TIle equation of motion for a particle is

(1.79)

where r is the position. p the momentum, F the external force. m the mass of the
particle. and ( the friction coefficient. alC.2 and al C.3 tell us that the probability
flux density (now it is a 6 dimensional vector) should have the following form:

. _p( tI ) p( 0 )
Jp- -(v+F/m + .-D\"vlnP· (1.80)

43If the system is in equilibrium and F has a potential 'C (such that F =
-grad L·). then (1.i5) must have the unique equilibrium distribution ex exp( -U)
as its steady state (we choose the energy unit such that kBT = 1). This imposes
a relation between D and ~r called the fluctuation. dissipation theorem of the second

kind: D = ~r. Check this.
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(1.81)(vr ) ,
Vv

where \'11 is the gradient operator for velocity 11. The nabla operator (-+2C.4) in
our context is

so that (1.70) reads

(1.82)OP =-v'\.,.P-\v' (Fp)+(vv'(VP)+D~VPof m

This is called the Fokker-Planck equation. Notice that (1.75) and (1.82) consist of
two parts. the second-order derivative term (diffusion term) describing the micro­
scopic noise effect. and the first-order derivative terms just as the advection term of
the Xavier-Stokes equation (-+alE.6) describing the convection or advection due
to systematic Bows.

(1.83 )Bp diat = - H'p.

where p is the momentum density (-+alA.6. alE.l)

alC.S Reduction of Fokker-Planck equation to Smoluchowski equation.
If the viscosity of the fluid is large. then the velocity part of the Fokker-Planck
equation should settle down quickly to its equilibrium form (the Maxwell distri­
bution oc exp(-mt·2 ! 2)). Hence. the slow motion of the particle position de­
scribed by the Fokker-Planck equation must be given by the Smoluchowski equation
(-+alC.2). A systematic expansion of the solution in terms of l!( can be used.
However, a 'quick and dirty' way is as follows, Introduce the marginal distribution
p(r.f) = JdvP(r.v.f). Integrating the Fokker-Planck equation with respect to v.
we get

p(r. t) =JdvvP(r. v. f). (1.84)

(1.85)

'Ye han' assumed that P decays sufficiently quickly in the Ivl -+ oc limit. Multiply
v to the Fokker-Planck equation and integrate over v. Since we choose kBT to be
unity vv averaged oyer P must be I [m, where I is the unit matrix. Thus We get

1 F
- -\rp+ -p =-(po

m m

Putting this pinto (1.83). we get a Smoluchowski equation as expected. (Notice
that -: =D = IJrn(.)

aID Equation of Motion of Continuum Body

Key words: momentum balance, stress tensor, equation
of motion of continuum body. strain tensor. constitutive
equation. Hooke's law. wave equation. energy integral.
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alD.l Momentum balance, Force as negative momentum flux. The essence
of the classical equation of motion is the momentum balance. Take an area element
and imagine that a force F (per area) is acting outwardly on the element. Then,
Newton's equation of motion tells us that the volume element gains momentum
with the rate equal to the force. That is. through the area element, momentum
is flowing into the volume element at the rate of F. III other words, we may in­
terpret force (per area) as the negative momentum flux density through the surface.

alD.2 Stress tensor. Let (lij be the i-th component of the force per unit area
acting on the j-th plane (i.e., the plane perpendicular to the j-th coordinate direc­
tion: its normal vector points the positive direction of the j-th axis) (for example,
(I:r;r: > 0 implies that there is an outward normal force on the plane perpendicular
to the r-axis), The second rank tensor a =Jfafr.«(lij) is called the stress tensor,44
For example. Lj (lijdSj is the i-th component of the force acting on the area ele­
ment dS (......2C.5), This force is due to the environment surrounding the volume
element.
Discussion [Stress tensor]:
(1) Stress tensors must be symmetric. The moment of the forces acting on the
volume l' can be written as (summation convention is used)

where T is the volume element. and we haw used OJ.T/.. = tjl<. The first term can
be converted into the surface integral with the aid of Gauss' theorem (-2C.l3).
Since we assume the forces on the volume l' are acting on its surface. there must
not be any volume integral term left. Hence (lij =(lji. That is. the stress tensor
must be a symmetric second rank tensor.
(2) Stress tensor is meaningful only when the forces are 'short-ranged: As we haw
seen. the concept of stress tensor should be useful only when the force on a volume
element can be considered as surface forces. Consider a horizontal plane cutting
through a body, and calculate the force between the upper half and lower half of
the body through the plane. If we use an atomistic model of matter. then the force
must be written as

F =LLful' (1.87)
u 1

where u runs OWl' all the atoms on the upper side and 1 on the lower side of the
plane and f is the force between atoms. Only when this sum is proportional to the
area of the plane. can we successfully use the concept of stress tensor.

Exercise.
Show that this requires the forces f to decay faster than r-4 asymptotically.
Thus gravity. and the unscreened Coulomb force must be excluded. They become

44 A second rank tensor {f ij} is a quantity which haw the same symmetry as the
product of two vectors {aibj}. That the stress tensor is a second rank tensor can
be seen from the fact that -Pt'it'j can be a part of (lij as discussed in alA.6. An
easy introduction to tensor can be found in The Feynman Lectures of Physics. vol,
II. Section 31.
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(1.90)

the so-called bodily forces.

alD.3 Force on a volume. The r-ccmponent of the total force acting on the
volume l' can be written as

[ uijdSj. (1.88)
Jav

where 01' is the boundary of V. From this, we conclude that the i-component of
the force per volume due to this stress tensor is (with the aid of Gauss' theorem
-2C.13)

oL ~Uij. (1.89)
j X;

This must be the increase (-alD.l) of the i-th component of the momentum den­
sity in the volume element surrounding the point e.

alD.4 Basic equation of continuum mechanics. A deformation of a body
can be described by the displacement of a point in space. If ~ is displaced to
»', ~' - ~ = u is called the displacement vector. Let p be the mass density. and
the displacement of the volume element at ~ be u(~). Then. Newton's law = the
momentum balance condition tells us

.. OUij F
PUi=~+ i·

vxJ

where F = (F:r.Fy.F:) is the bodily external force (like gravity) per unit mass.
To close this equation we need the relation between the displacement field u (and
its derivatives) and the stress tensor (field) a, The relation depends on system
specificities. Such relations sensitive to materialistic details are called constiiutia»:
relations. and they are described by constitutive equations. Often we must study
the detailed structure of matter to obtain reasonable constitutive equations.

alD.5 Deformation of a body. If the displacement vector u is given all over
the body. the deformation is completely specified. However. uniform translation
and rotation should be removed if we wish to describe the true deformation of a
continuum body. First of all. the absolute value of u is not important. Thus its
derivative e;:::: {Oi Uj} (a second rank tensor) is more relevant. In this way we can
remove translation. However. rigid rotation must be removed as well.

alD.6 Strain tensor. U in alD.S can be uniquely split into the symmetric
and skew-symmetric parts, z:.:+ and U_: U+;: ([- +UT)j2 and U_..- (U - UT)j2.45

Notice that (see 2C.8 for curl)

2L"_a = curl 14 x a (1.91)

for any 3-vector a.46 It is clear that the skew part describes rotation (see Discussion

45T implies transposition.
46Here the following useful relation is used.

(1.92)
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in 2C.9). Therefore. a small deformation of a body is described by the symmetric
part of the spatial derivative of the displacement vector. The strain tensor is defined
as

(1.93)

(1.94 )

Exercise. Demonstrate that the trace of the strain tensor describes the volume
change. (Remember that Tr(8'Uj8r) may be considered to be a coordinate free
definition of die 'U.) (-+2C.6)

alD.7 Hooke's law. A linear relation between the stress (-+a1D.2) and strain
(-a1D.6) is called Hooke's law. Generally. we need a 6 x 6 tensor to relate all Uij to
all Uij (both have only 6 independent components due to symmetry). For a uniform
isotropic material. there are only two independent parameters K (compressibility)
and p (shear modulus):47

Uij =K dir ubi) + 2p (11 ij - ~bjj dir 11.) .

In terms of Young's modulus E and the Poisson ratio 0'.48

p= E . K= E .
2(1 + 0') 3(1- 20')

Hooke's law (1.94) for an isotropic body is rewritten as

0" =....£.. (11" + _0'_ dir 'U 6")
I) 1 + 0' I) 1 _ 2u I)'

(1.95 )

(1.96)

(1.9i)

a1D.9 Equation of motion of isotropic elastic body: wave equation. With
the aid of the definition of the strain tensor (-a1D.6 (1.93)) and (1.96). the equa­
tion of motion (1.90) (-alD.4) is explicitly written as

.. E" £ d di F
P'U=2(1+0')...l'U+ 2(1+0'}(1_20')gra It·'U+ .

where F is a bodily external force. See 2C.12 for the Laplacian acting on vectors,
Define

£(l-u) ~
C/ = p(l + 0'}(1- 2u)' c, =V~'

The equation of motion (1.9i) without F can be rewritten as

ii. =eyAu + (et - ef)grad di» fl.

(1.98)

(1.99)

where x is the vector product. (1.91) can be considered as a coordinate-free defi­
nition of curl.

47See Chapter 1 of Landau-Lifshitz. Theory of Elasticity (Pergamon) for much
more details.

48When 0'z: =P and other components of the stress tensor are zero. U::z jP is called
Young's modulus. The ratio of longitudinal stretching vs transversal shrinking is
called Poisson's ratio. and defined by 0' E -u;z:r:/u::.
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Now.Jet us apply the Helmholtz-Stokes-Blumental (HSB) theorem (-.2C.18). and
split 1£ as 1£ =1£t + 1£/ with di» 1£/ =0 and curl1£t =O. Putting this splitting into
(1.99). we get

iii - cr ~1£/ =-(Ut - c;~1£t). (1.100)

This implies that both the divergence and the curl of iii - cr~Ul and iit - c;~Ut
vanish. The Helmholtz-Hodge theorem (-.2C.l7) tells us that a vector whose
divergence and curl both vanish must be zero.49 Thus we get two separate wave
equations:

iii = C;~1£l.

ii t = c;~1£t.

(1.101)

(1.102)

1£/ describes the longitudinal wave. which allows the change of volume (-.alD.6 Ex­
ercise). and 1£t the transversal wave. which does not accompany any volume change.

aID.lO Drumhead. Consider a membrane for which the deformation vectors
are always perpendicular to the xy-plane. This condition is satisfied by a small
transversal oscillation of a drumhead. Only 'l1z is non-zero. so that only O'zz and
O':y are non-zero. Hence. Hooke's law (1.94) reads

(1.103)

Putting this into (1.90). we get a wave equation in 2-space:

(1.104)

(1.105)

The equilibrium shape of the membrane is determined by the Laplace equation.

alD.ll String under tension. Consider a string which is under tension T and
which is confined in the x e-plane. We consider its displacement u in the a-direction
perpendicular to the string, If the line mass density is p, then the acceleration in
the c-direction of a segment [x . .r+ d.T] is given by 82u/8t2• The force at z in the
e-direction is given by -T8u/8xl z . and that at x + dx is given by T8u/8xl z+dz .

Hence. the total force acting on the segment in the z-direction is the sum of these
two. i.e.. T(82u/8x2)dx. Consequently, Newton's equation of motion reads

82 u 82 '11

p at2 =T ax2 '

49 To conclude this we must require that the waves we study are spatially local­
ized. According to the Helmholtz-Hodge theorem any once differentiable vector field
f whose derivatives vanish at infinity can be decomposed as f = grad Ii> + curl A
and dir A = O. di» f = ~o. and curl f =-~A. so that vanishing of the diver­
gence and the curl of f implies that Ii> and A are harmonic. Since a harmonic
function (-.2C.1l) which is finite throughout the space is constant (Liouville's
theorem 29.13). f =0 is concluded. See that the explanantion in Landau-Lifshitz
is incomplete.
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(1.106)

alD.12 Energy integral. One of the most important properties of the wave
equation (1.2) is that the following energy integral

E(t) == L~ (OtU)2 +c2 ~(Oa-IU)2) dx

is conserved if the boundary condition is homogeneous (.....20.5, 30.4).

alE Fluid Dynamics: Navier-Stokes Equation

Key words: Newtonian viscosity, long-time tail. continu­
ity equation. Navier-Stokes equation. perfect fluid. Euler's
equation. substantial derivative, potential flow. velocity po­
tential. Stokes' approximation.

alE.l Momentum flux density. When we treat fluid. it is often convenient to
introduce the momentum flux density a. Let p be the mass density. and v be the
velocity field of the fluid. Then. P'l.l is the momentum density. If this macroscopic
momentum is never dissipated. the momentum is carriedteeadvected] only by the
flow itself. so that a = pvv is the momentum flux density.5o Usually, there is a
flux that describes the dissipation a' (or the conductive part of the momentum
flux density) as well. Thus. generally we should write

n =pvv + tr. (1.107)

In general. we need a microscopic consideration to set up the constitutive equation
(.....a10.4) for the dissipative part Il' of the momentum flux density tensor in terms
of the velocity field (.....alE.3).

alE.2 Pressure; equation of motion. For isotropic fluids. the stress tensor
must be isotropic. that is. it must be a constant matrix. \Ye usually write it as

(1.108)

where p is called pressure. Pressure is defined to be positive when it pushes into
the volume on whose surfaces the pressure is acting. Thus the sign convention is
opposite to the stress tensor (.....al0.2. al0.3). so that we need - in this for­
mula. Xotiee that E/ljO"ij = -f)jP = -(gradp)j, Thus the momentum balance
(.....a10.4) becomes

f)pt'j f)(pt'jVj + il}j) f)p
--=- . --.+Fj •

f)t f)x) f)x I
(1.109)

50This is a collective expression of the flux density of the i-th component of the
momentum pl'jV (-+alA.6),
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where F is the external bodily force per volume (if it is gravity, then F = -pgz.
where z is the unit vector pointing upward).

alE.3 Newtonian viscosity. To close (1.109) we must express the conduction
part of the momentum flux tensor 0' in terms of the velocity field. This is a prob­
lem of constitutive equations (-alD.4), but for small velocity fields, we can fix
the functional form. There is no dissipation if the velocity field is uniform. Hence,
it must be a function(al) of 8jt'j. We assume the linear relation between O:j and
these derivatives (called Newtonian viscosity). This should be admissible when the
velocity varies spatially gently. Uniform rotation of fluid does Dot cause any dis­
sipation. so that only the symmetric part of 8 jt'j should contribute to dissipation
(see an analogous argument in alD.6). Isotropy of fluid then dictates the general
form of dissipation as a sum of the term accompanying the volume change and that
without volume change (-alD.7 for an analogous argument):

(
8 t' 8r- 2 L )-0"=1/ _}+_' __o.. dir o +l'o··dit·'V

I) 8x; 8;ri 3 I} '> I)' •

k

(1.110)

Here 1/ is called the shear 11iscosity and ( the volume viscosity. 51 Both are positive
to be consistent with the second law of thermodynamics. Remember that this is a
model supposedly appropriate for gently spatially dependent velocity fields. Hence.
it is a legitimate question to ask whether this may be used in the study of turbulence.

alE.4 Viscosity and long-time tail. Viscosity (-alE.3) is due to the dif­
fusion of momentum imparted to the fluid surrounding the body: if there is no such
diffusion. then the conservation of momentum implies that the body together with
its immediate surrounding fluid would keep the initial total momentum. so that
there would be no appreciable deceleration of the body. Generally speaking. diffu­
sion spreads a quantity to the range of radius v1 as a function of time:;2 Hence.
the motion of the body drags the surrounding mass of fluid of radius >- v1 up to
time t. That is. the fluid mass of order t 3/ 2 moves with the body. This implies
that the speed of the body becomes of order t- 3/ 2• because the body mows with
the surrounding fluid. That is. the velocity of a body in a viscous fluid does not
decay exponentially. but much more slowly. This is called the long-time tail. and
has actually been obser'\'ed.53

a1E.5 Mass conservation, continuity equation. The mass flux density is

51( = 0 for monatomic gases. For diatomic gases ( and 11 are of the same order.
Almost nothing is known about the volume viscosity of liquids. However. thanks to
the very small compressibility of liquids. we can often ignore (.

52For physicists. the dimensional analytic argument is the best. The only di­
mensionless quantity we can construct from t. x and D is tD / x 2 • Hence, the
representative length scale at time t must be JtD or proportional to .;t.

53The algebraic decay was first discovered in a computer experiment: B. J. Alder
and T. E. Wainright. Phys. Rev. AI. 18 (1970). For a clear real experimental
demonstration. see K. Oohayashi. T. Kohne and H. Utiyama, Phys. Rev .. A27.
2632 (1983).
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obviously pv (if there is only one component, there is no diffusion). Hence the
conservation of mass is (-alA.7)

ap diat = - It' pv.

This is also called the continuity equation.

alE.6 Navier-Stokes equation. The momentum balance equation

apv =-L~nij
fJt . 8xi

)

(1.111 )

(1.112)

(1.113)

is the equation of motion (-alD.4). The viscosity is modeled according to Newton
(-aIE.3). The resultant equation of motion of a fluid is called the Navier·Stokes
equation.v'

av + (v. \)11 = :?~v + ~ ( +:?) qrad dir» - ~gradp + ~F.at p p 3 p P

where F is the bodily external force (per unit volume). 'Ve need the mass balance
equation (1.111) and a constitutive equation (I.e.. an equation of state) to close this
equation for p.
Under the incompressibility condition (din) = 0). the term containing the volume
viscosity disappears and we get

av 1
'11 + (u- \)v = lI.lv - -gradp + F.at P

(1.114)

where II == 17/p is called the kinematic !Iiscosity. In this case the pressure p is a mere
auxiliary variable to enforce incompressibility.

a1E.7 Perfect fluid, Euler's equation.55 If there is no dissipation effect in
the fluid. the fluid is called an ideal fluid or perfect fluid. for which tr = 0 in
(1.107). Combining (1.109) and (1.111). we get

ov 1 1ot +(v.\)v=-:;;\p+:;;F. (1.115)

This is called Euler's equation. (1.115) is not a closed equation because of p. 'Ve
need an equation of state for the fluid. If the fluid is isothermal. we may regard pas
a function of p only.56 Hence. (1.111), (1.115) and p =p(p) make a closed system
of equations.

aIE.S Substantial derivative. The changing rate of an observable f observed
from an observer flowing with the fluid is given by

ofot +(v·v)f· (1.116)

54 Louis Marie Henri Navier, 1785·1836.
55 Leonhard Euler. liOi·li83. See 4.4.
s6The fluid need not be in an isothermal condition. Often plfO =const. is used.
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(1.117)

Hence. it is convenient to introduce a special symbol for this derivative:

D a
Dt .- at + 11• v,

which is called the substantial deritlative. Thus, the continuity equation reads

and Euler's equation reads

Dp d'Dt =-p lVV,

Dv 1 1-=--vp+-F.
Dt p p

(1.118)

(1.119)

alE.9 Incompressibility, potential flow. If the flow speed is much less than
the sound velocity. we may treat the fluid as incompressible. That is. p is constant
(if the fluid is isothermal). (1.111) implies

div 11 = O. (1.120)

In this case we do not need any equation of state: p is determined by the incom­
pressibility condition.

If the vorticity (i.e.. curlv) of the flow is 0 everywhere, the flowis called an irro­
tational flow or potential flow. since velocity has a potential (-2C,l6): 11 = grad~.

~ is called the »elociu: potential. A velocity potential for an incompressible fluid
must obey:

that is. ~ is harmonic (-2C.1l).

~~ =0. (1.121 )

alE.10 Stokes' approximation. For very slow flows. 57 we ignore the advection
term in (1.114). This is called the Stokes approximation. and the result

8v 1 1
- = lI.iv - -gradp + -F.
8t p p

(1.122)

is called the Stokes equation. Xotice that this is under the incompressibility condi­
tion.
Taking the divergence of the equation, we notice that p obeys the following Poisson
equation (-+1.2):

~p =divF. (1.123)

5TThe extent of the importance of inertia, or the advection term is measured by
the dimensionless quantity called the Reynolds number Re == V LIII, where V is the
representative velocity and L the representative length scale. For example, if a ball
of radius a is moving at speed t' in a stationary fluid with kinetic viscosity II, the
Reynolds number of the svstem is ov]v, The Stokes approximation is reliable for. .
Re «0.1.
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atF Electrodynamics

Key words: Coulomb's law, conservation of charge, Biot­
Savarts law. Ampere's law, Faraday's law. displacement
current. Maxwell's equation. vector potential, scalar poten­
tial. Poisson's equation, gauge symmetry, Coulomb gauge,
Lorentz gauge. d'Alembertian, polarization. electrical dis­
placement. dielectric constant, magnetization, magnetic per­
meability. supplementary equations, Ohm's law. telegra­
pher's equation. skin depth.

alF.l Empirical facts.
(1) PriestIey(1167)-Cavendish(1113)-Coulomb(1785)'s law. The electric field
E due to a point charge Q at r is given by

E _ _ 1_Qr
- 41i€o r3 •

where €o is a constant (called the dielectric constant of the vacuum).
(2) Conservation of charge.

ap di 0- + /t't = .at

(1.124)

(1.125 )

(1.126)

where p is the charge density. and i is the current density (i.e.. the charge flux
density).
(3) Non-existence of magnetic monopoles.
(4) Biot-Savart's law. The magnetic flux B created by a current density i at r
is given by

B _ i x r
- 41l'€oc2r3 '

where c is a constant (called the speed of light in the vacuum). 58 This is equivalent
to Ampere's law:

[ B. dl = _1_ [ i· ss.
las €OC

2 ls (1.l2i)

where S is a smooth surface whose boundary curve is as (pay attention to the
orientation 6.4).
(5) Faraday's law.

[ E· dl =-~ [ B· ss.
las dt t,

Here the minus sign implies Lenz's law.
(6) Superposition principle. All the fields are linear (-1.4).

58 110 =1/c2€o is called the magnetic permeability.
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alF.2 Differential forms of empirical fads. (1) and (6) imply

divE = E;
Eo

From (3) and (6) we obtain

divB =O.

(4) implies

curl B =~ = Jioi.
fOC

where 110 is called the magnetic permeability ofthe vacuum. (5) implies

8B
curl E = -7ft.

(1.129)

(1.130)

(1.131)

(1.132)

alF.3 Displacement current. Taking the divergence of (1.131) with the aid of
(1.130). we get

0= die curl B = ~dit, i.
foe

(1.133)

which contradicts charge conservation (1.125). To remove this inconsistency. Maxwell
introduced the displacement current Eo8E f8t into (1.131) as

curl B =~ (i+EO 8;,E).
EOC vt

This is indeed consistent with charge conservation thanks to (1.129).

(1.134)

alF.4 Maxwell's equation in vacuum. Thus we get the following set of equa­
tions:

divE P=
fO

dit'B = 0,

curl E
8B= -7ft"

c2curiB i 8E= -+-
fO 8t .

(1.135 )

(1.136)

(1.137)

(1.138)

These are called Maxwell"s equations (in the Yacuum).59

59TI1e fourth equation also reads

1 lB . 8E-cur = t + fO-;:;-'
po vt
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alF.5 Vector potential, scalar potential. Since dir B = 0, there is a vec­
tor A called the vector potential such that B =curl A (.....2C.16).6o Introducing
this into (1.137). we get

curl (E + ~~) =O.

Hence (.....2C.16). there is a function tP such that

8A .
E + 7ft =-grad o.

o is called the scalar potential.

(1.139)

(1.140)

alF.6 Poisson's equation. For a static electric field (1.140) and (1.135) imply

p
~o= --.

EO
(1.141)

This is called Poisson's equation. If there is no charge. then the scalar potential
obeys Laplace's equation (->1.2). so it must be a harmonic function.

alF.7 Gauge symmetry. In terms of the "ector potential A and the scalar
potential o, we obtain

Consider the equations

8A
B =curl A. E =-grado- 7ft .

8a
curl a =O. grad..p + - =O.

8t

(1.142)

(1.143)

a must have a potential such that a = -grad .\. Then. ..p =A satisfies the above
set of equations. Obviously A + a and o + ..p give the same E and B. Thus for any
sufficiently smooth .\. the following transformation. called the gauge transformation.

o ->

A ..... A' =A - grad .\..
I 8.\

o =9+7it

(1.144)

(1.145)

does not alter physics. The independence of physics from the choice of A (gauge
fixing) is called the gauge symmetry (or gauge invariance). Choosing A appropri­
ately. we may be able to simplify problems. Typical gauges are
(1) Coulomb gauge: dit· A =O.
(2) Lorentz gauge:61

di» A + 1.89 = O.
(2 8t (1.146)

60 Since B is an axial vector, A must be a polar vector as r or i. Note that axial
vectors are invariant under mirror symmetry. but polar vectors change their signs.
As seen in the footnote of alD.6 axial vectors should be regarded as skew-symmetric
tensors in 3-space.

61 This choice is. in contrast to (1). Lorentz covariant.
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(1.147)

alF.8 Maxwell's equation in terms of potentials, electromagnetic wave.
From (1.140) and (1.135), we obtain

A· p 8 d'A- ....0 = - + - it' ,
to 8t

From (1.138) and (1.140) we also obtain

or, using a standard formula of "ector analysis (-+2c.12)

2' i 82A 8grad <p
c (grad div A - AA) = - - -- - .

EO 8t2 8t

Lse the Lorentz gauge (1.146). Then (1.14i) and (1.149) simplify as

00
p

=
Eo

OA
i

=
C2EO

where 0 is the d 'Alembertiom:

(1.148)

(1.149)

(1.150)

(1.151)

(1.152)
1 82

o=c2 ot2 - A.

If the field are not time dependent. notice that these potentials obey Poisson's equa­
tion (-+alF.6). In the vacuum (without P and i) potentials obey wave equations
(-+1.2).

alF.9 Polarization. "'hen an electric field is applied to a material. generally.
charges in it are displaced. To describe this we introduce the polarization vector P
as the density of dipole moments. A dipole moment can be interpreted as a flux
(charge x displacement). so P is a kind of flux density (-+alA.4). Thus we have

- dit·P = pp. (1.153)

where pp is the charge density due to polarization. The minus sign is due to the
definition of divergence (the gain of the volume element must be positive. Here the
volume element is losing positive charges).

alF.I0 Electrical displacement.

(1.154)

is called the electrical displacement. With the aid of (1.135) and (1.153) we get

dit'D=p-PP=PT'
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Here p is the charge density (total charge one can detect microscopically), so that
PT =p-Pp is the charge density eliminating the polarization effect. pr is sometimes
called the true charge den8ity.62 Also this charge can increase or decrease due to
electrical current, so that the continuity equation for the electrical current reads

a:: = -div i. (1.156)

alF.l1 Dielectric constant. The relation between D and E is generally compli­
cated (may not even be linear). The relation is materials-dependent. For isotropic
materials under small electric fields we often assume the following linear constitutive
equation

D=fE.

where e is called the dielectric constant.

(1.15 i)

alF.12 Magnetization. The density of magnetic moment M is called magne­
tization. This corresponds to polarization alF.9. Thus

dir M = -PM (1.158)

is understood as the 'excess' magnetic 'charge' (positive monopole density). How­
ever. since monopoles do not exist.

curlM =poiu

is physically better. where iss is the density of ring currents.

(1.159)

alF.13 Magnetic field, magnetic permeability. In analogy to E. the field
H called the magnetic field is introduced as

B =JioH+M. (1.160)

where I/o = Iltoc2 is called the magnetic permeability of the vacuum. Often the
following constitutive equation is used

B =pH. (1.161)

where /I is called the magnetic permeability.

alF.14 Maxwell's equation in material. Replacing (1.125) with (1.156) and
repeating t he argument to introduce the displacement current (-alF.3). we find
that the displacement current is 8Dlat. Therefore, Maxwell's equations now read
(d. alF.4)

dirD = PT. (1.162)

dic B = 0, (1.163)

curl E
8B= -7# (1.164)

eurl H
. 8D

(1.165 )= t+ at'

6Z:'1acroscopically. if the local average of charge distribution is made with respect
to the volume element whose boundary does not cut any molecules. then we observe
p-pp.
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(1.166)

alF.15 Supplementary equations. Notice that (1.162) and (1.163) do not con­
tain time. Take the divergence of (1.165) to get

• {Jdit· D
divt+~==O.

Using the charge conservation (1.156), this can be rewritten as

:t(-PT+dit'D) ==0, (1.167)

(1.168)

Analogously. we can get

!!..div B == O.
{Jt

These equations imply that if (1.162) and (1.163) hold once in the past. they are
always satisfied, Thus they are called supplementary equations.

alF.16 Ohm's law. We need the constitutive equations (1.157) and (1.161) to
dose the equations in alF.14. \Ve need one more constitutive equation for i. The
simplest linear law is Ohm's lain

i == (JE. (1.169)

where (J is called the conductivity. Combining (1.156) and (1.169) we get the equa­
tion that gowrns the evolution of the charge density in a conductor:

{Jp (J
-== --p
{Jt f'

Xorice that this is :"OT a diffusion equation (-+1.2).63

(1.170)

(1.1ill

alF.17 Electromagnetic wave in matter, telegrapher's equation. Differ­
entiating (1.165) with respect to t and using all three linear constitutive equations
(1.l5i). (1.161) and (1.169), we get

{J2 D (J {JD 1
-- +-- == --curl curl D.
at2 e at e11

That is.
{J2 D (J aD 1 1 .
-- +-- == -:':i.D - -graddn·D.
{Jt2 e {Jt fll Ell

(1.172)

Analogously, we get
{J2B 1 1,
-- == -:':i.B + -cuTh.
{Jt2 Ell E

If we use (1.164) and Ohm's law (1.169). this finally becomes

(1.173)

(1.174)

63The relaxation time e[o is of order 10-18 sec for usual conductors, but for good
insulators this could be 108 sec.
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(1.175)

For a I-space problem this equation is called the telegmpher's equation. If 0" = 0
(as an insulator). then these equation becomes the wave equation. For a conductor,
for which 0" is large. these equations become the diffusion equation:

at/) 1
-' =-A?/.'.tJt 0"11

This means that the electromagnetic wave cannot invade deeply into the matter, "if
0" is large. The characteristic length scale 1/";0"ItW is called the skin depth for the
wave of angular frequency w.
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