
18 Separation of Variables -Rectangular
Domain -

As the first section devoted to solve second order PDE ex
plicitly, boundary value problems on rectangular regions are
considered. The essence of separation of variables is the ex
pansion of the solution into Fourier series.

Key words: separation of variables. eigenvalue problem,
Poisson's formula.

Summary:
(1) How to construct appropriate eigenvalue problems is the key to sep
aration of variable (18.1-2).

18.1 Separation of variables: general strategy.2iO Suppose we
wish to solve a PDE of the form

(18.1 )

where L 1 and L2 are linear differential operators (-1.4) such that
L 1(x)f(y) = L 2(y)g(x) =0 for any function f and g. If we assume

then

or we conclude that

u(x. y) =X(x)Y(y). (18.2)

(18.3)

(18.4)

(1) [Separating step). The LHS of (18.4) depends only on x and
the RHS only on y. so this equality implies that both sides must be
constant:

(18.5)

2iOThis method was first employed by Daniel Bernoulli around !i55 to solve the
wave equation. A more abstract setting and a general theory will be given later
(-23).
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(18.8)

'ljJ(x,l} =0.
(18.9)

where Ais a constant (Sometimes called a separation constant.
(2) [Eigenvalue problem]. We must split the auxiliary conditions
accordingly to obtain two problems which depend only on one of the
variables.
If the boundary condition is homogeneous for, say. z-direction, then
L1X = AX becomes an eigenvalue problem. because the nonzero solu
tion usually exists only for very special values (eigenvalues) of A. For
each eigenvalue. we have a nontrivial solution denoted by X>.(x).
(3) [Inhomogeneous boundary problem]. For such A, we must
solve the second problem L2Y = -AY under appropriate auxiliary
conditions. which are usually not homogeneous. Let us denote its solu
tion by Y,\(y).
(4) [SuperpositionJ. Since our problem is linear. the superposition
principle (-1.45) tells us that 1:'xx'x(x)Y,\(y) is also a solution.
If any smooth function can be expanded as a linear combination of X)..
(i.e.. if the set {X)..{ is complete), then we will be able to solve the
problem generally" If {X>.} is the set of trigonometric functions, the
theory of .Fourier series (-+17) can be fully exploited as Fourier ex
pected (-+1.6). In summary. the essence of the separation of variables
is to use a problem-adapted Fourier expansion.

18.2 Illustration: 2D Laplace, Dirichlet. Solve the following two
dimensional Laplace equation on [0.1] x [0. 1]:

8;'~J + &;~) = 0 on [0.1] x [0.1] (18.6)

with the inhomogeneous Dirichlet condition

~'(O.y) = uo(Y). 'ljJ(l.y) =Ul(Y)' 'ljJ(x.O) =vo(x). 'ljJ(x.l) =Vl(X).
(18.7)

(1) [Separating step] We use the superposition principle (-+1.4) to
split the problem as

&;~I + 8;1/J = 0 on [0.1] x [0.1].
'ljJ(O. y) = uo(Y). 'ljJ(1. y) =Ul(Y)' 'ljJ(x,O) =O.

271"'e must be able to show that the series converges uniformly, and we can freely
exchange the order of the infinite summation and differentiation. etc. A condition
for 1:::1 Un(X) to be termwisely differentiable is:
(i) lln(X) is C1•
(ii) the series is pointwise convergent.
(iii) 1::=1 u~(x} is uniformly convergent.
Phvsicists usuallv do not care about these things. believing that their solutions
are always well-behawd (e.g .. sufficiently smooth). Indeed. often they are right.
and that' is why physicists do not pay much attention to mathematicians' careful

st atements.
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8;'I/J + 8;'I/J =0 on [0,1] x [0,1],

'I/J(O.y) =0, 'I/J(1,y) =0, 'I/J(x, 0) =vo(x),

and

(18.10)

'I/J(x, 1) = Vl(X).
(18.11)

The separation of boundary conditions expects eigenvalue problems in
all but one coordinate directions. (Further decomposition is possible,
but usually there is no need or no merit.) Here we only solve the first
set, since the second set is analogous. The solution to the original equa
tion is the sum of the solutions to these split problems.
(2) [Eigenvalue problem] (18.8)+(18.9) has a homogeneous bound
ary condition perpendicular to the y direction (i.e., 'I/J =0 at y =0 and

C,1/ y = 1). Therefore. we should study the eigenvalue problem of 8; under
the homogeneous boundary condition. Solving the eigenvalue problem

d?'u
d

? = -/-l'U. u(O) = u(1) =0, (18.12)
y-

we get I-l = 1r2n2 for n = L 2.· .. with the corresponding eigenfunction
sin n1rY. \Ve know the totality of such functions is a complete set ac
cording to 17.16(1). Notice that the sign of the separation constant
Ii, is dictated by the requirement that (18.12) becomes an eigenvalue
problem (the solutions must be oscillatory).
(3) [Inhomogeneous boundary problem] Therefore. superposition
principle tells us that the solution must have the following form:

where An(x) satisfies

oc

7/J = L Qn (x) sin n1ry.
n::1

(18.13)

d?Qn(X) ??Q ( )
dx 2 = n-1r- . n X . (18.14)

(4) [Superposition] The general solution to (18.14) is An sinh n1rx +
B; cosh tin». so that the general form of the solution to our problem
reads

oc

7/J = L(An sinh n1rX+ B; cosh n1rx) sin n1rY.
n=1

(18.15)

The inhomogeneous boundary conditions at x = 0 and x = 1 requires
ec

E B; sin n1rY =uo(Y)'
1'1::1

oc

L (An sinh n1r+ B; cosh n1r) sin n1rY = U1(Y)·
1'1::1
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We can determine En and An from these equations. following 17.13(1).272

Exercise.
(1) Consider

(18.18)

for:r E [O.L] and t ~ O.
(i) Discuss possible boundary conditions to single out the solution.
(ii) Assume that on the boundary tI and a;u vanish and the initial condition is
atu(x.O) =0 and u(x.O) = fix).
(2) Solve the Laplace equation for the following boundary conditions. Before solving
these problems. you must be able to guess the approximate shapes of the solutions.

(~) 1~ (I:J)
I :1-

0 0
I ,

i

ID,,,-, 'c/J.VI NeIA.M~I1'"

~
C /~7{tJ 0 "\)

~7iYi:-
t; I !:"'-t lJ.rnLCe- r !:S: Otyrcl..t.l/TVI'~jC" .

i j;.r,cl &..-1 /v'e(,<.~..,

~
>)(.

/,.w:... 21t :z / 0 ! /"

18.3 Laplace equation: Dirichlet condition.

with the Dirichlet boundary condition

1jJ( O. y. z) = fx(Y. z). 1jJ(ax. y. z) =gz(y. z},
1jJ(x . O. z) = f y ( x. z). 1jJ(x. ay • z ] = 9y ( x. z ).

1/1(x. y. 0) = fz(x. y)l 1/1(x. y, a:) =g:(x. y).

Procedure 18.2(1) gives. for example, the problem

1:::.1/1 =01 on [0.az] x [0.ay] x [0,azL

1/1(O.y.z) =1/1(a;r.Y·z) = 'I/'(x,O.z) = 'I/'(x. all' z) = 0,
'I/'(x. y, 0) = f:(x. y). 'I/'(x, y. a:) =gAx, y).

2720f course. un and Ul must be Fourier-expandable (-17.5).
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(x. y. z in the boundary conditions must be in the domain of the prob
lem. of course.) Thus the relevant eigenvalue problem analogous to that
appearing in 18.2(2) is

(18.24)

with the homogeneous Dirichlet boundary condition u(0, y) = u(ax, y) =
u(x.O) = u(x. ay) = O. This can be separated further, and the super
position principle asserts

'" . h h) . ms:» . n7rY (18 25)'l/-J = L)Am .n sm P-m.nZ + Em•n cos P-m.nZ sm-- sm-. .
m.n ax ay

where P-~.n = (m7r)2Ia; + (n7r)2 la~. The unknown constants Am •n and
Em .n are fixed with the aid of 17.16(1).

If. for example. ax is not finite. the summation over m in (18.25)
becomes an integral (Fourier sine transform) (-32A.8).

The full solution to our problem is obtained by summing all three
solutions to inhomogeneous problems in the x, y and Z directions re
sulted from the splitting.

Exercise.
Consider the Laplace equation on a square 10. L]x [0. L] with the boundary conditions273

u(O.y) =O. u(L.y) =Asin(2ujL}. u(x.O} =O. u(x.L} =Bsin(2ujL).
(18.26)

18.4 Laplace equation: Neumann condition.

with the Neumann boundary condition

ox'l/-J(O.y.z) = f ..(y,z). ox'l/J(ax·Y.z) =gx(y,z).
Oy'l/-J(X.O.z) = !y(X.z), Oy'l/J(x.ay,z) =gy(x,z).
Oz'l/J(x. y. 0) = f:(x. y). Oz'l/J(x. y. a:) =gAx, y).

18.2( 1) gives. for example. the problem

(18.27)

(18.28)

A'~J =0 on [0.ax] x [0.ay] x [0.aJ (18.29)
ox'l/J(O.y.z) = ox'l/J(ax.y.z) = Oy'l/J(x.O.z) = oy7P(x,ay,z) =0,

(18.30)
O:'l/J(x.y.O) = !Ax.y). o:'l/J(x,y,az) = gAx.y). (18.31)

273L91.
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Thus the relevant eigenvalue problem is

(8; + 8;)u = _p,2U (18.32)

with the homogeneous Neumann boundary condition fJzu(O, y) = fJru(air , y) =
8yu(x . 0) =8yu (x . ay) =O. This can be separated further, and eventu-
ally we get

. m7rX n7rY
1/1 = 2)Am •n smhp,m.nz + B rn.n cosh iLm.llZ) cos -- cos-. (18.33)

111.n ax ay

where f-l~.n =(m7r)2 / a; + (mr)2 / a~. The unknown constants A m •n and
Bm .n are fixed with the aid of 17.16(2).

If the region is not bounded. then the summation over m and/or
n becomes integration (Fourier cosine transform-32A.8).

(18.34)

18.5 Diffusion equation. Consider

8u = D82u
8t 8x2

for x E (O.l) and for t > 0 with the initial condition u(x.O) = A for
x E (D.l) and the boundary condition u(O. t) = Band u(l, t) = C for
t > O. where A. B. Care constants.274

A clever (and standard1trick is to convert the problem to a homoge
neous boundary value problem by introducing

(
C - B )v=u- I x+B. (18.35)

(18.36)

We have
8v 82v

-=D
8t 8x2

for x E (D.I) and for t > 0 with the initial condition v(x,O) = (B 
C'vx]! + A - B for z E (O.l) and the boundary condition v(O, t) = 0
and -I.'(l. t) = 0 for t > O. Thus we may assume the following solution

:x n7r
v(x. t) =L Tn(t) sin -z X.

n=l

(18.37)

Notice that the above method works even when A. B, Care time
dependent.

274\Yith this delicate choice of the space-time positions to impose the auxiliary
conditions. we need not worry about the compatibility among A. B. C.
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au a2uat = 8x2 (18.38)

on [0.1] with the initial condition ut», 0) = sin(1l'x/2) and the boundary conditions
u(O. t) =0 and

(18.39)

Exercise.
(1) Find the solution of the 1d diffusion equation for x E [O,1l'] and t ~ 0 with a
homogeneous Neumann condition and the initial condition u(x,O) = sin2 z,
(2) Find the solution of the 1d diffusion equation for x E [0.1l'] and t ~ 0 with the
initial condition u(x.O) = z, and a homogeneous Dirichlet boundary condition.
(3) Solve the diffusion equation

all I 1-a = --u(1, t).
x ",=1 /I

where II is a constant (i.e.. a homogeneous Robin condition).
[Hint: Let tin be the n-th zero of tan x + /IX =0 arranged in the increasing order.
Then.

t .. 1 + /I cos2
/In

Jo sm(lln x ) sm(Ji mx)dx =tim •n 2 . (18.40)

]
(6) There is a thermally isolated ring of radius l whose thermal diffusivity is D.
The initial temperature distribution is given by

?x
T(D.x) =To cos T' (18.41 )

where .r is t he coordinate along the ring. Find T( t. z ).
(7) Considering the diffusion equation on an appropriate interval with a homoge
neous Dirichlet condition. show

(18.42)

(18.43)

(cr. the Poisson sum formula 32C.2)
(8) There is a thin rod of length (occupying between z = 0 and X = l whose thermal
diffusivity is D. The temperature at one end. say. at x = 0 is given as a function of
time as T(:r =0, t) =Toe- o t (0 > 0. constant). and the other en.d is maintained at
To for all t > O. Initially the temperature is given by T(x,D) = Tosin(31l'x/f). Find
the temperature field for t > O.

18.6 Obtaining Poisson's formula. Consider the Laplace equation
on a disk of radius a centered at the origin (cf. 2D.I0):

82u 18u 1 82u

8r2 + ;:ar + r 2 882 =0

The boundary condition is a Dirichlet condition: u( a, 8) = f( 8) which
is a smooth periodic function with period 211".

We can of course follow the honest separation strategy, but we
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may assume that u can be Fourier expanded (as the reader can guess
(-1.13. 13C.6(2). 5.6~ 16D.10), harmonic functions are very smooth
(-29.10). so we can do this with confidence) as

A (r) IX)

u(r.O):::: ++ 2:[An(r)cosn9+Bn(r)sinn9).
n==1

(18.44)

(18.46)

Putting this into the equation. we obtain the following ODE for the
coefficients:

o (n:::: 0,1.2.·· '), (18.45)

0(n=I ,2,''')'

From this we get the following solutions that are finite at the origin
(-11B.14):

An(r):::: Anrn• Bn(r) = B nr l1
• (18.47)

where An and En are constants. With the aid ofthe boundary condition
at T :::: a. these coefficients are uniquely fixed as (-17.1)

112Jr 112
11"An = - f(¢)cosn¢d¢. Bn =- j(¢)sinn¢d¢.

1r 0 1r 0

Hnece. our solution (18.44) reads:

1 12
7. ( '>C ( r ) 11 )u(r.e)=- f(¢) 1+22: - cosn(¢-O) d¢

21r 0 11=1 a

(18.48)

(18.49)

or summing the series. we finally obtain Poisson's formula (for r < a)
(-I6D.8):

1 102
7. a2

- r2

u(r.O) = -2 f(¢) 2 2 (¢ 0) 2 d¢.o a - ar cos - + r
(18.50)

18.7 I-space wave equation. Let us consider. as an example, the
following I-wave equation

(18.51)

for x E [0.a] and t ~ 0, where c is a positive constant. The auxiliary
conditions are:
the initial condition: u(x.O) = f(x). OtU(X,O) = 0 for x E [0,a],
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(18.52)

the boundary conditions: u(0, t) = u(a1 t) = °for t ~ 0.
We know that the solution, if exists, is unique for smooth initial con
ditions (-1.19).
Again. we can immediately proceed as in 18.6 to assume the solution
in the following form (cf. 17.16(1), 1.6):

u(x, t) =Ean(t) sin (n:x) .

Now the boundary conditions have been taken into account. The initial
condition requires that

2 fa . (n1rx)an(O) = -;, J
o

f(x)sm -;: dx, (18.53)

and a~ (0) = O. The wave equation is translated into a set of infinite
ODEs:

(18.54 )

Thus. we get

(
cn1rt )an(t) = an(O) cos -a- .

Recover dAlemberts formula in 2B.3 from this.

Exercise.
(1) Find the solution for

(18.55)

cPu cPu 8u
8x2 = 8t 2 + 2 8t + u (18.56)

for .r E [0. 7i] with a homogeneous Dirichlet boundary condition and the initial
condition u(x.O) = sin x and 8t U(.T.0) = O.
(2) Solve 1-d wave equation with the wave speed c under the initial condition

u(O.x) =sin ~;x. 8tu(0.x) =0 (18.57)

with the boundary condition u(t,O) = °and 8"u(t,O) = °for t > °(i.e., x =°is
fixed and x = ( is open).
(3) There is a string of length 1 whose both ends are fixed. A concentrated force
.4 sin...:t is applied at x = c on the string. Let the density of the string be p and its
tension T. Then. the speed is given by c2 = Tip (-aID.H).
(4) A uniform flexible chain is hanging along the z-axis, Let u be the displacement
of the chain in the z z-plane, hanging from the origin. Then

(18.58)

Solve this with the aid of the separation of variables, The equation for the spatial
function becomes Bessel's equation (-27A.l) in this case.
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Dsicussion.
The shape of the string of a violin at time t takes the form in the figure; it looks
like a . . The breaking pont moves 'with a constant velocity and its trajectory is
on a parabola {see the photos}. The formula for the shape is

00

<t>(x.t) =CL: :2 sinknu'sinwnt,
n=l

{18.59}

where kn =1rTl / Land Wn =ck n with the wave speed c. C is a constant dependent
on the loudness of the sound. Demonstrate the statement about the shape (esp.
the motion of the breaking point) from this formula

--
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